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In spatial plasmas, collisions often negligible: usual MHD questionable.
For large-scale dynamics, hydrodynamic approach nevertheless advantageous.

Interest in constructing fluid models that extend MHD equations to collisionless
situations by including finite Larmor radius (FLR) corrections and Landau damping
(the only fluid-particle resonance that can affect large scales).

Most useful to analyze the dynamics of the magnetosheath (buffer between the
earth bow shock and the magnetopause, that plays an important role: decrease
the impact of solar activity on the earth environment).



Magnetosheath displays a wide spectrum of low frequency modes (Alfvén, slow and
fast magnetosonic, mirror). Cluster spacecrafts allow one to determine k-spectra
and clearly identify modes (Sahraoui et al. 2004).

Size of perturbuations can be smaller than the ion gyroradius.
The plasma is relatively warm and collisionless.
Landau damping and finite Larmor radius corrections play an important role.

Evidence of coherent solitonic structures (magnetic holes and shocklets), whose
origin is still debated (Tsurutani et al. 2004).



Which tool?

e Description of intermediate-scale dynamics by usual MHD is questionable.

e Numerical integration of Vlasov-Maxwell or gyrokinetic equations often beyond
the capabilities of present day computers.

e Need for a reduced description that retains most of the aspects of a
FLUID MODEL but INCLUDES REALISTIC APPROXIMATIONS OF THE
PRESSURE TENSOR AND WAVE-PARTICLE RESONANCES.

Should remain simple enough to allow 3D numerical simulations of turbulent
regime.

x Gyrofluids:  hydrodynamic moments obtained from gyrokinetic equations.
Capture high order FLR corrections but need a specific closure and are written in
a local reference frame.

x Landau fluids [Hammett and co-authors (1990s)]: monofluid taking into
account wave-particle resonances in a way consistent with linear kinetic theory.



Outline of the method

e Goal: Extend Landau-fluid model, to reproduce the weakly nonlinear dynamics
of dispersive MHD (magnetosonic and Alfvén) waves whatever their direction of
propagation, in particular of kinetic Alfvén waves (KAW) with kp;, < 1, by retaining
FLR corrections and a generalized Ohm'’s law in addition to Landau damping.

e Starting point: Vlasov-Maxwell (VM) equations.

e Small parameter: ratio between the ion Larmor radius and the typical (smallest)
wavelength. Field amplitudes also supposed to be small.

e Main problem: Exact hydrodynamic equations are obtained by taking moments
of VM equations. The hierarchy must however be closed and the main work resides
in a proper determination of the pressure tensor.

e Assumptions: Homogeneous equilibrium state with bi-Maxwellian distribution
functions.



The equations
From Vlasov-Maxwell equations, derive for each species r equations for

density p, = m,n, [ f.d>v,
[vfrdv
[ frd3v’

pressure tensor p, = m,n, [ (v —u;) @ (v — u,) frdv

velocity u, =

heat flux tensor q, = m,n, [(v—u,) ® (v —u,) ® (v —u,) frd®v,

from which a one-fluid description can possibly be obtained for
plasma density p = > p,, velocity u = %Zprur, total pressure p =) p,.

But pressure equation involves heat fluxes, and so on: closure problem.

Furthermore, at hydrodynamical scales, pressure and heat flux tensors include both
fast and slow components.



Basic tensors

where b = b/ By
For each particle species (drop r index for simplicity)

Pressure tensor p = P + II sum of a gyrotropic pressure P = p n + p 7 (with

2py =p:n and py=p:7) and of a gyroviscosity tensor II that satisfies
II:n=0and II: 7=0.

Equations for the gyrotropic pressure components,
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Similar decomposition of the heat flux tensor q = S + o with the conditions
OijkNjk — 0 and OijkTjk — 0. One has

1
Sz'jk = i(SzJ_an + Sj‘nzk + S,ﬁnw + SlJ"Tlinjk -+ SlLlenik + SlLlenq;j)

2
+Sz|'|7-jk + S;szk -+ S[U;Tij — g(SlHle'Tjk: + S}'leTik + S}'leﬁj)

which is characterized by the parallel and transverse heat flux vectors S!l and S+
with components SZ“ = ik Tk and 257;L = QijkMjk-

2
o involves either nonlinear contributions or linear contributions of order O(@vth),

and thus turns out to be negligible in the equations for gyroviscosity or heat flux
tensors.

Since m./m; < 1: only non-gyrotropic corrections due to ions are retained.

Weakly nonlinear regime: nongyrotropic contributions II, S| and Sl retained at
the linear level only.



Fourth order moment are written in the form

priikt = PP + P Py + Py Py + Pl + Pilly + Pylly
+1L;; Py + 1Lk Py + 1 Pjg + prij-

with a gyrotropic form for the tensor r:
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3
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Introducing the scalar quantities 7 = 7ix7ijThe, 71| = o iUk T and
TLL = TRk (and similar definitions for the tilde quantities),
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Nonlinear equations for the longitudinal components of parallel and
transverse heat flux vectors (retaining only lowest order nonlinearities)
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Fourth order moment closure
Turn to kinetic theory. Compute various hydrodynamic quantities
using linearly perturbed distribution function, at second order in w /().

When comparing 7 with Sl or TH( ) one gets (¢ = ]; =),

27"
ST 2C0 +2CRO) + 3R — 1)~ 12CRQ o
oV m 2¢(1 = 3R(C) + 2¢*R(0)) N
- P Ty 2¢( 4 2CR(Q) +3(R(Q — 1) — 12CR(Q) 1
e m L~ R(C) +2¢°R(C) T”<0>
Proceeding as in Snyder et al. (1997) , we write
(0) (1) (0)
T T 27" k.
(0) | I H I
I = Bip, — — D 520,
= Pipy 7 H UPNEE
where G = 3 _8 > and D) = 3\/__8 are determined by matching with

the exact kinetic expressions in the isothermal |(| < 1 and adiabatic
limits |C] > 1.



7L can be expressed in terms of S+ and the parallel current j,.
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Validation

e For parallel Alfvén waves,
Leading order (proton) gyroviscous tensor is sufficient

pL 1 PL
mly) = —nl) = oo (Oua+ 0ouy)), ) =0, ) = —T=(9yu, — du.)
M = Li2p, 8 8 M = Liap0 8 9
Ty, = 5[ P|0.uy + p1(Ozu, — Ou,)], Ty — —5[ POty + pL(Oyu, — Ozuy)]

Only the longitudinal components S and S! of the transverse and
parallel heat transfer vectors are relevant.

The long-wave reductive perturbative expansion performed on the
resulting Landau-fluid model reproduces the KDNLS equation derived
from Vlasov-Maxwell, up to the replacement of the plasma response
functions by the corresponding two- or four-pole approximants.

Consequence: modulational  type instabilities  (including
filamentation) of Alfvén waves and their weakly nonlinear
developments are correctly reproduced.



® Alfvén waves at finite angle of propagation:

FLR corrections of order l/Q2 are to be retained.
The governing equation is linear and reads, assuming ¢ < 3 << e (adiabatic

protons and isothermal electrons) and 6 < 1 (&: stretched coordmate along the
propagation)

b, v cos 1 b,
- 0 =0,
OB +2Qz ERCHN 5\[\/ ~H s&sB

e Kinetic Alfvén waves (cos? a < 3):

b, 3 37"
Or— "By +ﬁcosoz[ 5(1+—W +\f 1/ HagggB

agreement with Akhiezer et al. '75, Hasegawa and Chen '76.



e Magnetosonic waves:

Landau damping rate is (assuming 7= < § < Te)

\f mesin® o (w? — [ cos? o )2+ﬁzcos4ozk
v
pcosa (20?2 — f —1)(w? — Beos? a) A
an expression identical to that found by a direct derivation from the Vlasov-Maxwell
equations.

The long-wave equation is KdV+damping term.
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Figure 1:  Profiles of the . component (left), of the density perturbation (middle) and of the
magnetic field perturbation (right) at successive times (denoted by solid, dashed, dotted-dashed and
triple-dotted-dashed lines) separated by 1.5 units starting at t = 104.3 (top) and at t = 1502.3 (bottom),
in the case ag = 10_2, Ry = 10~ and B = 1073,

Formation of SOLITONIC STRUCTURES with a hump for the parallel velocity and
density depressions correlated with magnetic holes.

Eventually, the profile evolves to a quasi-stationary wave.

Dissipation of the magnetosonic wave very weak and Alfvén waves subdominant.



Larger amplitude regime
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Figure 2: Snapshots at times t = 1, 32, 45, 101, 150, 501, 1002, 4000 and 17000 of the longitudinal
velocity component u. for a magnetosonic wave of initial amplitude ag = 2.2 1072, with B = 10~2 and
R, =710""%
Formation and dissipation of the high frequency modes in a dispersive shocks.
Magnetosonic contribution is completely dissipated. Increase of 1. by 20%.
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Figu re 3: Same as before for the transverse velocity component Uy

An Alfvén wave is generated that evolves to a large-scale profile. Small-scale
oscillations being damped at a rate that scales like k3/R129. Resulting state: an
Alfvén wave essentially insensitive to Landau damping.



e Transverse magnetosonic waves: (isotropic equilibrium temperatures)

Dispersion relation:

w? = k*v5(1 + B) (1——k2 21+5e+5/26")

YT B+ B

In agreement with kinetic theory (Mikhailovskii and Smolyakov 1985)



Perspectives

e Benchmark the model by comparison with gyrokinetic and Vlasov-Maxwell
simulations .

e Explore the nonlinear stage of parametric instabilities.

e Modelisation of coherent structures (magnetic holes and shocklets) observed in
the solar wind and magnetosheath.

e Simulation of dispersive Alfvén wave turbulence

e Explore the possible description of nonlinear Landau damping.
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