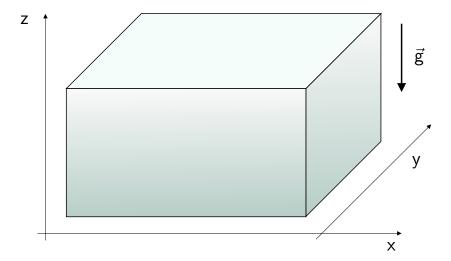
BALAÏTOUS:

un code de simulations numériques locales pour la dynamique des fluides stellaires


Simulations numériques locales pour la dynamique des fluides stellaires

- ✓ Présentation générale
 - X Motivations
 - X Historique et évolutions récentes
 - X Types de simulations réalisables
 - X Structure du code
- √ Méthodes numériques
 - **X** Avancement en temps
 - X Différentiation spatiale
 - X Parallélisation
- √ Exemples d'utilisations récentes
 - X Tests, simulations à grand rapport d'aspect
- √ Conclusions, évolutions possibles

Motivations

- ✓ Un outil numérique polyvalent et performant pour la modélisation des écoulements fluides 3D dans les atmosphères et les intérieurs stellaires ;
- ✓ simulations locales avec une direction inhomogène (celle de la gravité) :

- X géométrie cartésienne,
- X deux directions horizontales périodiques,
- X direction verticale avec conditions aux limites;

✓ codes similaires : HPS (Chicago, Boulder), code du DAMTP (Cambridge).

Historique et évolutions récentes

- ✓ Initié par A. Mangeney et F. Califano pour étudier des écoulements incompressibles [Califano, 1996];
- √ développé par F. Lignières : passage en fortran 90, parallélisation MPI, portage sur IBM SP3/4 [Lignières, 1998];
- ✓ récemment : intégration des écoulements compressibles, portage sur SGI, conception de tests de performance et de précision.

Types de simulations réalisables

- ✓ Résolution en 2D ou 3D :
 - X de l'équation de continuité,
 - X de l'équation de Navier-Stokes,
 - X éventuellement de l'équation pour la température (dans l'approximation de diffusion),
 - X éventuellement de l'équation d'induction,

pour des conditions aux limites de type champ fixé ou dérivée fixée.

- ⇒ flots incompressibles ou dans l'approximation de Boussinesq,
- ⇒ écoulements complètement compressibles,
- ⇒ simulations purement HD ou MHD,
- ⇒ écoulements forcés ou avec rotation;
- \checkmark code sans viscosité artificielle : $\nu\Delta\vec{v}$ seulement.

Structure du programme

- √ Langage : fortran 90, interfacé avec du C;
- ✓ Modularité : possibilité de changer les méthodes de différentiation spatiale sans affecter l'ensemble du code :
 - ⇒ utilisation d'interfaces génériques;
- √ preprocessing du compilateur pour la sélection des méthodes numériques;
- ✓ configuration d'une partie du problème par des namelist.
- ✓ Installation sur diverses architectures et benchs de performances et d'exactitude automatisés en Perl.

Avancement en temps

- ✓ Complètement explicite;
 ✓ prédicteur correcteur de type Runge-Kutta [Demuren et al., 2001] :
 ✗ faible stockage mémoire,
 - X ordre 3 ou 4;
- √ avancement dans l'espace réel (différence avec HPS).
- ✓ Différents algorithmes :
 - X en incompressible, résolution intermédiaire de l'équation de Poisson pour la pression;
 - X en compressible, avancement direct des différents champs, mais un champ supplémentaire ρ à calculer.

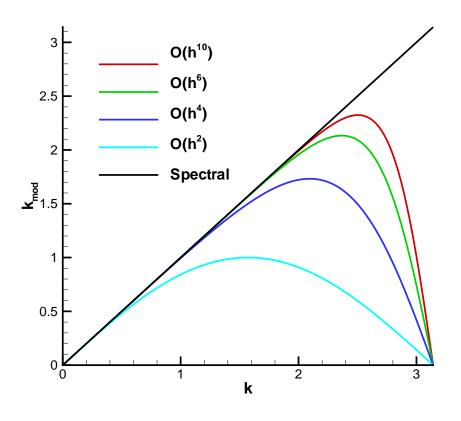
Différentiation spatiale dans la direction verticale – différences finies compactes

- ✓ Schéma possédant une précision quasi-spectrale [Lele, 1992] :
 - x résolution satisfaisante des petites échelles, adapté aux problèmes de turbulence;
 - X stable pour une équation d'advection [Carpenter, 1993];
 - X choix entre ordre 6 et ordre 8;
 - X intégration de plusieurs schémas de bords pour la gestion de différents types de conditions aux limites;
- √ en pratique, résolution de systèmes linéaires tri- ou penta-diagonaux :
 - X peu ou pas parallélisable;
 - X choix d'une bibliothèque : LAPACK (PC), SCS (SGI), ESSL (IBM).

Différentiation spatiale dans les directions horizontales – transformée de Fourier rapide

✓ Précision spectrale :

- X utile pour les simulations de turbulence;
- X moins de points!
- X facteurs de sécurité plus petits...

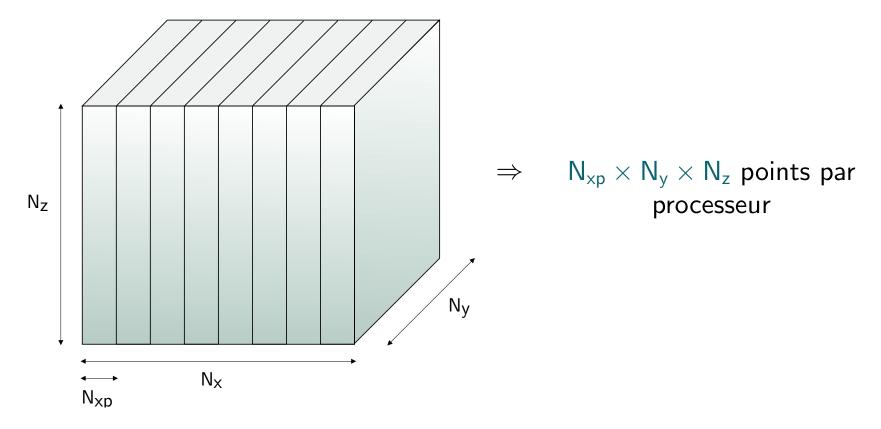

	RK₃			RK ₄		
Équation	DFC_6	DFC ₈	FFT	DFC ₆	DFC ₈	FFT
Diffusion	0.36	0.33	0.25	0.42	0.39	0.29
Advection	0.87	0.78	0.55	1.43	1.29	0.9

- √ hautement parallélisable;
- ✓ utilisation de la bibliothèque FFTW reconnue pour ses performances comparées aux FFT propriétaires (interface C/F90).

Précision des schémas et dealiasing

✓ Différentiation :

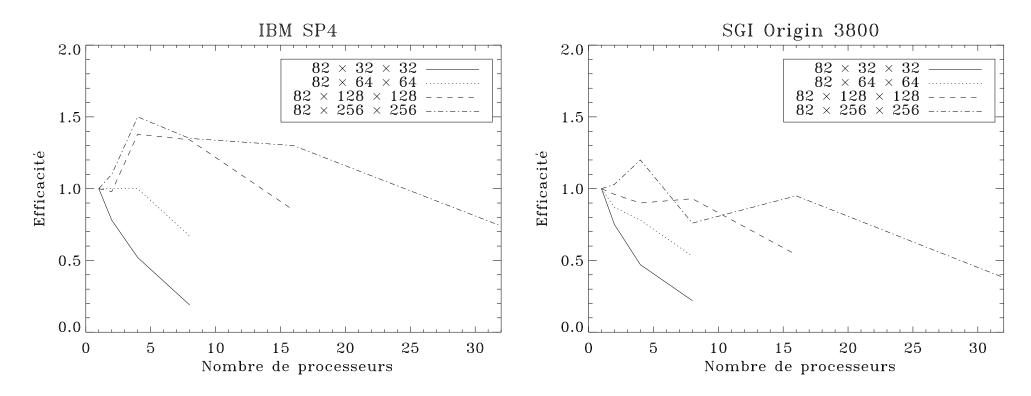
$$f_{\mathsf{k}}^{\prime\,\mathsf{sc}}\,\hat{=}\,i\;\mathsf{k}_{\mathsf{mod}}\,f_{\mathsf{k}}^{\mathsf{sc}}$$



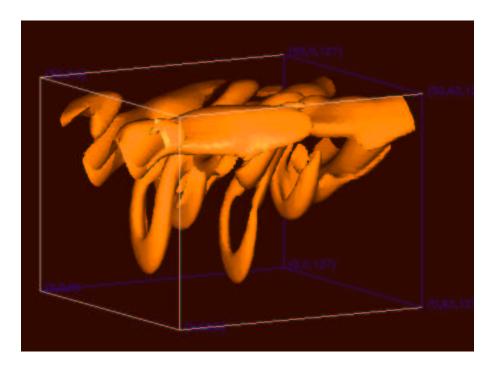
[R. Samtaney]

- √ DFC : filtre passe-bas « naturel »;
- ✓ FFT : filtre de dealiasing pour supprimer les modes spurieux liés à la collocation dans l'espace réel.

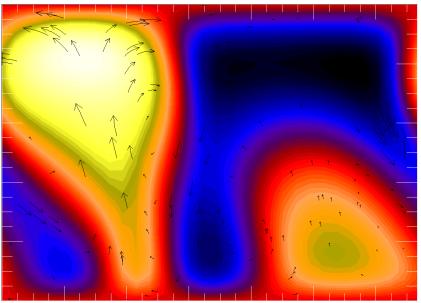
Stratégie de parallélisation


- ✓ les dérivées verticales dans chaque tranche sont calculées sur un processeur;
- ✓ Parallélisation des FFT pour le calcul des dérivées horizontales ;

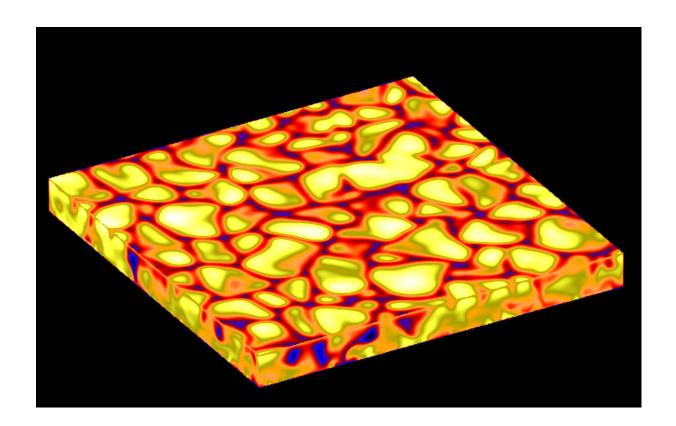
- ✓ portabilité : utilisation de la bibliothèque MPI;
- √ implémentation des communications interprocesseur intégrée à FFTW.


Performances

✓ Benchs de parallélisation effectués à l'IDRIS et au CINES :


- ✓ Efficacité assurée jusqu'à 32 processeurs pour des résolutions $82 \times 256 \times 256$;
- \checkmark utilisation de plus de processeurs envisageable à des résolutions supérieures, résolutions horizontales N_p^2 idéales;
- √ performances de l'IBM supérieures pour le parallélisme.

Exemples d'utilisations récentes


✓ Déstabilisation 3D d'une couche de cisaillement (F. Lignières)

✓ Tests d'exactitude sur la convection oscillante MHD compressible [Weiss, 1991]

Exemples d'utilisations récentes (2)

✓ Simulations à grand rapport d'aspect de convection compressible en milieu fortement stratifié (F. Rincon)

Conclusions, évolutions possibles

- √ Code adapté à la modélisation d'un grand nombre d'écoulements;
- √ méthodes numériques précises et performantes sur plusieurs architectures de calcul scientifique;
- ✓ très bonne parallélisation, hautes résolutions $\mathcal{O}\left(500^3\right)$ possibles;
- √ « user friendly ».
- ✓ Un futur plus ou moins proche/lointain :
 - X comparer les performances avec d'autres codes;
 - X codage implicite des termes visqueux;
 - X parallélisation verticale : différences finies classiques ;
 - X inclusion de transfert radiatif?
 - X géométrie sphérique? cf. [Nishikawa, 2002] pour une utilisation des FFTs en sphérique.