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Landau fluid models involve heuristic closures based on fitting with linear
kinetic theory. They are to be validated by comparison with kinetic
simulations.

Possible benchmarks: Instabilities of MHD waves and their nonlinear developments.
In particular, parallel-propagating circularly-polarized Alfvén waves:

exact solutions of MHD, Hall-MHD, Landau fluids
require simplest Landau fluid description:

gyrotropic heat flux tensors
lowest order FLR contribution to pressure tensors

Decay instability provides a sharp test.



Main types of wave instabilities [Hollweg, JGR 99 (A2), 23431 (1994)]:
k0 : pump wavenumber
k : wavenumber of the density perturbation

Modulational instability : k < k0 (requires dispersion)
Decay instability: k0 > 0
Beat instability: k ≈ k0

Modulational instability: Generalization of
the usual long-wave modulational instability of small amplitude dispersive wave
that

extends up to k = 0 (slowly modulates the pump amplitude)
is amenable to an analytic description (envelope equations) (∗)
is captured by long-wave asymptotics (KDNLS equation) (∗)
is well reproduced by Landau fluids [Passot & Sulem, PoP 10, 3906 (2003)]
for transverse perturbations, leads to Alfvén wave filamentation

[Passot & Sulem, PoP 10, 3914 (2003)]

(∗) For a discussion in the fluid (Hall MHD) context, see
Champeaux, Laveder, Passot & Sulem,, NPG 6, 169 (1999).



Decay instability
No dispersion (MHD): Jayanti & Hollweg, JGR 98 (A8) 13247 (1993).

Pump wave (assumed ambient field along the z-direction):

b± = bx ± iby ∝ e±i(k0z−ω0t)

v± = vx ± ivy ∝ e±i(k0z−ω0t)

with ω0 and k0 related by the Alfvén wave dispersion relation.

Equations linearized about Alfvén wave have periodically varying
coefficients. General framework: Floquet theorem.
Here the problem strongly simplifies.

Density perturbation: δρ = ρei(kz−ωt) + c.c.

The (linearized) equations then prescribe the functional form of the perturbations
of the other variables.

δvz has the same form as δρ



Magnetic field perturbations δb± = δbx ± iδby (sideband waves)

δb+ combination of ei(k+z−ω+t) and e−i(k−z−ω∗−t) with the resonance condition

ω± = ω0 ± ω k± = k0 ± k

The result of the analysis is the dispersion relation that prescribes the
stability/instability condition.
See also Webb, Zakharian, Brio & Zank, J. Plasma Phys. 66, 167 (2001)

Physically, a forward propagating Alfvén wave decays into a forward propagating
magnetosonic wave and a backward propagating Alfvén wave.
(Forward propagating sideband wave has negligible power)

Decay instability is of particular interest in the solar wind, since it can provide the
backward propagating Alfvén wave needed for MHD turbulence.

Del Zanna, Velli & Londrillo, AA 367, 705 (2001): simulations in 1, 2 and 3 D for
a large amplitude pump: very strong backscattered daughter.



In the presence of dispersion (Hall-MHD)
Hoshino & Goldstein, Phys. Fluids B 1 (7), 1405 (1989).

(do not consider the beat instability)

For a low-frequency pump,

for β < 1, RHP and LHP Alfvén waves are unstable for decay instability
for β < 1, LHP Alfvén waves are unstable for modulational instability
for β > 1, RHP Alfvén waves are unstable for modulational instability

Furthermore (see Hollweg 1994),
for β > 1, beat instability can occurs for a
LHP wave whose amplitude is not too large
RHP wave whose amplitude is large enough.

Decay instability: A forward propagating Alfvén wave decays into a forward
propagating sound wave and a backward propagating Alfvén wave

Beat instability: Interaction between forward propagating upper side band and
backward propagating lower side band. Primary produces outward propagating
waves. May provide a mechanism for direct transfer. Survives with no dispersion.

Jayanti & Hollweg, JGR 98 (A11) 19049 (1993)







Decay instability

Strong peak at k0 = 0.2 (solid line) in the lower panel: pump wave.
Strong peak with kd = 0.3: daughter compressional (ion acoustic like) wave.
Second and third peaks with k ≈ k0−kd (dashed line) and k ≈ k0 +kd (solid line)
in the lower panel are daughter waves.
Higher harmonics at k ≈ 0.6 = 2kd, k ≈ 0.9 = 3kd, · · · for compressional waves
and k ≈ 0.2± 0.6 = k0± 2kd, k ≈ 0.2± 0.9 = k0± 3kd, · · · for transverse waves.





Decay instability: from linear to nonlinear stage

? The power in the fundamental compressional wave is larger than in the transverse
wave.
? Steepening of the compressional wave (ion acoustic wave) to a shock like
structure (not subject to dispersion).
? Excitation of higher harmonic waves: initiation of a direct cascade of energy
to small scales.
? High harmonic transverse Alfvén-like waves do not satisfy the normal dispersion
relation: slower transfer from the fundamental to higher harmonics.
? Excitation of a k = 0 parallel velocity mode that subsequently contributes to
the coupling of high harmonic waves: broadband turbulence in which individual
harmonic peaks loose their distinct identity.
? Instability saturation: nonlinear couplings affect the dispersion relation. Shift
in frequency (originating from a modification of plasma medium by the excited
daughter waves) that destroys the wave resonance condition, then stabilizing the
wave coupling.



Retain kinetic effects:

? hybrid simulations [Vasquez, JGR 100 (A2) 1779 (1995)]
? Landau fluids [Passot &Sulem, NPG 11, 609 (2004)]
? Drift-kinetic analysis at scales large enough for dispersion to be negligible

[Inhester, JGR 95 (A7) 10525 (1990)].

In the non dispersive limit, kinetic effects (Landau damping) decrease the rate of
the decay instability and increase the wavenumber range over which the instability
exists.

Reproduced with Landau fluids [Bugnon, Passot & Sulem, NPG 11, 609 (2004)]



Landau fluid model for parallel propagation:
(Ambient field and propagation along the x-direction).

∂tρ + ∂x(ρux) = 0

∂tux + ux∂xux +
β‖p
2M2

a

1
ρ
∂x(pxx + πxx) +

1
M2

a

1
ρ
∂x
|b|2
2

= 0

∂tuy + ux∂xuy +
β‖p
2M2

a

1
ρ
∂x(pxy + πxy)− bx

M2
a

1
ρ
∂xby = 0

∂tuz + ux∂xuz +
β‖p
2M2

a

1
ρ
∂x(pxz + πxz)− bx

M2
a

1
ρ
∂xbz = 0

∂tby = ∂x(bxuy − uxby +
Rpbx

Ma

∂xbz

ρ
− β‖p

2
Rp

Ma

1
ρ
∂xpe,xz)

∂tbz = ∂x(bxuz − uxbz − Rpbx

Ma

∂xby

ρ
+

β‖p
2

Rp

Ma

1
ρ
∂xpe,xy)



The gyrotropic components of the pressure tensor are given by pij =
∑

r pr,ij with
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H denotes the Hilbert transform (in Fourier space: i sgn k)



vthr =
√

T
(0)
‖r /mr is the thermal velocity of the particles of species r

Ma = u0/vA is the Alfvénic Mach number (here taken equal to 1)

β‖p = 8πp0/B2
0, related to β = 8πP0/B2

0 by β = β‖p(1 + T (0)
e /T (0)

p )

Rp =
vA

ΩpL0
(where Ωp =

eB0

mpc
is the proton gyrofrequency)

(ratio of the proton inertial length to the reference length scale L0).



Nondispersive Landau fluid simulations
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Figure 1: Growth rates of the density modes (whose wavenumber is normalized by

the pump wavenumber) resulting from the decay instability of a non dispersive Alfvén

wave of normalized amplitude b0 = 0.447, propagating in a plasma with β = 1.2 and

isotropic equilibrium temperatures of the electrons and ions in a ratio T (0)
e /T (0)

p = 33

(left), T (0)
e /T (0)

p = 5 (middle) and T (0)
e /T (0)

p = 1 (right) [increasing importance

of kinetic effects].



Figure 2: Time evolution of the amplitude of the most unstable density mode k=1.5 in

lin-log scales, for T (0)
e /T (0)

p = 1.

Saturation by Landau damping and not by wave coupling (no other mode grows
while the density mode decays).



Variation of the parallel and perpendicular temperatures of the protons and the
electrons.

Figure 3: Time evolution of parallel (solid lines) and transverse (dashed-dotted lines)

mean temperatures of the ions (left) and the electrons

Significant parallel heating of the ions (temperature growths of about 75 %).
Electron heating non-negligible (temperature growths of about 8 %)
(6= modulational instability where parallel electron temperature decreases).

Note that this “heating” survives when Landau damping is suppressed.



Effect of the dispersion:

Hybrid simulations [Vasquez, JGR 100 (A2) 1779 (1995)]

Landau fluid simulations:
Rp = 1, β = 0.42, T

(0)
p = T

(0)
e

Forward propagating RHP pump
(amplitude 0.1, wavenumber k0 = 4× 2π/D = 0.64 with D = 6.25× 2π)



Figure 4: Time evolution of the amplitude of the density modes m = 6 (left) and

m = 3 (right) in lin-log scales, for a right-hand polarized Alfvén wave of amplitude

b0 = 0.1, k0 = 0.64, in a plasma with Rp = 1, β = 0.42 and equal electron and ion

equilibrium temperatures.

Decay instability makes the density mode m = 6 to be the most unstable at short
time.
Saturation due to Landau damping.
After a while mode m = 3 starts growing (induces a second increase of m = 6 as
an harmonics of m = 3).
Further dynamics corresponds to an inverse cascade involving the successive
amplification of the m = 2 backward and m = 1 forward propagating Alfvén
modes.



Pump with larger amplitude (for comparison with Vasquez)
RHP wave with amplitude: 0.5, wavenumber k0 = 0.408 (normalized with the ion
inertial length) i.e. m0 = 8; β = 0.45.

T
(0)
e /T

(0)
p most unstable mode growth rate in units of Ωp

44. 13 0.087
2.75 12 0.069

1. 12 0.059
0.36 13 0.056

0. 13 0.056

For a polytropic gas (p ∝ ρ5/3), growth rate is 0.092.

When T
(0)
e /T

(0)
p = 44, dynamics close to a fluid regime.

Generation of many harmonics.

T
(0)
e = 0, electrons remain cold (consistent with hybrid codes)

Inverse cascade where the excitation is transfered to larger and larger scales
(up to m = 1), while the direction of the wave propagation switches
at each step of the cascade, with a simultaneous increase of the
ion parallel temperature.



Larger value of β: β = 5 with b0 = 0.5, k0 = 0.408 and Rp = 0.1
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Figure 5: Spectral density (versus the wavenumber index) in lin-log10 scale for the

(complex) quantity b+ = bx + iby (the wavenumber sign indicating a helicity and thus,

after the polarization is specified, the propagation direction) at time t = 2000 (left)

and t = 3700 (right) belonging respectively to the linear and nonlinear phases for the

instability of a right-hand polarized wave with amplitude b0 = 0.5, k0 = 0.408 in a

plasma with β = 5, Rp = 0.1 and T
(0)
i /T (0)

e = 1.5.

Decay instability, while fluid theory predicts modulational
instability.



For comparison: modulational instability [LHP pump (b0 = 0.3, k0 =
0.408 = 8× 2π/D) in a plasma with β = 1.5, Rp = 1, and T

(0)
i /T

(0)
e = 0.5].

For these parameters, fluid theory only gives a beat instability.

Figure 6: Spectral density (versus the wavenumber index) in lin-log10 scale for the

transverse magnetic field b+ = bx + iby at time t = 2000 (left) and t = 3700 (right)

belonging respectively to the linear and nonlinear phases for the instability.

Development of modes m = 4 and m = 12 with similar growth rates (≈ 0.014).
By t = 2600, m = 4 dominates; by t = 3700, m = 3 emerges, while an exponential
spectrum develops at small scale. By t = 4700, m = 2 is dominant. A t = 7700,
m = 1 is significantly excited and, in physical space, the Alfvén wave displays a
nonlinear structure occupying all the computational box.



Figure 7: Profile of |b+|2 (left) and (ρ − 1) (right) at t = 3700 in the conditions of

Fig. 7. The labels on the abscissa axis refer to the collocation point indices.

Note the anticorrelation between |b+|2 and ρ− 1.

Parallel and transverse electron pressures (not shown) are proportional to the density
fluctuations, which justifies the description of the electrons as an isothermal fluid.
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Figure 8: Time evolution of parallel (solid lines) and transverse (dashed-dotted lines) of

the ion (left) and electron (right) mean temperatures.

Note the decrease of electron parallel temperature.
This contrast with decay instability for which the parallel electron temperature
increases (possibly slightly).



When increasing the amplitude to b0 = 0.8: Landau fluid still displays a
dominant modulational instability (as predicted by the fluid description),
while Vasquez hybrid simulation gives a decay instability.

Landau fluid display a significant perpendicular heating of the electrons (more than
35%).

Two possible reasons for this discrepancy:

The assumption of isothermal electrons used in the hybrid simulation is not valid.

The pump amplitude is too strong for the present Landau fluid model, leading to
overestimated FLR corrections.



suggested problem:

At moderate β, in a regime where the decay instability dominates,

study the transition between the fluid regime (direct energy cascade)

that occurs when T
(0)
e /T

(0)
p is large

to the kinetic regime (inverse energy cascade)

that develops when T
(0)
e and T

(0)
p are comparable.

Is there an intermediate regime where both cascades coexist?


