Collisional Excitation Processes

M.L. Dubernet-Tuckey

LERMA, UMR CNRS, Paris Observatory

Astrophysical Observations

- Infrared Space Observatory (ISO)
- Submillimeter Wave Astronomy Satellite (SWAS), ODIN: 1 line of H₂O and O₂
- Future Herschel Space Observatory (HSO): Heterodyne Instrument for the Far-Infrared (HIFI)
 - Unprecedent sensitivity in different environments, from ISM to the stellar or planetary atmospheres
 - Water Survey for many rotational lines in v=0, and some in v=1
 - Other molecules
- Future ALMA (ground based millimeter interferometer): higher spatial resolution
 - \Rightarrow More accurate molecular data : 10% to 20%

Collisional Excitation Processes

A selection of work for FP6: rotational and ro-vibrational excitation

- H₂O, HDO + H, He, H₂ : Meudon, Grenoble, Oxford, Nijmegen
- N_2H^+ + He, H_2 : Meudon, Basel
- HC₃N + He : Rennes, Grenoble, Varsow
- NH₂D, ND₂H + H₂ : Grenoble, Meudon
- H₂CO, HDCO + H₂ : Grenoble, Varsow
- CH⁺ + H₂: Basel, Meudon, Rennes, Oxford, Götteborg, Göttingen
- SO, SiO, SO₂ + He, H₂ : Durham, Madrid, Meudon

Rate coeFFicients

$$k_{\alpha \to \beta}(T) = \int_0^\infty \sigma_{\alpha \to \beta}(E) E e^{-E/kT} dE \tag{1}$$

Cross-sections

$$\sigma_{\alpha \to \beta} = y * \sum_{Jtot} (2 * Jtot + 1) |1 - S_{\alpha \to \beta}^{Jtot}|^2$$
 (2)

Scattering matrix elements obtained from solving Schrödinger Equation:

$$H\Psi = E\Psi$$

Hamiltonian

$$H = -\frac{\hbar^2}{2\mu} R^{-1} \frac{\partial^2}{\partial R^2} R + \frac{\hbar^2 \hat{\mathbf{L}}^2}{2\mu R^2} + H_{\text{at/mol}2} + H_{\text{mol}1} + V_{\text{inter}}$$
(3)

exemple : N_2H^+ + He

$$H_{\text{mol}} = B\hat{\mathbf{j}}^2 + H_{hfs} \qquad \qquad H_{hfs} = H_Q + H_{mag}$$

Angular momentum coupling:

$$\hat{\mathbf{j}} + \hat{\mathbf{I}}_1 = \hat{\mathbf{F}}_1$$
 $\hat{\mathbf{F}}_1 + \hat{\mathbf{I}}_2 = \hat{\mathbf{F}}$

Best basis set for calculations of hyperFine levels of N₂H⁺

$$egin{aligned} \ket{jI_1F_1I_2F} \ \hat{\mathbf{L}} = \hat{\mathbf{J}}_t - \hat{\mathbf{j}} - \hat{\mathbf{I}}_1 - \hat{\mathbf{I}}_2 = \hat{\mathbf{J}}_t - \hat{\mathbf{j}} - \hat{\mathbf{I}} \end{aligned}$$

Dynamical methods in order to get $\sigma_{\alpha \to \beta}(E)$?

- Most reliable methods: Quantum with no approximation
 - the method we use : Close Coupling (N^3)
 - other possibilities : wavepackets
- Angular momentum decoupling approximations in CC
 - Coupled states (CS), Infinite Order Sudden (IOS)
 - allow to reach higher temperatures
- Semiclassical Methods
 - Minimum assumption: translational motion treated classically
 - Quasi-Classical Trajectories (QCT)
 - Other methods implemented by various groups

Solving CC equations

$$\left[\mathbf{I}\frac{d^2}{dR^2} + \mathbf{W}(\mathbf{R})\right]\mathbf{F}(\mathbf{R}) = 0,\tag{4}$$

$$\mathbf{W}(\mathbf{R}) = \mathbf{k}^2 - \mathbf{l}^2 - \mathbf{V}(\mathbf{R}) \tag{5}$$

Propagation of log-derivative matrix $Y(R) = F'(R)F(R)^{-1}$

At Short range: solution following method, i.e, approximate the matrix of solutions F(R) by a power series and then solve Eq. (4) exactly. Similar in spirit to usual numerical techniques for solution of ordinary differential equations (Runge-Kutta..)

At Long range: potential-following method, i.e. approximate matrix $\mathbf{W}(\mathbf{R})$ by a series of constant or linear segments. In local regions, CC eq. are solved exactly.

State of the Art

2 packages : MOLSCAT and HIBRIDON (same propagators)
Complexity increases with

- number of internal states of molecules (rot., vib., fine structure)
- higher energy, this implies summing over more total angular momenta, including more closed channels

Simple Solution for CC:

Parallelization of loops over energy, parity, J_{tot}