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A Landau fluid model for dispersive magnetohydrodynamics
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A monofluid model with Landau damping is presented for strongly magnetized electron-proton
collisionless plasmas whose distribution functions are close to bi-Maxwellians. This description that
includes dynamical equations for the gyrotropic components of the pressure and heat flux tensors,
extends the Landau-fluid model of Snyder, Hammett, and DoflBhgs. Plasmad, 3974(1997)]

by retaining Hall effect and finite Larmor radius corrections. It accurately reproduces the weakly
nonlinear dynamics of dispersive Alfvén waves whose wavelengths are large compared to the ion
inertial length, whatever their direction of propagation, and also the rapid Landau dissipation of long
magnetosonic waves in a warm plasma2@4 American Institute of Physics

[DOI: 10.1063/1.1780533

I. INTRODUCTION scale numerical simulations of a collisionless plasma perme-
] ) o ated by a strong magnetic field was suggested by Hammett

Both in natural and fusion plasmas, collisions are generyng co-workers in the form of Landau fluids built to account
ally negligible, making the usual magnetohydrodynamics, \ave-particle resonance effects within a magnetohydro

questionable. On the other hand, in most situations, direGynamics(MHD) framework. The full electromagnetic case
numerical integrations of the Vlasov—Maxwell equations in;

volved. '!'he gy_roklnetlc descrlptléﬁ that averages over _the of the microscopic equations. SHD start from guiding center
gyrotropic motion of the particles and that is extensively

. : equations but an equivalent derivation can be made from the
used for fusion plasmas, reduces the number of mdepende(}f1

i . . asov—Maxwell system. The resulting hierarchy must nev-
variables but still needs an enormous computational strength. . C
L . . .~ ertheless be closed and the main work consists in a proper
Situations involving a broad range of scales require ad terminati f th ¢ iated with h
formalism that preserves most of the aspects of a fluid de°® er'mlnla:uortlho ke p][egsurlg .tensor Ias.:,oma © i W | cac
scription but includes realistic approximations of the pres-_SpeC'es_' or the sake ot simplicily, an electron-proton plasma
s considered in a simple geomefryo curvature drift, with

sure and heat flux tensors. The effect of wave-patrticle resd h ibri h ized by bi
nances that provide the dominant dissipation process omogeneous  equilibrium state.c ar_agtenze y ol
axwellian distribution functions. In its original presenta-

should in particular be retained. In a collisionless plasma, & h lis limi les | hf h Hall
fluid behavior can only result from collective constraints, 10N the modelis limited to scales large enough for both Hal

such as the presence of a strong magnetic field. In this casglect and finite Larmor radiugFLR) corrections to be to-
Chew, Goldberger, and LoWCGL) (Ref. 3 first proposed tally negligible. As shown by S'HD, Fhls dggcnptlon predllcts
the “double adiabatic laws” or CGL equations for the parallelth® correct threshold of the mirror instability. A generaliza-
and perpendicular gyrotropic pressure components, where diPn iS, however, needed in order to consider dispersive
the heat fluxes are neglected. The conditions of validity ofMHD turbulence. . .
this assumption are rather string&rfthe onset of the mirror Our goal is thus to develop a simple monofluid model
instability is, for example, not correctly descrifedithin  able to accurately reproduce the weakly nonlinear dynamics
this approximation that requires a phase velocity much largepf most MHD waves, including kinetic Alfvén waves with
than the thermal velocity of the particles. Closures that reiransverse wave number small compared with the inverse
produce linear results from kinetic theory were also proposedroton inertial length. These waves, characterized by an
but they depend on the equilibrium state and are often preangle of propagationr such that cosa< g (where 8 de-
sented in Fourier space, leading to the definition of effectivéhotes the squared ratio of the ion acoustic to the Alfvén
polytropic indices’ In the context of fusion plasmas, an speeds are supposed to be produced by the quasi-two-
extensive literature was devoted during the last decades @mensional energy cascade that develops in Alfvén wave
the gyrofluid descriptioh® based on the evolution of hydro- turbulence. A simplified model was recently derivednd
dynamic moments obtained from the gyrokinetic equationspenchmarked by direct comparisons with Viasov-Maxwell
and thus also written in a local coordinate system. A hybridpredictions in the limit of long-wavelength small-amplitude
description of low frequency phenomena involving the cou-perturbations. For parallel Alfvén waves, a reductive pertur-
pling of a monofluid description with pressure tensors forbative expansion of this model reproduces the kinetic deriva-
ions and electrons prescribed by gyrokinetic equations watve nonlinear SchrodingeiKDNLS) equatio®™*® (includ-
also developed® ing its extension to multidimensional wave traif)sderived

A simplified description more easily amenable to large-from the Vlasov—Maxwell equations, up to the replacement
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of the plasma response function by its two- or four-pole Padélerivative nonlinear SchrodingeiThis asymptotics may re-
approximants. For magnetosonic wavésagreement was tain terms which are subdominant in an(l/expansion that
obtained with the phase velocity and the Landau dampings relative to the scale separation only.

given in the literatur® for the regime (me/my) <8 The fluid equations to be derived in this paper are re-
<(T,/Tp) of adiabatic protons and isothermal electrons withquested to correctly capture the weakly nonlinear dynamics
isotropic temperatures. It, however, turns out that the deef dispersive MHD waves, by fitting with the kinetic theory
scription of oblique and kinetic Alfvén waves requires awithin the ordering prescribed by a reductive perturbative
more refined description of the finite Larmor radius effectsexpansion. This approach has the main advantage to separate
associated with the nongyrotropic contributions of both thethe various types of waves, retaining only those terms that
pressure and heat flux tensors. A first extensiasf this  contribute to their dynamics. It also provides a rigorous
model was presented in the regime of adiabatic protons anfilamework for a nonlinear theory where some terms are
isothermal electrons with sma#t, that reproduces the clas- evaluated at the linear level, as, for example, requested at the
sial dispersion and Landau damping of kinetic Alfvén waveslevel of the heat flux closure.

in this regime®° This approach actually involves a heuris-

tic closure relation for the electron pressure that is here reB. The MHD wave scalings

covered as a limiting case of a more general Landau-fluid

model whose derivation is the main object of the present In a reductive perturbative expansion, the various MHD
paper waves are selected by prescribing different orderings. The

In Sec. Il, the scalings associated with the various MHDamblent magnetic field being taken in thedirection, we

o o
waves are explicited and a monofluid description of thedSSume a propagation in tHe,2) plane along an axig

plasma is obtained, under conditions consistent with th%wakm%.an anglglex W',th th; amb|enttf|eld.tFor Iper:urbatlons
weakly nonlinear regime. In order to describe anisotropic epending only ore’ and propagating at velocity,, we

situations, the pressure tensor of each particle species is rg_efme the stretched coordinage €/%(z' - Vo).
tained. It includes gyrotropic components that evolve on hy- . )

drodynamic time scales, together with nongyrotropic onegl: Oblique magnetosonic waves

that rapidly adjust to the variations of the hydrodynamic =~ The magnetosonic waves are selected by prescrifaing
quantities(“slaved” dynamicsand are amenable to a pertur- =ebV+- -+, b, =32V +- -+, b,=By+eb’+- -+, p=p®+ep®
bative descriptior(Sec. Il). In Sec. IV, general closure ap- +---, u=eu”+---, u,=uP+ u=euV+---, p, =p?

o . , X y r
proximations for the gytrotropic and nongyrotropic heat+ep<ji+---, p”r:pﬁo>+ep<l)+---,where as usudl is the mag-

fluxes are inferred from the kinetic theory of long oblique netic field,p andurare tHre density and velocity of the plasma,
Alfvén waves presented in Appendices A—C. As mentionedp , and p,, are the transverse and parallel pressures of the
above, this regime that retains the kinetic effects to leadingarticles of species. The dispersion and the nonlinearities
order, can indeed be viewed as a distinguished limit coveringhen act on a slow time= 4.

more general situations. The resulting model and its valida-

tion are presented in Sec. V. A few conclusions and project®. Oblique Alfvén waves

for further developments are briefly presented in the last

section The reductive perturbative expansion now involves the

scalings by:61/2(b§1)+6b§/2)+ 1), U= el’z(u;1)+ U+,
while the previously defined scalings are retained for the

other quantities.
1. AN ASYMPTOTIC FRAMEWORK FOR A FLUID

DESCRIPTION 3. Parallel Alfvén waves

A. The small amplitude regime In the case of a propagation angle0, one prescribes

The usual procedufeto describe the dynamics of a b,=e’V+ -, b=eV+--.  b=By+eP+ -, p
strongly magnetized collisionless plasma at scales large cormp©@+e2p@+--- ~ u=euP+..  u :el"‘u(y oo Uy
pared to those of the ion gyromotion consists in performing=e"/2u(" +- -+, p“=p(l0?+61/2p)ilz+'", p||r=pﬁ?)+61/2pﬁrl)+--',
an asymptoticgreferred to as a X}, expansion where the  with a slow timer=et.
small parameter is the ratio of the typical considered fre- Furthermore, for all the waves, the gyrotropic heat fluxes
quency to the ion gyrofrequency. This approach is appropriare scaled similarly to the pressures. The magnitude of the
ate when no smallness assumption is made on the amplitud®ngyrotropic components will be explicited later on, when
of the fluctuations, but may be conflicting with the weak- these contributions will be consideré8ec. IV A).
nonlinearity ordering required to close the moment hierarchy.  The above scalings indicate that nonlinear effects com-
When addressing the weakly nonlinear regime, it is thugparable to dispersion occur with an amplitude that is smaller
preferable to use a unique expansion parameter to charactdor magnetosonic waves than for Alfvén waves. This reflects
ize the small amplitudes and the long-wavelengths and lovthe longitudinal character of the former waves for which a
frequencies of the perturbations. In the distinguished limitrelatively strong dispersion is requested to arrest shock for-
that ensures the balance of the nonlinear and dispersive efaation. In contrast, parallel Alfvén waves can support much
fects, a reductive perturbative expansion then leads to thiarger amplitude since they are incompressible. It follows
classical long-wave equatiosuch as Korteweg—de Vries or that a weakly nonlinear theory of magnetosonic waves re-
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quires a higher order perturbation theory, as it will be dis- P.=p,—pu-u) @ (u-u,) (4)

cussed in more details in Sec. V. This delicate situation can

nevertheless be prevented by the presence of Landau dam@nd

ing that, when the3 of the plasma is not too small, acts on _

the shortest time scale, making the nonlinear and dispersive Qr i = A i+ Pr i (U= Up)ic Pri(U = Up)j + Prjie(U = U,

corrections subdominant. The smgllimit that makes the (5)

electron inertia relevant is in any case out of the scope of a o

monofluid theory. For larger wave amplitude, the lowest or-Where the subscriptgk refer to components of the corre-

der corrections in the usual ©/, expansion together with a sponding tensors.

simple Landau-fluid closure for the gyrotropic presstirés Defining 4, =P;-p; and

are §ufficient. Furthermore, an expansion valid for obliql_Je R,=V -(Ué)+[6 - -Vu+(V-P)ou-u)lS (6

Alfvén waves, where both the Hall term and nongyrotropic

heat flux components enter at dominant order, will retain albne has in Eq(3)

the relevant terms for parallel wavéwith possible addi-

tional subdominant correctiongnd also for magnetosonic V - (UP: + Q) +[P; - Vu]®

waves in the most usual situations. As a consequence of -y .(yp, +q,) +[p, - VUlS+R,. 7)

these observations, the construction of the monofluid model

will be based on the weakly nonlinear dynamics of obliqueFor the orderings involved in the reductive perturbative

Alfvén waves with typical wavelengths large compared toanalysis of the various MHD waves discussed above, ne-

the proton inertial length. This approach involves severablecting 4, and R, contributions in the equation fop, is

steps. possible if the expansion of this quantity is limited to orders
strictly lower thane? for oblique Alfvén waves and>? for

magnetosonic waves. This leads us to replace(Boby
C. From a bifluid to a monofluid description

S
Starting from the Vlasov—Maxwell equatioal)~A4) apr+ V- (up,+q) +|p - Vu+ %b Xp| =0. (8

and writing the equations satisfied by the successive mo- '

ments of the distribution function for particles of species  Fyrthermore, one easily gets that

one derives an exact hierarchy of fluid equations for the cor-

responding density,=mn, [ f,d%, hydrodynamic velocity dp+V -(up)=0 (9)
u,= fuf,.d® / [f,d%, pressure tensoP,=mn, [(v—-u,) ® (v

-u,)f,d® and heat flux tensoQ,=mn, [(v-u,) ® (v-u,) and
® (v-u,)f,d3, in the usual form 1
dpu)+V -(pueu)+V -p-—jXb=0, 10
4o+ V - (pr) =0, W W+ ¥ lpue W+ ¥ p= ] -

1 a 1 wherep=2,p, denotes the total pressure tensor and where
A+ U VU + =V -Pr— e+ u X b =0, (2)  the electric current=3,q,n, f vf,d ==,(q,/m,)p,u; is given

m . . e .
Pr ' by j=c/4mwV Xb. In this derivation, we neglect the dis-
q s placement current and also make the approximation of
P, +V -(uP,+Q,) +|P,- Vur+m—rcb>< P, | =0, quasineutrality=,q,p,/m =0, as usual when considering
T

slow motion of fluid elements of size greater than the Debye
(3 length?
The currentj obeys

aror O
E u®u>+§,—V-P
m T r ~m r

r T r

where the tensob X P, has elementgb X P);; = &mibmPy jj
and where, for a square matrix, one definesAS=A+A". (

One has(bx P,)"=-P, X b. In order to distinguish between dj+ V -
scalar and tensorial pressures, bold letters are used to denote

tensors of rank two and higher. Coupled to Maxwell equa- 2 1

) e o Grpr _

tions, such a multifluid description resolves the small spa- -2 5le+ Sur X b|=0. (11
tiotemporal scales associated with Langmuir waves that are ror

unneeded when concentrating on the large-scale dynamics gfsing the identity
dispersive MHD waves. A monofluid description together

with the additional approximation of neglecting electron in- arpr : . aror

ertia, allows the filtering of these small scales. One is thus Zr e _Er m te

led to consider the plasma velocity=(1/p)Z,p,u;, where

p=Z, p, is the plasma density, and to define the pressure and > Qrpr(ur —W® (U -u), (12)

heat flux tensors associated with each particle species in
terms of the deviations from this barycentric velocity, in the
form p,=mn,f(v-u)® (v-wf,d® and g,=mn,f(v-u) and the fact that for a plasma of protons and electrons of
® (v-u)® (v-u)f,d®. One has electric chargeg,=-0.=q,

r T
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2 Ill. THE PRESSURE TENSORS
qr of 1 1 pu
EFPrur:q —t | . .
rm Me M/ Mgt My In order to isolate the gyrotropic components of the pres-
m, m j sure tensor, it is convenient to rewrite E8§) for the pressure
- q(—E - —)— (13 tensor of each particle species in the form
Mg My/ M+ My - .
p, X b—bXxp, =k, 7
one get?&’ . _ _ .
where b=Db/|b| is the unit vector along the local magnetic
q q field and
0tJ+V-<U®j+j®u—2'—MU®U)+E—rV-pr 18 dpr
r r My K=ol gt TV WP Y (o VOB (19

qrpr _2 1 1)\puxb _ _ . .
‘2 +— In this equation,B, denotes the amplitude of the ambient

Me  Mp/ MMy field and Q,=(q,By/m,c) is the gyrofrequency of the par-
g/m, my\ jxb ticles of species. Furthermored/dt=¢,+u-V denotes the
+ =P 2|2 —— =0, (14) i i
c\me my/me+m convective derivative.

A few classical results are first recalled for
completenes$??We first note that the left-hand side of Eq.

This equation simplifies when terms involving the ratio
ﬁl7) can be viewed as a self-adjoint linear operator actlng on

me/m, are neglected and quasineutrality is assumed, whic

leads to writep,=m;n andu~u,. One obtains Prs. whose kernel is spanned by the tens@rsb@b) andb
®b. It is thus convenient to define the projectiarof any
Aj+V -Uej+jou) (3% 3) rank two tensor on the image of this operator as
2 i — 1 A a A A A aa A
—@<e+w—&+iv-p>:o. (15) a=a--a(l-beb(l-beb -(abebbeb, (19
Me c ngc gn © 2

I i . 4 und h , which implies tra=0 anda:b®b=0. Herel is the identity
For small nonlinearity and under the assumptigh auix and the double contraction of two square matrives
> (m./m), the two first terms of the above equation are sub- “andn is defined asn:n=3;m;n;. In particular, the pressure

dominant. From Maxwell equatiofA2), one then obtains  yonsor i written as the supy=pC+, of an element of the
the induction equation

kernel
1 “~ A ~ A PN
ﬁtb—Vx(uxb):—%nEV pP=Spil ~b@b)(i-beb) +(prbebbob (20
1 1 _ P P
—(VXb)Xb=-=V -pe|, =p,(l-b@b)+pbxb (21)
Amp p

and of a nongyrotropic componewnt.=p, that thus satisfies

(1) tr ,=0 andwr:6®l3:0.

that includes the Hall term together with the effect of the
electron pressure.

Equationg9), (10), (8), and(16) constitute a closed sys-
tem, provided a closure approximation is made to express the To obtain the equations for the gyrotropic pressure com-
heat fluxes. Nevertheless, a direct resolution of@pwould  honents, one applies the trace and the contraction fith
have to resolve time scales associated with the gyromotion é b on both sides of Eq17) to get
the particles, a condition that is practically impossible to
achieve in numerical simulations that also retain hydrody-
namical scales. As shown in Sec. lll, this scale separation
can in fact be used to define a reduced description where the
evolution of the gyrotropic components of the pressure ten-
sors is followed on hydrodynamic time scales, while the nonwith s, =tr (a7, - Vu)S and
gyrotropic ones obey a slaved dynamics in the sense tha&p o
they are prescribed by the instantaneous values of hydrody—— beb+ [(V - u)pr +V.q+ (pr VudSlb®b+s,
namic quantities. A similar separation can be made at thedt
level of the heat fluxes that contribute to the gyrotropic pres- =0 (23
sures through both gyrotropic and nongyrotropic compo-
nents. Again the gyrotropic heat fluxes require a closure ap¥ith s;=(m, - Vu)*: b&b.
proximation taking the form of dynamical equations, while The trace and the time deri\{ati\A/e commute but this is not
the nongyrotropic ones are slavésec. V). the case for the contraction with® b. One writes

A. Dynamics of the gyrotropic pressures

t%ﬂv-u)tr pC+1tr (V -q,) +tr (p€- Vu)S+s,=0

(22)
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-~ d - o~ d. - dp dp® d. - 1 (db
—b®b=—(p;b®b) -p —(b®b)=—"-s,, @r _ _, 8 —(n —n (9P
dt dt(pr ) =P dt( ) dt Sar dtr = (pyr pu)dt(b@)b)—(pur p“)|b|2(dt ®@b+b
(24)
2 dlb
R A R ®d—b——ﬂb®b> (30)
where, using (db/dteb+bedb/dt:(1-beb)=0 and dt [bf dt

(db/dt® b+b®@db/dt):b®b=0, one has 33r:nr:d/dt(6 that is explicited by using the induction equati@®).

®b). One thus gets generalized CGL equations that include It is then convenient to split the nongyrotropic pressure

heat fluxes and coupling to the nongyrotropic components o®S 7 =@, 1+ 77 » With

h ~ ~ —

the pressure tensors, X Db X m 1= 1, 31

ap,+V -(u + V.u-p,,b- Vu-b ~ -

tPLr l (upy) ’ Pir ] erl oy X Db X m 5= L(m ) +L(m ). (32)

*2ltr V-0 =b- (V- dp) -]+ 5(Syr = Sar +53) =0, In a weakly nonlinear regime, the quantltyar,) is of higher

(25  order thanar,, which enables one to neglecta, ,) in Eq.

(32). We restrict ourselves to this level of approximation

- A - since pushing further the above perturbative calculation

dpyr+ V(U ) + 20D Vurb+b- (Va0 -b+Sy =S 5410 conflict with the approximations made for the deriva-

=0. (26) tion of the pressure equati@8) used in a monofluid descrip-
tion. The above equations can be solved in the form
One easily checks that for the scalings defined in Sec. Il A

and the nongyrotropic pressure components given in Sec. 71~ ibX k- (1+30® b5, (33
[l B, the couplingss,,, S, ands;, to the nongyrotropic pres- A o
sure components are negligible. Note that similar equations 5= ﬁ[b X L(m 1) -(1+3b® b)1S, (34)

for the gyrotropic pressures can be obtained in a bifluid de- _ )
scription, up to the replacement of the plasma velouityy where the overlines turn out not to be necessary in the above

that of the individual species,. It is noticeable that in the formulae. These expressions are nevertheless cumbersome to

present derivation based on the hypothesis of weak nonlirf?€ Used in a numerical code. o

earity together with long spatial and temporal scales, the par- N some situations, the contributian , is sufficient and
allel and transverse pressures decouple from the nongyrotréan even be simplified by approximatibdy the unit vector
pic pressure components but are sensitive to the gyrotropiz along the ambient magnetic field. This leads to deﬁnﬁjé
and nongyrotropic components of the heat flugethat can by

both contribute to the gyrotropic components¥ofq,. o —
77;1] XZ-ZX 71{1] = XP] (35)

together withz- 71.2=0 and#i":1=0, where

1|(dp®

(11— — |2

In order to determine the nongyrotropic contributions to ~ Xr = Qi( dt
the pressure tensor of the various particle species, we start - L o
from Eq. (17). Using the solvability conditions provided by with p”~=p, (I1-2®2)+p,z®Zz and

B. Nongyrotropic pressure contributions [1]
) +(pPM- VUus+ v g, (36)

the equations for the gyrotropic pressures, it is rewritten dp® [1 dp dp
B (E) :—dt“(l—2® ?) d—t"2®z+(p”p
@, X b-b X m =k, (27 o
-ppdfue®z-(z-wze Z°. (37)

wherek, can be decomposed into the sum of a contribution ) o
involving the gyrotropic pressures and the heat fluxes We here denote by a double overline the projection on the
subspace orthogonal td -z®2) and z®z. The first two

terms in the RHS of Eq.37) do not contribute tm{l] but has
+(V -u)prG+ V.q+ (prG' v U)S} to be retained for the next corrective terms. The heat flux
term V-q, is to be kept at this order when dealing with
(28) weakly nonlinear magnetosonic waves but arises at the next
) _ order when dealing with Alfvén waves. It is estimated in Sec.
and of a term linear inm, IV. When'V -q, is neglected, one recovers the classical gyro-
viscous tenso?> 2

. ;%{dp?
Q. |bl| dt

1 BO dﬂ'r
L(ﬂ'r):__|:_+(v 'u)ﬂr+(77r ' VU)S:|- (29) p
Q bl dt o= = Ty =~ ﬁ(‘?yux +ay), (38)
In ;, the second term of the right-hand sitdRHS) of Eq. 1
(28) does not contribute, while the first one rewrites mog,=0, (39
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P [1h =1 - y=1 [1])
il = alll = - 2_iE((9yuy_ AL, (40) DXy 1= X"~ x; (b-2) @ 2+28 (b-2)]Ab
-20Y)+31-320 A (b-2 @ 2+2
77lpl>}z_ 77{)11]y Q [ZpHp Uy + pr(&xuz zux)]y (41) ® (6 - 2)] (46)
1 and
77lplx]z_ 7TE)lz]x_ - Q_[zp\\pazuy +p. p(ayuz - azuy)]a (42)
p
[2] - St -

here given for the protonghe electron contribution being Xp = Q, dt(p”P Pup)ll (b-2) e 2P+ p(p”P Pip)
negligible due to the large mass ratend usually obtained R
in an 1/}, expansion. x{2(b-2) - Vu®2+22- Vu® (b-2)

The next correctlom-[p] originates from terms neglected . A A A .
in Eq. (31), together with the dominant contributions in Eq. ~22-Vu-9b-2@2-[(b-2 Vu-z
(32). We can consistently writgeplacing single overlines by +3.Vu- (B ~)e2+he2-(h-2920 2S
double onep

- . (47)
m X 2= 72X )= L(mll) + X2 + DX ]+ [(b~2)
with
x mTe, 43
i iti 1 1 1

together with the conditions h= o v x 4—b X (VXb) -2V 'PeG . 49)

2.7 .2+[(b-2) - A 2%=0, #Z1=0. (44 P P P
At the order of the present approximation, All the terms in D[XE,”] and in XE,Z] with the exception of

1 those involving h (that originates from the generalized
L(WE‘]):_(?tﬂg']. (45  Ohm's law result from field line distortion and are only
Q, relevant for the scaling of oblique Alfvén waves. For such

Furthermore, waves,z-(b-2) is negligible, which enables one to write

— 1 -~ . . A~ P § - N
XEJZ] + D[X%L]] = Q_[(b -2)-Vu-z2+z-Vu-(b- Z)][pipl + (pip_ 4p\|p)z ® Z] + Q_[pipv U+ (pr_ 4p||p)z -Vu- Z]
p p

A 2 - A AL 1 R
X[b-2) © 2% T(pp-pplb-2 - Vuo2+2- Vue (b-21%+ ~(p,-pphe?. (49)
p p
|
This contribution is usually neglectél,and so are all the 0C = Qi By+ 01, (3, By + by + 33Dy — 35B,By)
other terms in Eq(43), eXCEDt(l/Qp)(&/ﬁt)WEJ . Retaining
the nonlinear terms originating from the field line distortion (50)

is nevertheless important to prevent the onset of spurious
nonlinearities(making the problem illposedn the equation The equations for the gyrotropic pressure components in-
governing the dynamics of weakly nonlinear oblique Alfvénvolve

waves'’ These waves appear to be governed binaar
Korteweg—de Vries equation with nonlocal damping. As in

. _— - I
the Hall-MHD description, nonlinear couplings turn out to b-(V-q7)-b=V - (bgy) - 29,V -b, (5D
vanish?’?8
St (V -aP)=b-(V-qP) -b]= V (b, ) +q,, V -b,
(52)

IV. MODELING OF THE HEAT FLUXES

It is again convenient in Eq$25) and(26), to separate together with the contribution of the nongyrotropic heat
the contributions to the gyrotropic part 8 -q,, originating  fluxes to the gyrotropic part ofV.-q, that we denote
from the gyrotropic and nongyrotropic heat fluxes, by writ- (V-qPG)G. The nongyrotropic part oV -q, contributes to the
ing qr=q?+quG with nongyrotropic pressure corrections.
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A. Nongyrotropic heat flux contributions q. v +v2\/Q i
. . . Hr(o) — qu(o) _ Ae > A <_E 1) (56)
The gyrotropic heat flux contributions are comparable to vy, Py’ VP Ua O, N,

the pressure perturbatio(@s seen from the gyrotropic pres-

sure equationsi.e., of ordere*’? for parallel Alfvén waves where we used the relatiarf= (UA+vAe+UAp)/Uthr and the
and of ordere for oblique Alfvén and magnetosonic waves. expression of the parallel current in the asymptotics of long
On the other hand, the nongyrotropic heat flux componentsblique Alfvén waves given in the preceding section. It fol-
do not only behave like the product of a pressure and #ows that:

velocity but also involve an additional space derivative aris-

ing together with the 1), factor. From the scaling assump- q; c -3 +W’1T”
tions, one can conclude that these contributions are subdomi- © — C Lt WATO"
nant for both parallel Alfvén and obligue magnetosonic VthrPir rolr

waves, while they are of the same order as the gyrotroplc o )

heat flux components in the case of oblique Alfvén waves' whereT .~ denotes the paraIIeI temperature per_turbatlo.r?s for
This observation is confirmed by the kinetic theory based o€ Particles of speciesand T|?' the corresponding equilib-

Vlasov—Maxwell equationgsee Refs. 16 and 17 and Appen- rium value. Similar notations are used for the transverse tem-
dix B). peratures. We then proceed as in Ref. 16. The pararogter

defined as the ratio of the phase velocity projected on the
direction of the ambient field to the thermal velocity of spe-
cies r is now more generally viewed as the rati
=—(1/vy,)dd,*. The operatorF,(X) defined by

(57)

The nongyrotropic heat fluxes obtained for oblique
Alfvén waves (Appendices B and LCcan be expressed in
terms of current=(c/4m)V Xb and diamagnetic drifts of
each particle speciesuy,=(c/ngbl)bx V-p, that in

the considered limit are given byj/qn= vA/Q 0

(=9,(by/By),0,dx(b,/By)) and ug, ~v3,/Qy(3,(b,/By),0,0), Air = 70 T (59)
where we deflne the squared Alfvén veloaﬁ(— 82/47-rp(°> v O
and alsov?, =(p- pHr 9)/p©. We thus infer the closure ap-
proximation is approximated by a homographic function
(V-q¥9C=2v, . |:pJ_e(ud,e_ O:—n)}(l -beb) Fi(X) = (Q3+ QIXH)YQIX + Q2H), (59)
+V {%(Ude‘ L)]fj@ b, (53) where’ is the Hilbert transform with respect to the parallel
gn coordinatez, which allows one to eventually get a first-order
initial value problem. The constant coefficie@#are chosen
(V .qg‘G)G =2V, -[pupud,p]B ® E,, (54) in a way that ensures the correct asymptotic behavior of the
) i parallel heat fluxes in both the isothermal and adiabatic lim-
and also approximate the nongyrotropic parf¥ofy, by its. As shown by SHD, this prescription results in a satisfac-
—  Pip R R tory modeling in the mtermedlateﬁglmes In the isothermal
Veap== [Vi®Ugp=(2X V) ®(ZX Ugp)] limit__ (c,<1), W,=~1-c?+\m/2c/H, and )
2, =—\8/ 74N >H§T<l) mdependent of,. leferently, in the
adiabatic limit (¢,>1), W, —1/c —3/c —15/c and the
+{ {qu”’ p“’ Q 202X A.b-2p2 heat fluxes are negligible. "One thus g@;bo Q?=-\8/m,
s =1 QH —\'8/77(317/8 1). In this approximation, the cor-
X(V X udp)H (55) rected parallel heat flug;, is thus determined in terms of the
parallel temperatur@,, by the partial differential equation
B. Gyrotropic heat fluxes d N Uthr o, q, _ 1 visd Ty

0 ~ 20
In order to infer closed expressions for the gyrotropic dt \/§<1 _3_77) Uth,rPyr 1 _ 37 Tir
a

heat fluxes, based on the predictions of the kinetic theory for 8 8
oblique Alfvén wavegAppendix Q, we adapt the approach (60)
developed in the context of parallel propaga{?owhere the

closure approximations eventually reduce to the replacemeqore 1o restore Galilean invariance, the convective deriva-
of the plasma response functidfi. by its two-or four-pole e 4 14.v has been substituted to the partial time deriva-

Padé approximants. tive.

1. Parallel heat flux

In order to reduce the problem to a form close to that of2
parallel propagation, starting from E¢C11) where quanti-
ties proportional tan,/m, have been neglected, we first de- Proceeding in a similar way, starting from H¢12) or
fine (C13), we first define

Perpendicular heat flux
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* 2 2 ial ti ivati i i
ai, Oy . {(1 N viet U} )(Q_E .\ 1) _to th_e partial time derivatives in order to restore Galilean
0~ 0 2 invariance.
Uth,rp&z vth,rp(ﬁ Ua O
2 2 .
_v_Azhzv_ger} i (61
Ua Ua O, NQUth,r V. THE MODEL AND ITS VALIDATION

that, for long oblique Alfvén waves, can be expressed either A monofluid model has thus been constructed. It is de-

in terms Ofﬁ:(bZ/BO)+gb§/ZZBS? or in terms of (TY/TP)  fned by the closed system formed by E¢@), (10), (16),
= (3/vtn) k7 (! Q) (Vi 10) (1/ NGutn 1), By Means of 0p- o5, and (26) where thes, terms are neglected and where
erators that as previously are to be approximated. In order ths.(Sl)—(54) have been used, supplemented by Eg6)

accurately fit the adiabatic and isothermal limits, it is conve~g), (66), and(67), together with the nongyrotropic pressure
nient to use a mixed expression involving both dependencie%,orr’ectio’nsﬂ :ﬂ_[i]+ﬂ_[2] that are computed in Sec. Ill B
r r r .

in the form and involve the nongyrotropic heat flux given by E§5).
qi, s o To validate this model, we consider its predictions for
© = Fi\ - —ad; the various MHD waves in the long-wavelength limit. Our
UthrP Ly Uth,r . F o . .
previous modéf specifically designed to describe parallel
llz 3 _1%@ N Alfvén waves is easily recovered by prescribing the ordering
T(f? Vi 2 Q, VA NQh, associated to these waves. The nongyrotropic heat flux con-

tributions then disappear and only the leading order gyrovis-

o1 cous tensor without the heat flux term is to be retained. In
+F %d;" |A. (62) : : . ; ;

Uthr this regime, a reductive perturbative expansion leads to a

generalized kinetic derivative nonlinear Schrodinger equa-

Prescribing again a homographic form for the operators tion that identifies with that derived from the Vlasov—

FL(X) = Q% + QI XH) QI X+ QT H), (63)  Maxwell systent® up to the replacement of the plasma re-
sponse function by its two- or four-pole Padé
FLX)=@Q% +QIXH) QX+ QT H), (64)  approximants’

15 PV~ The model derived in the present paper is in contrast
we are led to choos®; =Q71=0, Q1=Q =-v2/m and  peeded to describe oblique Alfvén waves. We demonstrate in

6 — [/ (1 _70 ;70 . . Lo . .
Q1 =V2/m(1-T/T,’) and get this section that the kinetic theory presented in Appendix C

R — qQ, is accurately reproduced, and so are the classical dispersion
e V(7 2)v 4 HI, —v p(o) relations and Landau damping rates of oblique and kinetic
thyrMLr 4
' Alfvén waves.
_ ﬁ M Denoting by ¢ the coordinate along the direction of
= Vth; 1_Tﬁ9) B, propagation, one hasV=(sina d;,0,cosa d) and g
=-Vod, with Vy=A, cosa. From Eq.(60), one immediately
T v, j i
_ <% _ Utzh,r_gé,tégl L )] (65) gets to leading order
Tor va NQUth,r
8
Introducing , - \/jH
’ * 2 H qu = T i})
A _ 9 v g v pY 8(3m T
©= %20 B N e et o A
UthyPir  UthrPlir Up 42 NQUK o\ 8 v
2 + 2
= q“<o>*[<“%)(ﬂ—9+l> L ST 3 W T 68)
UthrP 'y Ua QO - 1HW T
ﬁg Zvir - 3Ut2h ng Ji . . .
-4y = :  [nope (66)  which for the protons and the electrons, respectively, give
Upa A r th,r
we finally obtain qﬁé) =c ¢~ 3 +\N‘—‘élﬁ‘1’—) (69)
G q vasPly oL AWGTY
(_ - \/jvth,rH(?z> Lr(o)
dt 2 UthrPrr o) 2 14D 2,2 o &)
T(O) |b| T ql\e =c Ce_3+\NA:eT\i_ UA+UAeS|n aaEL
= vth,r(?z[ (l - T%;)— - % vm,ppﬁg) ecg -1 "'Wié Tﬁg) Vthe Qp ¢ Bo
T\lr Bo Tir (70)
PR L YL Y T (67) |
> U/i Qo | This reproduces Eq(C11), up to the replacement of the

plasma response functionV, by its four-pole approximant
As previously, a convective derivative has been substitutedefined as
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1
@8- 3m)c2 - \2me,H + 4
W4r =

1 — 1 — '
> }(37— 8) + \2mCH + 516~ 9m)c? - 3V2mc H +4

Substituting in the equation for the parallel proton pressure p(f) n®

that rewrites

Py Y, 2 vktolerol, b
) 3 ot 2A= sin ady
p“p n AO Qp BO
1 (1)
y b (72)
Cr Uth pPip
one gets
El(lé_) 2 1 n® 2 1
|(|0) =(cy+ W“p)nW - (cg—1+WHA
p
B AO - b(l)
+(ci-1 +W4;)Q—sm aag—By—, (73)
p 0
2 —1
p|(|é) n® _ G~ 3+ Wie pﬁé) n'®
03 g tAT i 0 o (74)
Pie n Ce ™ 1+ W4e Pie n

that correspond to EqC6).
From the transverse heat flux equations, we get

vneP e m Te/ el n®
) e Ce+ EH e

lle

2 2 ; 1
_UatUge Slna&l_))(/_) (75)

Uth,e Qp ¢ Bo

A Landau fluid model for dispersive... 5181
(71)
[
e Ui-l-—viewa E@ + i(il:J_ (79
p?  n© Ao Qp By Agpup
with
(1) -1 TO© D [@
e = [(1‘T$>)A—p—$?+w
lIp pr n

0) ~
Uth,ppr ™
Cpt EH

a sina bY
o y 2 2
+3 \/;vthva 0, ¢ B, + [3(vth‘p vAp)

sina b
- 2003 + v} I, 80
(va UAP)]vthprp £y (80)
which implies
(1) (1) (0) ; (1)
n sin b

p<LO) =0 (1 =) W2p>A‘ Ao (8

pr n T”p Qp Bo

Again the result of the kinetic theory, as given by EQ9), is
recovered up to the replacement of the plasma response func-
tion by a Padé approximant.

To push further the validation of the present model, it is
of interest to concentrate on the regimen./m)<pg
<(Te/Tp), with ﬁ:(llvi)(Te/mp), assuming no temperature
anisotropy for easier comparison with classical results. This
ordering corresponds to the limit— O of isothermal elec-
trons andc,— c of adiabatic protons.

In the limit Co—0, Wye~Whe=~W,=~ 1 -c2+1\7/ 2cH
and we get

Substituting in the equation for the electron parallel pressure % _ 2@ r NN LY Y
that rewrites p© = Buk 0 =Va| | B Z\ﬁ m, | p©

Ple_n® \ VA*viesina BP dle oo
p(f)e n© Ao Q, §Bo Aopye’
one obtains
(1) (1) (0)
Pie_n ( Tie )
= =—=+|1- Woe |A. (77)
0 0 0 2e
P 0 TR
Here,

Woy=—""="" (78)
1—\/ECH—CZ
2!‘ r

pHe)

— T 1S
+ —1/ —HA 2
VB \/; mpH } 82
(1) (1) (1)
Ple 2Pile_ o P — T M
—==Bua—o =V {ﬁ——\ﬂ\/j —HA] (83)
O Ag® ~UA| B o 5>\ m,

which provides a systematic derivation of relations previ-
ously based on a phenomenological arguniént.

The adiabatic limic,— o« assumes that the phase veloc-
ity of the wave is much larger than the thermal velocity,
which is not consistent with the long-wave asymptotics. The
adiabatic limit is thus conveniently taken by prescribing zero
heat fluxes, and the relatiori§0) and (61) of Ref. 17 are
then immediately recovered. By inspection, it is also easily

is the two-pole approximant of the plasma response functiowerified that the gyroviscous tensor defined by &®) iden-

W.
Similarly, for the protons

tifies within the reductive perturbative scaling with Egs.
(B2)—(B7) of Ref. 17. In particular Eq49) reproduces Eqgs.
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(B15—B18) of the same reference. The remaining of thestill unsettled. This question requires further investigations.
asymptotic analysis is straightforward and is performed inn fact, in a way similar to the diamagnetic term in the gen-
Ref. 17. Direct comparisons are successfully made with kieralized Ohm’s law, this contribution is only relevant at the
netic resultg®!® This demonstrates that the present modellevel of the linear dispersion relation of oblique and kinetic
correctly reproduces the dynamics of small amplitude obAlfvén waves. As a consequence, even in the case where the
lique and kinetic Alfvén waves. energy is only conserved at the order of validity of the per-
The case of oblique magnetosonic waves requires a moif@rmed approximations, the effect on the large-scale dynam-
detailed discussion that we explicit in the regime of adiabatidcs will be negligible.
ions and isothermal electrons with isotropic temperatures.
The leading order linear dispersion relation correctly repro-
duces that provided by the kinetic thedsee Eqs(29) and  v|. CONCLUSION
(A21) of Ref. 17. Itincludes a Landau damping rate that, up _ _ _ _
to an angular factor, scales Iil@A\“”IB\/(rne/mp) where, as A monofluid model has been derived with the constraint
above, is defined as the ratio of the electron to magneticto reproduce the weakly nonlinear dynamics and the Landau
pressures andét the wave number of the perturbation. This damping of long MHD waves in a collisionless plasma, for
level of description is sufficient when this rate of damping is@nY 8 larger than the electron to proton mass ratio and any
larger than the inverse nonlinear tirke (whereu is a typical angle of propagation. It reproduces the dynamics of small-
velocity perturbationy that is to say whem/By(mg/my) amplltude obllqu_e Alfv_en waves, mcludmg the exact_cancel-
> e(Vy/vp). The parametee can be estimated g, where lation of the nonllnea_nty. For parall_el Alfvén waves, it Ief'ids
|,=(va/ Q) is the proton inertial length. Let us first consider to the KDNLS equation and desclrlbes the transverse insta-
the distinguished limit where the wave amplitude scales likd?!ly Of @ circularly polarized wavé, resulting in the forma-

e. For slow waves for which/o~ \Bu,, the condition re-  1ON of intense magnetic filaments. This Alfvéen wave “col-
duces to kl,<(my/m,)¥*=~0.15. These waves are thus

lapse” was considered as a possible mechanism at the origin
strongly damped in the long-wave limit. For fast wawés of the cylindrical field aligned current tubes observed by the
~v, and the condition for rapid damping reads

CLUSTER mission in the terrestrial magnetoshéeath.
>(mp/me)(klp)4. When this condition is not satisfied, the

Comparison of the model with gyrokinetic simulations

Landau damping arises at the same order as the nonIine?PﬁC:) Egs?r:bIyxr:u\lgfsav_tmaﬁvgi“r?ézfrarst;gej Igfcezlalrsaﬂlrgturi-c

and dispersive terms and a weakly nonlinear analysis on the >, 1N particuiar, | . 9 P

. _ 30 . ; . . instabilities, are in project. It is also necessary to evaluate the

time scaler=¢>< is required. In this regime, the equations . . . . : .

for o.u® and gu® @ importance of particle trapping that requires a nonlinear fluid
T T

involve the quantities),p® and d,p!?, Pr ;
and thl)fls the rétro ic heat qu>((q §> and (%()pto ethe;?/”vith closure, presently very difficut to desigh.
gy P 4 g, 109 This model can be used to perform three-dimensional

2 . .
the FLR iernﬂthat through Eq(43) is prescribed by 1, merical simulations of dispersive MHD turbulence, taking
1/Q,(am"+V-q®?). These heat fluxes, when not negli- into account realistic dissipation and heating mechanisms.
gible, are not properly modeled in the present formalismThe retained second-order FLR corrections should in particu-
They are absent in the case of purely transverse propagatiorar provide an accurate description of the kinetic Alfvén
a situation addressed in Ref. 29. The case of oblique propavaves generated at small scales. Such simulations, that in-
gation in the adiabatic limit was considered in Ref. 30 whereyolve a self-consistent treatment of the turbulent dynamics in
the term(l/Qp)atn{l] was overlooked. the presence of Landau damping, could significantly contrib-
When the amplitude is larger, usual MHD supplementedute to the understanding of cosmic ray scattetimgfast and
by 1/, corrections provides a sufficient description. As theAlfvén mode$ in the interstellar mediur
amplitude of these waves is reduced by dissipation, the re- This model will also be useful to study the formation of
gime dominated by Landau damping is recovered. The onlgoherent structures such as magnetic h$1é8 shocklets,
case where our model does not provide a complete descrind also the structures resulting from the nonlinear evolution
tion of magnetosonic waves thus concerns small amplitudef the mirror instability, observed in the solar witldind the
waves with the distinguished scaling and very sngall magnetosheatﬁs.A correct description of this instability that
The question arises whether the usual eneljy extends up to scales comparable to the ion Larmor radius
=[[(p(u?/2)+(b?/8m)+p, +(1/2)p)]d®x is conserved by requires higher order FLR corrections that, as mentioned in
the above monofluid model. The delicate contributions origi-Section 11l B, cannot be directly obtained within a monofluid
nate from the electron pressure gradient in the inductiorlescription. Their evaluation is possible through &1 ex-
equation and from the second-order nongyrotropic pressureansion of all the fields in a multifiuid descriptiéh.
corrections. The first term that affects the magnetic field evo-  Another development concerns hybrid simulations that
lution only in the case of pressure anisotropy contributes in &ould possibly be improved by replacing the usual MHD
long wave theory at the level of the linear dispersion relationdescription of the electron dynamics by a more refined one
In this limit, it can thus be replaced byl/py)Vp,, including physical processes retained by the present model.
-(v3./BY)V -(b®b), a term that does not contribute to the
energy budget. Concerning the nongyrotropic pressure ColxckNOWLEDGMENTS
tributions, while the leading ordes!!] preserves energgat
least in the absence of the heat flux tgrthe effect ofal?! is We thank Priyanka Goswami for very useful discussions.
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APPENDIX A: LONG-WAVE EXPANSION OF ¢ 0. =Sinag;. (A13)

VLASOV-MAXWELL EQUATIONS FOR OBLIQUE

ALFVEN WAVES We also expand the distribution function in the form

()] 12¢(0) (D 4 32¢(2) , ...
We write the Vlasov—Maxwell equations in the form fr=F+ @0 el 4 205 4oy (Al4)

q 1 whereFEO) denotes the equilibrium velocity distribution func-
of,+v- VI + —'(e+ —v X b) -V, =0, (A1) tion, assumed rotationally symmetric around the direction of
M ¢ the ambient field and symmetric relatively to forward and
backward velocities along this direction, thus excluding the
Eatb= _V xe (A2)  Presence of equilibrium driftd=*2
c ' It is also convenient to express the veloaityn a cylin-
drical coordinate system by defining the azimuthal angle
A1t 1 :tan‘l(vz/uy) of the velocity component transverse to the
V Xb= ?Er e f vfid + RS (A3)  ambient magnetic field. One writes
v=(vx=v, COSP,vy=v, Sin h,v,=v)) (Al15)
V.-e=4m> qn, f f.d%, (A4) and
r V—(COSan _sn¢0 sin ¢ 9, +M& &)
wheref, andn, are the distribution function and the average v Ly, vy, T
number density of the particles of speciewith chargeq, (A16)
and massn,. The displacement curreft/c)d.e turns out to
be negligible in the present analysis where perturbation§urthermore (qg./cm)(v XBg2)-V,=-Q,d,, where

propagate at a velocity small compared with the speed of(q,Bg)/(m.C) is the gyrofrequency of the particles of spe-

light. This contribution which might be important for auroral ciesr.

plasmas is retained by Verhed&t. Expanding to the successive orders, one gets from Eq.
Let « be the angle between the ambient magnetic fieldAl),

Byz (wherez is the unit vector pointing along thexis) and

0 -
the direction of propagation of the wave. It is then conve- LagF =0, (AL7)
nient to perform the change of framé=x cosa-z sin «,
Z'=X sin a+z cosa, the dynamics being assumed indepen- Qr§¢f§0) = &yﬂ:@, (A18)
dent of they variable. We then introduce the stretched vari- my
able €= €2(z' - V,t) whereVy<c is the Alfvén-wave propa-
gation velocity in thez direction, together with the slow time Q.9.f0= 9 SWEO L 350y 5 £0 A19
r=€¥2%. It follows that the spatial gradient rewrite¥ e mr( 20T ) 2o (A19)
=(€'? sin ad;, 0,62 cos ady).
In order to select oblique Alfvén waves, we expand
a P 0,9,4? = %(2§2>F§°> +IPFO 4 WD) 3 6D,
b= e(b! + ebl? + ), (A5) r
(A20)
by = €l + eb? + ), (AB)  where
b,= By + e(b? + e + -, A7 se- (e@ _ %Zb<;'>) (Cos¢> L ¢a¢>
U,
and thus, from Eq(A2),
(9 4 Yxp(9)
o = /2(el + e + ), (A8) + (ez T by )ﬁvv (A21)
— eV 4 @ i
=ele’ +e” + ), (A9) v sin ¢
GG TS E(ZS)Z—CYb(ZS><cos¢ G, =0
1
= (/2 (l)+6(2)+..., A10
& (e, + €€ ) (A10) . ( o, o b - Ube))(sin b = cosg )
with & c Ty 0
Vo, 1) &) vyb
?bx =-cosagy, (A11) e By, (A22)

Downloaded 20 Oct 2005 to 193.52.173.207. Redistribution subject to AIP license or copyright, see http://pop.aip.org/pop/copyright.jsp



5184 Phys. Plasmas, Vol. 11, No. 11, November 2004

23=(vy Sin @ +v, COSa = Vp)d,. (A23)
Equation(A17) indicates thaF
¢. The solvability of(A18)) |mpI|ese 0 and by(A12),
<l)—(A0/c)b(1 where Ag=V,/cosa. This equation is then
solved as

p®
£ =DF? sin ¢~
Bo

(A24)

with D=(Ag=vy)d, +v,4,.
condition of Eq. (A19) that reads” =(f%) = 1/27[t%d¢
=0.

It follows from the sing dependence of” that d,f"”
only contains sinp and sin 26 Fourier modes.

The solvability condition of Eq(A20) reads

@
G2y fO_ U peppopmBy
2cm Bo

an}D*(sm bdsfMP=v | sin adgsin ¢a,f)
+ (U“ COSa — V0)07_E =0, (A25)
Whel’eDi’:(Ao—vH)(&ULiv11)+vlz9vu and

1

(
COSa/
S0
"B, 20,
0. b Y
0

(sin d)c?d,fEl)} =- (v)

(A26)

Assuming that the perturbations of the distribution function

vanish at large, we obtain

(0= AT = (0= AR + S, F” (A27)
with
1o v o
R =>D'DFY d, FOA
2 282
sin b(l)
+ v, DFYg9 (A28)
20, B,
1
Sr=%<p+§viA, (A29)

where we have definedA=b"/By+b'"?/2B2 and e
=-d,p=Cosadsp. As done in Ref. 16, the potentialcan be
determined in terms of the magnetic perturbatidnaising
Eq. (A4) that, to leading order, gives

is mdeg)endent of the angle

We also used the solvability

T. Passot and P. L. Sulem

A —
sin afagby) = 47>, g, f fDey. (A30)
r

We do not use this approach here, but rather eliminate the
potential using the expression of the density perturbaﬁ%ns.
Furthermore, one hd%

f fd, = f Rdv+G,S, (A31)
where we have defined the operator
Nk
G =P f =y, + (3, ), M, (A32)
vy~ A Il II

H, being the Hilbert transform with respect to theariable.
The z component of Eq(A3) (together the previously
obtained conditiore(zl)=0), leads to the relation

sin aﬁgb(l = —2 g:n J v f (l)dgv. (A33)

The x component of Eq(A3) taken to leading order
gives

4 ~
— cosadgh|’ = %TE any f v, cospfVd
r
A o B
:_?2 an | v, sin ¢dufd%, (A34)
r

which, when using/A19), provides the dispersion relation
for oblique Alfvén waves, in the form

(0)
p? pl
A5=vi+ _0) - W

(A35)

It involves the parallel and transverse pressuv;a%g)

3, p? and p(o)—E5 p?, together with the corresponding
densny p<°) 2 p”. Here, p”=mn rf 2ROy, p?
=mn,J(v? /2)F<°>d3v, and p<°>—mr n,JF! 9% "denote  the
contributions of the various species to the above quantities.
Furthermorep2=B3/4mp© is the Alfvén velocity.

Finally, they component of Eq(A3) gives

4 -
d(cos ably’ - sin ab’) = {E qrnrf v, sin ¢fPd%,
r
(A36)
which also rewrites

1 p?

sin §B

47
= _2 arn

9, f2d% . (A37
B2 fzucos«b(,” v. (A37)

It follows that:
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R f
- - An— f(l)d3 _y_
sina’¢B, cBozr" ANy | (Ao=uy)
4 .
+—5sin a2, -9
Bgsma r m,nrf 5 %

_ 1 -
X (f@ - S(sin 2¢0¢f§1)>>d3v

A
- —cosay, mn, f v, (v,

Bo -
— Ao)dsin ¢d f ). (A38)
We are then led to compute
biM2  sin a by
sin 2¢d,f\Y) = D DFO—— + 0 g,
(sin 29041 = 282 40," By
(A39)

Using Eqs.(A30) and(A33) (with the conditionAy<c) to-
gether with the relation

coda [
Emr ny f P = p® + - (A40)
SIN « Bo

where, as previously, we neglect the magf the electrons
compared to tham, of the protons and deﬁneajir (p

-p\M)p©.

APPENDIX B: KINETIC FORM OF HYDRODYNAMIC
QUANTITIES
1. Density fluctuations

The density fluctuations of the particles pfspecies,
defined to leading order asa(l) with

pgl) = mnr fﬁl)dsvx

are given by

(B1)

sin [
pM =P+ (0 + O)A- Aopﬁo)ég(—éL . (B2
0

O
where
) U2
Pr= 271'anrf grd<_l) ) (B3)
0 2
* 02 v?
O, = 2w, mn, f =g —=|. (B4)
. 0 2 2

The total density fluctuations are then given p§
=2 Pf»l)

2. Hydrodynamic velocities

The hydrodynamic velocity transverse to the local mag-

netic field is given by

A Landau fluid model for dispersive... 5185

> mrnrf Vv, f,d%
>, mn J f.d%
whereV, =v—(v-b)b with b=b/|b|. One easily checks that

VJ_ E(VLX’VLy’VLZ) Wlth
b(l)

u,= (B5)

Vix=v, COS¢_EUHBLI (B6)
0
NEY pL2
V,y=v, sin ¢;—el’ZUHTBL—evL sin ¢—BL, (B7)
0 0

IZU (1) ( 1)2 (1)
V,,=—¢t sin p— + €| 2v,—— —v, COSPp— |,
1z €V ¢ B, €l 2V oB2 Uy ¢ B

0 0
(B8)
and thus
U, =(UU LU= ( VL SN
0 p
1 (1 1)2
+v§e)a§<%i§) _ 61/2/\0?30) GAOE;%), (B9)

where terms iim./m, have been neglected.
The hydrodynamic velocity along the local magnetic
field is

2 mr fV|f d 1%

U= (B10)

E m,n ffdv

with V,=(v- b)b. One getdJ,=eU, W+ with
b(l)2 Ao A sin a b<1)
1 _ _ y 0 2
UH = AO ZBO (O) P(P (0) —OA- Qp UApgg B
(B11)
that also rewrites
(12 &) b(l)
Do _ Ay P _ sin a
= AO ZBg + Aop(o) AoA (AO UAp)a§ B

(B12)

By projectingUL+UHB on the three axes, we recover the
hydrodynamic velocity components
b(l))
1%
¢B,

(1)
COS«
Uy, =~ — cs(AoL + (Ui+ vie) (B13)

By Q,

(1)
1/2A Ey_

op, (B14)

l.Iyz

1
uzeA(ﬁ b()
4 0 p(o) BO

(1)
sin « l_)L}

) + (UA UAe) Q .fBO

p
(B15)
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3. Gyrotropic pressures

In the framework of a monofluid theory, the transverse
and parallel components of the gyrotropic pressures are de-

fined as
1 2 3
Pir=mn, E(VL_UL) f.dv, (B16)
Pir = mrnrf (V= U2 d. (B17)
Defining the operators
S UZ 02
M= M, =272, g, f d(—L)—lgr, (B18)
r r 0 2 2
AL
N=D N, =27, mrn,J d 5 gr, (B19)
r r 0

the leading pressure perturbatiaies ordere) are given by

(. ﬁ_(l) 3, _ 2£_ 2 (O)Eglf
pi;= mrnrf 2fr d°v (Aop(m vAr>p 282
= Mo+ (2p© ';“ © EB% (B20)
and
(1) — U_f_(l) 3 (O)Eglf
Pir —mrnrf 2fr d® -v3,p 282

= (- N, + AZP) e + (- p %0, + AZO)A

(1)
Sln o 0 0)(9
Q, B,

(B21)

4. Heat fluxes
a. Gyrotropic heat fluxes

The gyrotropic components of the heat flux tensor

a = m,n,f w-U)® (v-U) ® (v-U)f,d,

(B22)
(U denoting the hydrodynamic velocjtyead
1 2 3
Lr=mn, E(VJ_ —U)AV, - Upfd, (B23)
Qyr = MmN, f (V; = U’ . (B24)

To leading order, one haqu:eq(f%m and q‘|,:eq|(|rl)+

where

T. Passot and P. L. Sulem

b(l)Z

8= U+ g + bt A
0

(1)

sin a 1 b
+ —m,n,f (vfui - —UL>F(O d*va —By—,
0

Q, 4
(B25)
1 of @ b 3 () 2 (0
Q||r) == 3p|(|r)<U( '+ AO_Z?) + AOP£ AO(AOP$ )
0
sin
pO)A- g,nAge + O {A“ O+ mn,
r
3 bV
Xf <v|4— EULU>F(O)d3 ]&ngL, (B26)
0

with U" +Aqb{"2/2B3 given by Eq.(B11).

b. Heat flux contributions to the gyrotropic pressures

The longitudinal and transverse pressmmﬁanvely to

the local magnetic fieldinvolve tr V -q, andb-V - Q- -b. The
heat flux components being also of oragethe distortion of

the magnetic field lines can be neglected to leading order. We

are thus led to write

trv. qr = x(qr111+ Oro21t qr331) + az(chr + qu) (827)
and

B (V-q) - 6 =~ d\r331F I ir» (B28)

where theq;;;'s hold for the components in the local frame
of the heat flux associated with the particles of speci€ne
has

Or331= J (Vi =UDAV = U Y d% = fq%)sl
(B29)
with

cosa
1 _ (0) 2
Or331= { |:UA T URe™

cosa 3 b®
- O, f(v‘l_EvLm)F(o)dg }& —B‘t.

Similarly, to leading order

Q
5E<vA+vip+vAa}

(B30)

Or112F G221 = f (V, =U AV~ U, fd%

= f(q(lll)n + q(212)1;) +ee (B31)
with

o)+ g =] - COSa
riil r221 Qr

1
Xf(vai—ZvJF(od }

co 02, 2 b{”
+4—— Q plr(vA+UA9 (9§?By;

[4p<f:As+zmrnr

(B32)
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c. Heat flux contribution to the nongyrotropic
pressures

Neglecting the magnetic field line distortions that are
irrelevant at the considered order, we write the nongyrotropic

contribution toV -q, in the form

E(me — Op22) Op12x Op13k
V- qp =0

1
Op21k - E(Qpllk - qp22k) Ap23k

Op3ik Op3x 0

(B33)

where we concentrate on the proton contribution. To leading
Since we
assume no dependency in theariable, we are led to com-

order dpij=J (v =) (vj = up) (V=) f v = qul”?k.

pute

Aina = = 3p U + myn, f vl cos' ¢fy)do, (B34

1 0),,1 3 o 1
= - DO 4y, [ 0 ST 6 cos i,

(B35)
qbi12= My f vicod sin ofVd, (B36)
qQiiia= — PO + myn, f viv cog ¢fPd%,  (B37)

0),(1) (0) (0) b(l)
Qp223— PpUs” + 20~ Pip )Uy?By;

+ mpnpf v3 v, sir? d)fél)d?’v, (B39)
Qbis= mpnpf v v sin ¢ cos ¢fVd, (B39)
Qbias= — PP U + myn, f v,vf cosgfVd®,  (B40)
Qbpas= mpnpf v, v sin ¢t (B41)

Sincef(pl) only projects on 1, cog, and cos 2, one has

qpllZ qp123 c1;3233 0, (B42)

and the only integrals to be computed read

A Landau fluid model for dispersive... 5187

My, f v3 sin ¢a,fVd%
(1)

b
0

4 (1)
v cosa b
XJ' (vzvzL - T)Féo)d%} aﬂg—Bi.
Qp

mpnpf vaf sin ¢p7¢fé1)d3v

2.(0)
{ Op<m+ 4mgn,,

(B43)

L © a_3 2 2\ o
=AoPjp _o+ AOpHp +mpn f<v|—5 viv )F d*v

(1)
><c05a EL
Q, °B,

(B44)
p

mpnpf vivy sin 2¢03,fVd%

(1)2 U4
2.2 L
p”")282 f(v'vl_7>

F—. (B45)

= 8A( p(o)

043
><Fp d*v Q

The fourth-order velocity moments are explicited in Appen-
dix C where bi-Maxwellian distribution functions are as-
sumed for the equilibrium state.

APPENDIX C: EQUILIBRIUM BI-MAXELLIAN
DISTRIBUTION

It is possible to simplify the above general expressions
for the hydrodynamic moments by assuming that the plasma
contains electrons and only one species of imish Z=1),
with bi-Maxwellian equilibrium distribution functions

FO - : iex ( M 2+ivz>
r (277)3/2T(0)TH|« 0)1/2 ZTﬁ? 2T(f|)( 1 .

(Cy

Using the quasineutrality condition that prescribgsn©
andp”=mn®, one obtains

O T
M, = - nOg,— =0 W, N;=-2n0 = W, (C2

lig lIr

T
0,=-n"m, (O)Wr, P, =-n%maq, O)Wr, (Cy
Hr IIr
where, normalizing the propagation velocity of the wave by

the thermal velocityy, = Tﬁr /my in the formc, =Ap/ve,
one writes

e ~%12 \/’ 2
= —d+ cerzH
(-6 TN

(C9

1
W, =WI(c,) =—=P
V2

or43
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Crz Cr 2
W(c,)=1 —c,e‘?j e%d§+ \/gcre‘crz’zHg. (C5H)

0

This function is related to the plasma response funcion
used by SHD byW(X)=R(X/2).
This leads to express

(1) (0) (0) ()
P T, T i ln
0= \17 70 ~ 700 A+ W G

pﬁ?) Tﬁ?) Tu?)
TO sina bW
-|1-=W )A]+(c2—1+w‘1) Aogdy=
( T f ", Bo
(Co)
and
Tﬁl}) pI(I;L) (b 2 1
—0="0 - Jg=-(cr—1+W,
Tﬁ?) pEO) (0) ( r r )
(1) i (1)
n sin a b
[T pn, ) ‘
(n(o) Q, "%, €9
Similarly,
T(l) (1) n(1) T(O) sin b(l)
% = %_W: 1_%Wr A-3 aCrUthrag_y_-
LT A Tir O, By
(C8)

When considering the heat flux components, we have to

evaluate the integrals

3
mn, f (v?’ - Ev%vi)Fﬁo)d% =-33pl? (C9
and
22 1 a\op _ 2 1(0)
mne | | vjvi = vl F,d% = - 2v%,p; . (C10

We get

IRk, DR A TE

=cC —
0 r 2 1-(0 2
Uth,rpﬁr) -1 +er_ Tﬁr) ' Uthr O
2 2 ; (1)
Vi, — Uy |SIN@ b
+ _A%AI’:| Uth rﬁg_L (Cll)
Q " °B
Uth,r P 0
and
(1) T(O) Q 112
q“(o) =T %CrWrA"' [_ Crz(_E + 1) + _ZAE
UthrP Ly THr O Uth,r
vy O | Sin a bV
_ zi_ﬂ Vihr §_y_ (C12)
Uth,r O QD B

that also rewrites

T. Passot and P. L. Sulem

q(fz __ﬂ & W |:ﬁ+30 _Sin av J 9@
0~ 0 0 0 r thrv¢
U[h,rp(il)’ TI(Ir) E T(LZ Q, Bo
1- 0 W,
T
lIr
2
+ [—cf(Q—E+1> + Y
Q v
r th,r
2 ; (1)
Ui QQ] sin & by~
-2 —— U 0= (C13
2 th,rv¢
Uthr O QP Bo

Note that fora=0, the parallel and transverse energy fluxes
computed in Refs. 16 and 12 in the case of parallel Alfvén
waves are recovered.

Furthermore, the nonzero coefficients entering the non-
gyrotropic proton heat flux components considered in Ap-
pendix B, become

qEJ]i)ll_ qglz)zlz 0, (C19
sina_ b
qEJ]i)l3_ qtfz)zf p(fi)vip Q_&ngL‘ (C15H
p 0
cosa bV
Opias= 205085, dep (C16)
p 0
together with
p12
qglfls: - p(f?au(zl) + Aop(fia - 2A0D(B;JA + AOD(BZJEYB_z
0
3 sina_ bV
2_3 2 |0 Sy
* <2A° 2”“’) PieTg, B,
(1) (1)
x5 -2
P b
1p Pp
+<Az_ﬁe)p<0>3iﬂf by”
; (1)
_ @), 0,2 Sina_ b
=qip T Pipvap 20, 3 B, ’ (C17)
where we have used Egd24), (B11), and(B19).
Equation(B32) then reads
Ao 00wy,
V.g=[0 -\ 0 (C18)
o 0 0O
with
0 Vap , B
Ap= prZQpaxz By (C19
0 Vap, B o ovip, DY
= + +2 . 2
Mp xd1p pipzﬂp&xx B, pllp Qp 7 B, (C 0
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