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Carter and Lichnerowicz have established that barotropic fluid flows are conformally geodesic and obey
Hamilton’s principle. This variational approach can accommodate neutral, or charged and poorly
conducting, fluids. We show that, unlike what has been previously thought, this approach can also
accommodate perfectly conducting magnetofluids, via the Bekenstein-Oron description of ideal mag-
netohydrodynamics. When Noether symmetries associated with Killing vectors or tensors are present in
geodesic flows, they lead to constants of motion polynomial in the momenta. We generalize these concepts
to hydrodynamic flows. Moreover, the Hamiltonian descriptions of ideal magnetohydrodynamics allow
one to cast the evolution equations into a hyperbolic form useful for evolving rotating or binary compact
objects with magnetic fields in numerical general relativity. In this framework, Ertel’s potential vorticity
theorem for baroclinic fluids arises as a special case of a conservation law valid for any Hamiltonian
system. Moreover, conserved circulation laws, such as those of Kelvin, Alfvén and Bekenstein-Oron,
emerge simply as special cases of the Poincaré-Cartan integral invariant of Hamiltonian systems. We use
this approach to obtain an extension of Kelvin’s theorem to baroclinic (nonisentropic) fluids, based on a
temperature-dependent time parameter. We further extend this result to perfectly or poorly conducting
baroclinic magnetoflows. Finally, in the barotropic case, such magnetoflows are shown to also be geodesic,
albeit in a Finsler (rather than Riemann) space.
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I. INTRODUCTION

A wide variety of compact stellar objects where general
relativistic effects are important is currently known. Black
holes and neutron stars are involved in many astrophysical
phenomena, including binary mergers and gamma ray
bursts, which have observable imprints in the electromag-
netic and gravitational wave spectrum. Many of these
phenomena can be explained by means of general relativ-
istic hydrodynamics. In addition, there is a growing number
of observed phenomena where electromagnetic effects play
a major role. These include observations of accretion disks
around black holes [1], jets in active galactic nuclei or
microquasars [2,3], gamma ray bursts, hypernovae, pulsars

[4] and magnetars [5–9]. Magnetohydrodynamics (MHD)
provides a macroscopic continuum approximation to
studying such phenomena. General relativistic magneto-
hydrodynamics (GRMHD) originates in the works of
Lichnerowicz [10] and is a rapidly developing field of
modern astrophysics [4,11,12]. Departures from MHD are
discussed in [13–15] and references therein. Compact
objects such as magnetars or the differentially rotating
supramassive remnants of binary neutron-star mergers can
have magnetic fields of the order of 1015–1017 G which can
affect the dynamics and stability [16] of these objects. A
fully relativistic description of magnetized neutron stars is
thus desirable.
In this article, we develop a geometric treatment of ideal

GRMHD. To this aim, we use Cartan’s exterior calculus,
relying on the nature of the electromagnetic field as a
2-form and the well-known formulation of Maxwell’s
equations by means of the exterior derivative operator.
We also employ the formulation of hydrodynamics in terms
of the fluid vorticity 2-form, following Synge [17] and
Lichnerowicz [18]. This enables us to formulate GRMHD
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entirely in terms of exterior forms. Such an approach is
not only elegant and fully covariant, but also simplifies
some calculations which are tedious in the component
approach. In addition, we obtain particlelike Lagrangian
and Hamiltonian descriptions of ideal MHD, in Newtonian
and relativistic contexts, with several theoretical and
practical advantages. For example, schemes for evolution
in numerical relativity are straightforward to obtain, and
conserved quantities whose origin seems ad hoc in the
component approach, emerge immediately as Noether-
related quantities in this canonical approach.
In particular, Synge and Lichnerowicz have shown

that barotropic-fluid flows may be described via simple
variational principles as geodesic flows in a manifold
conformally related to the spacetime manifold. Arnol’d
described the nonrelativistic Euler equation as the geo-
desic equation on the group of volume-preserving dif-
feomorphisms [19]. This allowed him to apply geometric
and group-theoretical methods to the study of this equation,
and to develop the now called Arnol’d stability method
[20–26].
Carter [27] has used this powerful canonical approach to

efficiently derive conservation laws for neutral or charged
poorly conducting fluids in general relativity. Markakis [28]
has obtained an Euler-Lagrange and a Hamiltonian descrip-
tion of a barotropic fluid valid in Newtonian gravity as well
as 3þ 1 general relativity. In this article, we extend Carter’s
framework to perfectly conducting fluids with the aid of the
Bekenstein-Oron (BO) formulation of ideal MHD [29–31].
In the canonical approach, conserved circulation integrals,
such as those of Alfvén, Kelvin and Bekenstein-Oron,
emerge simply as special cases of the Poincaré-Cartan
integral invariant of Hamiltonian systems. We further show
that the BO description can describe an arbitrary ideal MHD
flow without loss of generality and allows one to cast the
ideal MHD equations into a circulation-preserving hyper-
bolic form, which may be useful in numerical simulations of
oscillating stars or radiating binaries with magnetic fields in
numerical relativity. We generalize the Synge-Lichnerowicz
result to perfectly conducting magnetofluids by showing that
ideal MHD flows can be described as geodesic flows in a
Finsler space.
Finally, Kelvin’s circulation theorem has been thought to

hold only for barotropic flows. It has been thought not to
hold for baroclinic (nonisentropic) flows, except in a weak
form (i.e. if the circulation is initially computed along
rings of constant temperature or specific entropy [32]).
However, using a temperature-dependent time parameter,
we obtain a Hamiltonian action principle describing invis-
cid baroclinic flows within Carter’s framework. Moreover,
a Poincaré-Cartan integral invariant exists if and only if a
system is Hamiltonian. We thus infer that, contrary to
common belief, a generalization of Kelvin’s theorem to
baroclinic flows does exist in the strong form (i.e. the
circulation can be initially computed along an arbitrary

fluid ring). Remarkably, this result can be further extended
to perfectly or poorly conducting baroclinic magnetoflows.
Symmetries and conservation laws are very useful

because they can provide valuable insight of complicated
(magneto)hydrodynamic phenomena; the relevant con-
served quantities can be extremely useful in constructing
initial data in numerical relativity, or significantly simplify
solving for the motion. The examples considered below are
applicable, among others, to the mathematical study and
numerical simulation of fluid motions in rotating or binary
relativistic stars [33–42] and their magnetospheres [43,44],
neutron-star or black-hole accretion rings [27,45–47] and
cosmological dynamics [48–56].

II. CLASSICAL DYNAMICS IN
COVARIANT LANGUAGE

A. Notation

We consider a spacetime ðM; gÞ, i.e. a four-dimensional
real manifold M endowed with a Lorentzian metric g of
signature ð−þþþÞ. We assume that M is orientable, so
that we have at our disposal the Levi-Civita tensor ϵ (also
called volume element) associated with the metric g. Let ∇
be the covariant derivative associated with g: ∇g ¼ 0 and
∇ϵ ¼ 0. The star operator ⋆ denotes the Hodge dual of a
differential form. For example, the Hodge dual of the
1-form ω is a 3-form denoted by ⋆ω:

⋆ωαβγ ≔ ϵαβγδω
δ: ð2:1Þ

Similarly, the Hodge dual of the 2-form Ω is a 2-form
denoted by ⋆Ω:

⋆Ωαβ ≔
1

2
ϵαβγδΩγδ: ð2:2Þ

More details on these definitions may be found e.g. in
Appendix B of Ref. [57].
We shall often use an index-free notation, denoting

vectors and tensors on M by boldface symbols. As in
[27], given a linear form ω, we denote by ω⃗ the vector
associated to it by the metric tensor:

ω ≕ gðω⃗; Þ: ð2:3Þ

In a given vector basis ðeαÞ, the components of g, ω⃗ and ω
are gαβ, ωα ¼ gαβωβ and ωα ¼ gαβωβ respectively.
Given a vector v⃗ and a tensor T of type ð0; nÞ (n ≥ 1), i.e.

a n-linear form (a linear form for n ¼ 1, a bilinear form for
n ¼ 2, etc.), we denote by v⃗ · T (respectively, T · v⃗) the
(n − 1)-linear form obtained by setting the first (respec-
tively last) argument of T to v⃗:

v⃗ · T ≔ Tðv⃗; ;…; Þ ð2:4aÞ

T · v⃗ ≔ Tð ;…; ; v⃗Þ: ð2:4bÞ
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Thanks to the above conventions, we may write the scalar
product of two vectors u⃗ and v⃗ as

gðu⃗; v⃗Þ ¼ u⃗ · v ¼ u · v⃗: ð2:5Þ

We denote by ∇· the covariant divergence, with contraction
taken on the adjacent index. For instance, for a tensor field
T⃗ of type (2,0), ∇ · T⃗ is the vector field defined by

∇ · T⃗ ≔ ∇βTβαeα; ð2:6Þ

where feαg is the vector basis with respect to which the
components ∇γTαβ of ∇T⃗ are taken. [Note that the
convention for the divergence does not follow the rule
for the contraction with a vector: in (2.4a) the contraction is
performed on the first index.]
We use greek letters α; β; γ; δ;… for abstract and

μ; ν; κ; λ;… for concrete spacetime indices. We also use
roman letters a; b; c;… for abstract and i; j; k;… for
concrete spatial indices. We use geometrized Heaviside-
Lorentz units throughout the paper. We use ∇α or ∂α to
denote the (Eulerian) covariant or partial derivative com-
patible with a curved or flat metric respectively, and ∂=∂xα

to denote the (Lagrangian) partial derivative of a function
fðx; vÞwith respect to x for fixed v. We make extensive use
of Lie and exterior derivatives: for a pedagogical intro-
duction to using these concepts in relativistic hydrody-
namics, the reader is referred to [58,59].

B. Hamiltonian flows

It is often thought that continuum systems necessarily
require an infinite dimensional manifold for their descrip-
tion, and one often resorts to a classical field-theory
approach, based on an action integral over a Lagrangian
density in a spacetime 4-volume. This complicates the
derivation of conservation laws from symmetries of the
action—one of the main reasons for using an action
functional in the first place. In many cases, however, the
very definition of a perfect fluid allows one to treat each
fluid element as an individual particle interacting with other
fluid elements through pressure terms (in addition to
electromagnetic or gravitational field terms). If the pressure
terms are derivable from a potential, then a particlelike
action principle can be found. This approach has been
utilized by Carter [27] to derive particlelike conservation
laws for neutral perfect fluids and for charged poorly
conducting fluids. Here, we review Carter’s framework
and extend it to baroclinic fluids and perfectly conducting
magnetofluids.

1. Lagrangian dynamics

The results derived in this section will apply to any
classical motion obeying a Lagrangian variation principle.
That is, for any particular (particle, fluid or magneto-fluid)

flow, there exists a Lagrangian function Lðx; vÞ of the
spacetime coordinates xα and canonical 4-velocity vα,
evaluated at xαðλÞ and vαðλÞ where λ ∈ R is a canonical
time parameter (which need not necessarily coincide
with proper time τ) in terms of which the (not necessarily
unit) vector

vα ¼ dxα

dλ
ð2:7Þ

is defined. The equations of the (particle or fluid-element)
worldlines xαðλÞ can be obtained from the action functional

S ¼
Z

λ2

λ1

Lðx; vÞdλ: ð2:8Þ

Extremizing the action keeping the endpoints fixed yields
the Euler-Lagrange equations of motion

dpα

dλ
¼ ∂L

∂xα
ð2:9aÞ

pα ¼
∂L
∂vα

ð2:9bÞ

where pα is the canonical momentum 1-form conjugate to
xα. In the context of fluid theory, it is preferable to write the
above equations in the (Eulerian) covariant form [27]

£v⃗pα ¼ ∇αL

or, in exterior calculus notation,

£v⃗p ¼ dL; ð2:10Þ

where £v⃗ is the Lie derivative along the vector v⃗ and d is the
exterior derivative [58–60]. The canonical momentum one-
form p ¼ pμdxμ is also known as the tautological one-
form, the Liouville one-form, the Poincaré one-form the
symplectic potential or simply the canonical one-form [61].
Using the definition of the Lie derivative and the chain rule,
the above equation1 can be expressed as

£v⃗pα −∇αL ≔ vβ
∂pα

∂xβ
þ pβ

∂vβ

∂xα
−
�
∂L
∂xα

þ ∂L
∂vβ

∂vβ

∂xα

�

¼ dpα

dλ
−

∂L
∂xα

þ
�
pβ −

∂L
∂vβ

�
∂vβ
∂xα

: ð2:11Þ

1In Eq. (2.9b), the Lagrangian L and canonical momentum p
are regarded functions of the time parameter λ, through x⃗ðλÞ and
v⃗ðλÞ, and characterize a single fluid element. In Eq. (2.10), the
Lagrangian and canonical momentum are regarded functions on
spacetime through x⃗ and v⃗ðxÞ. They amount to the Lagrangian
and canonical momentum of the fluid element located at x⃗, and
changing the argument x⃗ generally changes the fluid element
which L and p refer to.
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This quantity vanishes if and only if the Euler-Lagrange
Eq. (2.9) are satisfied; the latter are thus equivalent to the
covariant Eq. (2.10).

2. Hamiltonian dynamics

The Legendre transformation

H ¼ vαpα − L ð2:12Þ

defines the super-HamiltonianHðx; pÞ. Then, the equations
of motion take the form of Hamilton’s equations

dpα

dλ
¼ −

∂H
∂xα

ð2:13aÞ

dxα

dλ
¼ ∂H

∂pα
: ð2:13bÞ

The above equations can be written covariantly as [27]

vβð∇βpα −∇αpβÞ ¼ −∇αH

or, in exterior calculus notation,

v⃗ · dp ¼ −dH: ð2:14Þ

One may obtain Eq. (2.14) using the Cartan identity

£v⃗pα ¼ vβð∇βpα −∇αpβÞ þ∇αðvβpβÞ

or

£v⃗p ¼ v⃗ · dpþ dðv⃗ · pÞ ð2:15Þ

and the Legendre transformation (2.12) to write the
covariant Euler-Lagrange Eq. (2.10) as

£v⃗p − dL ¼ v⃗ · dpþ dH ¼ 0: ð2:16Þ

Alternatively, one may prove the equivalence of
Eq. (2.14) to the Hamilton Eq. (2.13a) by proceeding
analogously to Eq. (2.11), that is, by using the chain rule
to rewrite the (Eulerian) covariant derivative ∇αH ¼
∂H=∂xα þ ∂pβ=∂xα∂H=∂pβ in terms of (Lagrangian) par-
tial derivatives.

C. Conservation laws

1. Poincaré-Cartan integral invariant

The 2-form

Ωαβ ≔ ∇βpα −∇αpβ

or, equivalently,

Ω ≔ dp ¼ dpμ ∧ dxμ ð2:17Þ

is the canonical symplectic form, also known as the
Poincaré two-form [61]. Its physical content depends on
the action (2.8). In Sec. III it will be shown that, if the
action describes a perfect fluid, then Ω is Khalatnikov’s
canonical vorticity tensor; if the action describes a purely
magnetic field, then Ω is the Faraday tensor. Nevertheless,
the results of Sec. II apply to any generic Hamiltonian flow;
no assumptions on the physical content of the action (2.8)
will be made prior to Sec. III.
Taking the exterior derivative of (2.10), commuting the

exterior derivative dwith the Lie derivative £v⃗ and using the
identity d2 ¼ 0, we immediately deduce that the canonical
symplectic form (2.17) is advected by the flow:

£v⃗Ω ¼ 0: ð2:18Þ

The above equation also follows directly from the Hamilton
Eq. (2.14) and the Cartan identity

£v⃗Ω ¼ v⃗ · dΩþ dðv⃗ ·ΩÞ: ð2:19Þ

The conservation Eq. (2.18) is tied to an important
integral invariant: Consider2 the family Ψλ of diffeomor-
phisms generated by canonical velocity v⃗, with Ψ−1

λ its
inverse. Let c be a ring in the flow, bounding a 2-surface S;
let cλ ¼ ΨλðcÞ be the family of rings dragged along by the
flow, bounding the 2-surfaces Sλ ¼ ΨλðSÞ. That is, each
point of Sλ is obtained by moving each point of S an affine
time λ along the flow through that point. The closed line
integral of p around Cλ can then be written as

I ≔
I
cλ

p ¼
Z
Sλ

Ω ¼
Z
S
Ψ−1

λ Ω ð2:20Þ

where we used the Stokes theorem [relating the circulation
integral

H
cλ
pαdxα with the integral

R
Sλ
Ωαβdxαð1Þdx

β
ð2Þ of Ω

on Sλ, where dxαð1Þ and dxβð2Þ are infinitesimal vectors

tangent to Sλ spanning the tangent space at each point]
and the diffeomorphism invariance of an integral [i.e. the
identity

R
ΨλðSÞΨλΩ ¼ R

S Ω, with Ω replaced by Ψ−1
λ Ω,

cf. Eq. (A.81) in [60]]. Eq. (2.18) implies that the above
integral is conserved:

dI
dλ

¼
Z
S

d
dλ

ðΨ−1
λ ΩÞ ¼

Z
S
£v⃗Ω ¼ 0: ð2:21Þ

The closed line integral (2.20) is known in analytical
dynamics as the Poincaré-Cartan integral invariant asso-
ciated with Hamiltonian systems [62–64]. Its existence

2This derivation follows and generalizes Friedman&Stergioulas’
[60] proof of conservation of circulation.
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emerges from the Hamiltonian structure of Eq. (2.14). In
particular, a dynamical system possesses a Poincaré-Cartan
integral invariant if and only if it is Hamiltonian [65].
Although this result is well known in analytical dynam-

ics, to our knowledge, its applicability to (magneto)hydro-
dynamics was only recognized by Carter [27] Some
classical mechanics texts mention that the integral (2.20)
corresponds to a conserved circulation in phase space,
analogous to Kelvin’s circulation integral in a barotropic
fluid. In fact, this is more than a mere analogy, albeit in the
converse direction: Kelvin’s circulation equals the integral
(2.20) if the Lagrangian is chosen to be that of a perfect
barotropic fluid element, Eq. (3.20) [27,66]. Similarly,
Alfvén’s magnetic flux theorem, and the generalizations
of Kelvin’s theorem to poorly [27] or perfectly conducting
[29–31] magnetofluids, emerge also as special cases
of the Poincaré-Cartan integral invariant (2.20). This will
be shown in Sec. III by constructing the appropriate
Lagrangians.

2. Irrotational flows

In general, a flow will be called irrotational if and only if
the canonical vorticity 2-form vanishes:

Ω ¼ dp ¼ 0: ð2:22Þ

Then, if the domain D is simply connected, the Poincaré
lemma implies the local existence of a single-valued scalar
field S such that

p ¼ dS ð2:23Þ

or, equivalently,

pα ¼ ∇αS:

The invariance of the Poincaré-Cartan integral (2.20)
guarantees that initially irrotational flows remain irrota-
tional.3 This is very useful when solving the Cauchy
problem with irrotational initial data (cf. [66] for a 3þ 1
evolution scheme exploiting this property in barotropic
fluids). For an irrotational flow, substituting Eq. (2.23) into
the equations of motion (2.10), (2.14), we find that the latter
have first integrals:

£v⃗S − L ¼ 0 ð2:24Þ

H ¼ 0 ð2:25Þ

respectively. In general, a system with constant H is called
uniformly canonical. This is the case for irrotational flow,

and, more generally, for a perfect fluid that is homentropic
or barotropic, as will be shown below.
We note that the above first integrals hold throughout the

flow. Indeed, taking the exterior derivative of the above
equations and commuting the operator d with £v leads back
to the equations of motion (2.10), (2.14). In the above
integrals, we have dropped an additive integration constant
by absorbing it into the definition of the potential S. Note
that Eq. (2.24) follows directly from Eq. (2.25) with the aid
of Eqs. (2.12) and (2.23) and the definition of the Lie
derivative.
Equations (2.24) and (2.25) were derived for an irrota-

tional flow. More generally, the same equations can be
shown to hold for helicity-free flows which are represent-
able in the Clebsch form p ¼ dS þ αdβ. This follows by
substituting the latter expression into the equations of
motion (2.10), (2.14) and using the fact that the Clebsch
potentials α, β are advected by the flow, that is
£v⃗α ¼ 0, £v⃗β ¼ 0.

3. Poincaré two-form

Let uα ¼ vαð−vβvβÞ−1=2 be the unit vector along vα. In
light of Eq. (2.14), we can decompose the 2-form (2.17)
into “electric” and “magnetic” parts with respect to uα as

Ωαβ ¼ ð−vβvβÞ−1=2ðuα∇βH − uβ∇αHÞ þ uδϵδαβγωγ

or

Ω ¼ ð−v⃗ · vÞ−1=2u ∧ dH þ ⋆ðu ∧ ωÞ ð2:26aÞ

⋆Ω ¼ ð−v⃗ · vÞ−1=2⋆ðu ∧ dHÞ − u ∧ ω; ð2:26bÞ

where

ωα ≔
1

2
uδϵδαβγΩβγ ¼ uδ⋆Ωδα

or

ω ≔ u⃗ · ⋆Ω: ð2:27Þ

From the antisymmetry properties of ϵ it follows that

u⃗ · dH ¼ 0; u⃗ · ω ¼ 0 ð2:28Þ

and that the scalar invariants of the 2-form Ω are

1

2
ΩαβΩαβ ¼ ωαωα − ð−vβvβÞ−1∇αH∇αH ð2:29Þ

1

2
ð⋆ΩαβÞΩαβ ¼ ð−vβvβÞ−1=2ωα∇αH: ð2:30Þ

By the definition (2.17), Ω is an exact 2-form. Because
d2 ¼ 0, any exact 2-form is also closed:

3In the context of barotropic fluids, this is known as
Helmholtz’s third theorem, which is a corollary of Kelvin’s
circulation theorem.
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dΩ ¼ 0 ⇔ ∇αð⋆ΩαβÞ ¼ 0: ð2:31Þ

Given a scalar field ϕðxÞ onM, one can construct an exact
1-form

l ¼ dϕ ð2:32Þ

which is also, by virtue of the identity d2 ¼ 0, closed:

dl ¼ 0 ⇔ ∇αlβ −∇βlα ¼ 0: ð2:33Þ

Given a closed 2-form Ω and a closed 1-form l, one can
construct a current jα ≔ lβ⋆Ωβα, or

j ≔ ⃗l · ⋆Ω; ð2:34Þ

which, by virtue of Eqs. (2.31) and (2.33), is conserved:

∇αjα ¼ ∇αð∇βϕ⋆ΩβαÞ ¼ 0: ð2:35Þ

This conservation law implies a corresponding global
conservation of the integrated flux of jα across a
hypersurface.
An infinite number of (not necessarily independent)

conservation laws stem from Eq. (2.35) since, in general,
ϕðxÞ can be any differentiable function of the coordinates.
For example, in a chart fxμg ¼ ft; xig, if ϕ is chosen to be
the spatial coordinate x1, the above equation reduces to the
x1 component of Eq. (2.31). If ϕ coincides with coordinate
time t, Eq. (3.49) yields a spatial constraint equation. Other
combinations of the coordinates give different projections
Eq. (2.31). Choosing ϕ to be the super-Hamiltonian H
gives rise to a conserved current

jα ≔ ∇βH⋆Ωβα: ð2:36Þ

This conservation law holds for any Hamiltonian system
with a Poincaré 2-form Ω. For a baroclinic fluid, described
by Eq. (3.41) below, the time component of this current is
the potential vorticity, as shown in Sec. III. The corre-
sponding conservation law, known as Ertel’s theorem
[67,68], arises simply as a special case of Eq. (2.36).
As mentioned earlier, a system with spatially constant

super-Hamiltonian H is uniformly canonical. If the uni-
formity condition dH ¼ 0 holds on an initial hypersurface,
then Eq. (2.28) guarantees that the condition is preserved in
time. For such systems, Eqs. (2.26) and (2.31) yield the
conservation law

d⋆ðu ∧ ωÞ ¼ 0 ⇔ ∇αðuαωβ − uβωαÞ ¼ 0: ð2:37Þ

In 3þ 1 dimensions, this equation is the curl of Eq. (2.18).
Helmholtz’s vorticity transport equation [68] and Alfven’s
magnetic field transport equation [69] are special cases of
this general conservation law.

4. Generalized helicity

Equations (2.17), (2.31) and (2.30) imply that, for
uniformly canonical systems, the generalized helicity
current

h ≔ p⃗ · ⋆Ω ð2:38Þ

is conserved:

∇αhα ¼
1

2
Ωαβ⋆Ωβα ¼ ωα∇αH ¼ 0: ð2:39Þ

This conservation law also implies a corresponding global
conservation of the integrated flux of hα across a hyper-
surface. Specific examples are given in Sec. III [70–72].

5. Noether’s theorem

Noether’s theorem states that each continuous symmetry
of the action implies a quantity conserved by the motion. In
particular, the generalized Noether theorem may be stated
as follows [73]. Consider the ε family of infinitesimal
coordinate transformations

x⃗ → x⃗ε ¼ x⃗þ εk⃗ðx; vÞ ð2:40Þ

generated by the vector field k⃗ðx; vÞ, which can depend on
position and velocity, for a small parameter ε. If these
transformations leave the action (2.8) unchanged or,
equivalently, change the Lagrangian Lðx; vÞ by a total
derivative of some scalar KðxÞ,

L → Lε ¼ L − ε
dK
dλ

; ð2:41Þ

then the quantity

Cðx; vÞ ¼ ∂L
∂vα

kα þ K ð2:42Þ

is a constant of motion:

dC
dλ

¼ £v⃗C ¼ 0: ð2:43Þ

If k⃗ depends on velocity, then the family (2.40) of
transformations is not generally considered a family of
diffeomorphisms. It is, however, a generalized symmetry
of the action and Noether related to an invariant of the
form (2.42).
Conversely, the inverse Noether theorem [73] may be

stated as follows: if the quantity Cðx; vÞ is a constant of
motion, then the ε family of infinitesimal transformations

generated by the vector field k⃗ðx; vÞ, obtained by solving
the linear system
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∂
2L

∂vα∂vβ
kβ ¼ ∂C

∂vα
; ð2:44Þ

is a generalized symmetry of the action.
In the Hamiltonian picture, a scalar quantity Cðx; pÞ,

which does not explicitly depend on the time parameter λ, is
conserved if it commutes with the super-Hamiltonian, in
the sense of a vanishing Poisson bracket:

dC
dλ

¼ £v⃗C ¼ fC; Hg≡ ∂C
∂xγ

∂H
∂pγ

−
∂C
∂pγ

∂H
∂xγ

¼ 0: ð2:45Þ

Conserved quantities polynomial in the momenta are
associated with Killing vectors or tensors and are
Noether related to symmetries of the action, as discussed
below. The super-Hamiltonian H does not explicitly
depend on the affine parameter λ and is itself a constant
of motion, in agreement with Eq. (2.28) (this symmetry is
Noether related to the metric tensor being a Killing tensor,
as discussed in Sec. III).
For barotropic fluids, Eqs. (2.42) and (2.43) or (2.45)

give rise to Bernoulli’s law, as shown in the next section.

III. EXAMPLES OF HAMILTONIAN FLOWS

A. Perfect fluids

We assume that a part D ⊂ M of spacetime is occupied
by a perfect fluid, characterized by the energy-momentum
tensor

Tfl ¼ ðϵþ pÞu ⊗ uþ pg; ð3:1Þ

where ϵ is the proper energy density, p is the fluid pressure
and uα ¼ dxα=dτ is the fluid 4-velocity. Moreover, we
neglect effects of viscosity or heat conduction and we
assume that the fluid is a simple fluid, that is, all
thermodynamic quantities depend only on the entropy
density s and proper baryon number density n. In particular,

ϵ ¼ ϵðs; nÞ: ð3:2Þ

The above relation is called the equation of state (EOS) of
the fluid. The temperature T and the baryon chemical
potential μ are then defined by

T ≔
∂ϵ

∂s
and μ ≔

∂ϵ

∂n
: ð3:3Þ

Then, the first law of thermodynamics can be written as

dϵ ¼ μdnþ Tds: ð3:4Þ

As a consequence, p is a function of ðs; nÞ entirely
determined by (3.2):

p ¼ −ϵþ Tsþ μn: ð3:5Þ

Let us introduce the specific enthalpy,

h ≔
ϵþ p
ρ

¼ gþ TS; ð3:6Þ

where ρ is the rest-mass density

ρ ≔ mn; ð3:7Þ

g is the specific Gibbs free energy

g ≔
μ

m
; ð3:8Þ

m ¼ 1.66 × 10−27 kg is the baryon rest mass, and S is the
specific entropy, or entropy per particle:

S ≔
s
ρ
: ð3:9Þ

The second equality in (3.6) is an immediate consequence
of (3.5). From Eqs. (3.4)–(3.9), we obtain the thermody-
namic relations

dϵ ¼ hdρþ ρTdS; dp ¼ ρðdh − TdSÞ: ð3:10Þ

A simple perfect fluid is barotropic if the energy density
depends only on the pressure, ϵ ¼ ϵðpÞ. This is the case for
a cold or a homentropic fluid.
With the aid of Eqs. (3.4)–(3.10), the divergence of the

fluid energy-momentum tensor (3.1) can be decomposed as

∇⃗ · Tfl ¼ hu½∇ · ðρu⃗Þ� þ ρ½u⃗ · dðhuÞ − TdS�: ð3:11Þ

Conservation of rest mass

∇ · ðρu⃗Þ ¼ 0; ð3:12Þ

and the vanishing of (3.11) yield the relativistic Euler
equation for baroclinic fluids, in the canonical form:

£u⃗ðhuÞ þ dh ¼ u⃗ · dðhuÞ ¼ TdS ð3:13Þ

where the first equality follows from the Cartan identity
(2.15) and the normalization condition

gαβuαuβ ¼ −1: ð3:14Þ

For barotropic fluids, the Euler Eq. (3.13) simplifies to

£u⃗ðhuÞ þ dh ¼ u⃗ · dðhuÞ ¼ 0: ð3:15Þ

Equation (3.15) was obtained in special relativity by Synge
(1937) [17] and in general relativity by Lichnerowicz
(1941) [18]. The extension (3.13) to baroclinic (nonisen-
tropic) fluids was obtained by Taub (1959) [74] (see also
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[27,58,75]). Both of these relativistic hydrodynamic equa-
tions are canonical and can be described within the
framework of Sec. II, which provides a very efficient
approach to the derivation of conservation laws.

B. Barotropic flows

1. Hamilton’s principle for a barotropic-fluid element

The Euler Eq. (3.15) for a barotropic fluid is readily in
the canonical form (2.14). Thus, a particle variational
principle in the form described in Sec. II can be found.
Indeed the motions of fluid elements in a barotropic fluid
are conformally geodesic, that is, they are geodesics of a
manifold with metric h2gαβ [17,18,76]. This follows from
the fact that Eq. (3.15) is the Euler-Lagrange equation of
the action functional

S ¼ −
Z

τ2

τ1

hdτ ¼ −
Z

τ2

τ1

h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gαβ

dxα

dτ
dxβ

dτ

r
dτ: ð3:16Þ

The Lagrangian

Lðx; uÞ ¼ −h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gαβuαuβ

q
ð3:17Þ

is associated with the canonical momentum 1-form

p ¼ hu; ð3:18Þ

and the canonical vorticity 2-form

Ω ¼ dðhuÞ: ð3:19Þ

On shell, the condition (3.14) is satisfied, and the
Lagrangian (3.17) takes the value L ¼ −h. Carter [27]
introduced a slightly modified Lagrangian

Lðx; uÞ ¼ 1

2
hgαβuαuβ −

1

2
h; ð3:20Þ

that is associated with the same equations of motion and
has the same on-shell value, but its action is not repar-
ametrization invariant. Thus, if one wishes, for instance,
to use reparametrization invariance to replace proper time τ
by coordinate time t, in order to obtain a constrained
Hamiltonian via 3þ 1 decomposition, as done in [66], then
the action (3.16) is the appropriate starting point. If, on the
other hand, one is interested in a super-Hamiltonian that
describes the dynamics in a 4-dimensional spacetime, then
Carter’s Lagrangian (3.20) is more suitable. Substituting
the latter into the Legendre transformation (2.12) yields the
super-Hamiltonian

Hðx; pÞ ¼ 1

2h
gαβpαpβ þ

1

2
h ð3:21Þ

which vanishes on shell [when Eq. (3.14) holds].
Substituting Eqs. (3.18) and (3.21) into the Hamilton
Eq. (2.14) yields the barotropic Euler Eq. (3.15).

2. Conservation of circulation in barotropic flows

For this system, Eq. (2.18) yields a relativistic gener-
alization of Helmholtz’s vorticity conservation equation:

£u⃗dðhuÞ ¼ 0 ð3:22Þ

and the Poincaré-Cartan integral invariant (2.20)–(2.21)
gives rise a relativistic generalization of Kelvin circulation
theorem: the circulation along a fluid ring cτ dragged along
by the flow is conserved:

d
dτ

I
cτ

hu ¼ 0: ð3:23Þ

Conservation of circulation for the nonrelativistic Euler
equations was discovered by Cauchy (1815) [77,78] and
independently rediscovered by Kelvin (1869) [79]. The
extension of this theorem to relativistic barotropic fluids
was obtained by Lichnerowicz and [80] Taub [74]. The most
interesting feature of the above conservation law is that its
derivation does not depend on the spacetime metric or
spacetime symmetries. Thus, it is exact in time-dependent
spacetimes, with gravitational waves carrying energy and
angular momentum away from a system. Oscillating stars
and radiating binaries, if modeled as barotropic fluids with
no viscosity or dissipation other than gravitational waves,
exactly conserve circulation [60].

3. Fluid helicity

Since the super-Hamiltonian (3.21) is constant, the
system is uniformly canonical, and helicity is conserved.
If we substitute Eq. (3.18) into Eq. (2.38), then Eqs. (2.27)
and (2.39) imply that the fluid helicity current [27,81,82]

hfl ≔ hu⃗ · ⋆Ω ¼ hω ð3:24Þ

is conserved:

∇αðhuβ⋆ΩβαÞ ¼ ∇βðhωβÞ ¼ 0: ð3:25Þ

This implies a corresponding global conservation of the
integrated flux of hαem across a spatial hypersurface. In a
chart ft; xig, the volume integral of the time component

of h⃗fl:

htfl ≔ h⃗fl · ∇t ¼ hωt ¼ hui⋆Ωit ¼ −hωiui=ut ð3:26Þ

is the relativistic generalization of Moffat’s fluid helicity
[32,71,72]. The last equality follows from Eq. (2.28). If the
vorticity ωi has sufficient decay, then the total volume
integral of the above quantity is conserved by the flow.
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4. Killing vector fields and Bernoulli’s law

If there exists a vector field kαðxÞ, that generates a family
of diffeomorphisms (2.40) leaving the Langrangian (3.17)
unchanged, then Noether’s theorem implies the existence of
a streamline invariant linear in the momenta, given by
Eq. (2.42) (with K set to zero):

Eðx; pÞ ¼ kαpα ¼ huαkα: ð3:27Þ

As stated by Eq. (2.43), this quantity is conserved along a
streamline (i.e. the trajectory of a fluid element):

dE
dτ

¼ £u⃗E ¼ u⃗ · ∇E ¼ 0: ð3:28Þ

The above statement is a generalization of Bernoulli’s law
to relativistic barotropic fluids. In light of the above, each
Bernoulli-type conservation law is Noether related to a
continuous symmetry of the flow.
Given the super-Hamiltonian (3.21), one may directly

verify when a quantity of the form (3.27) is conserved by
computing the Poisson bracket (2.45):

dE
dτ

¼ fE; Hg ¼ 1

h
pαpβ∇αkβ − kγ∇γh

¼ 1

2h
uαuβ£k⃗ðh2gαβÞ ð3:29Þ

which vanishes for all timelike streamlines if and only if

£k⃗ðh2gÞ ¼ 0: ð3:30Þ

That is, the necessary and sufficient condition for E to be a

streamline invariant is that k⃗ be a Killing vector of a
manifold with metric h2g. This result is intuitive given the
fact that, as mentioned earlier, the fluid streamlines are
geodesics of this conformal metric, cf. Eq. (3.16). We
remark that the vanishing of both £k⃗g and £k⃗h, as indicated
by the first line of Eq. (3.29), is a sufficient but not
necessary condition for E to be conserved.
When the pressure vanishes, i.e. when h ¼ 1, the

condition (3.30) reduces to the Killing equation
∇ðαkβÞ ¼ 0, which is Noether related to the existence of
conserved quantities linear in the momenta for geodesic
motion [83–85].
As an example, let us consider a helically symmetric,

rigidly rotating fluid equilibrium, such as a rigidly rotating
star (that may be triaxially deformed [86]), or a tidally
locked binary on circular orbits. The flow field may then be
written as

u⃗ ¼ utk⃗; ð3:31Þ

where

k⃗ ¼ ⃗tþ Ωφ⃗ ð3:32Þ
is a helical Killing vector field which Lie derives the metric:
£k⃗g ¼ 0. Here, Ω is the rotation frequency, ⃗t ¼ ∂t is the
generator of time translations and φ⃗ ¼ ∂φ is the generator
of rotations about the rotation axis.
Let us assume that the fluid configuration is helically

symmetric, that is, the Lie derivatives of all fluid variables
(such as ρ, h, u) along k⃗ vanish. Since, by virtue of
Eq. (3.30), the system is stationary in a rotating frame,
Noether’s theorem guarantees that the energy in a rotating
frame, given by Eq. (3.27):

E ¼ kαpα ¼ pt þ Ωpφ ð3:33Þ

is conserved along streamlines.
In general, this quantity can differ from one streamline to

the next. However, a stronger result follows from Eq. (3.31)
and the Cartan identity (2.15), which allow one to write the
Euler Eq. (3.15) as

k⃗ · dp ¼ £k⃗p − dðk⃗ · pÞ ¼ 0: ð3:34Þ

Because £k⃗p ¼ 0, the first integral (3.27) of the Euler
equation is constant throughout the fluid:

∇E ¼ 0: ð3:35Þ

This stronger conservation law is a relativistic generaliza-
tion of von Zeipel’s law [60]. The energy (3.27) is also a
first integral to the Euler equation if a helically symmetric
system is irrotational [57,87–94]. Such first integrals are
valuable for solving for obtaining fluid equilibria via the
self-consistent field method [95]. Generalizations of these
first integrals have been used to construct equilibria for
spinning [96–99] or eccentric [100,101] compact binaries
in numerical relativity.

5. Killing tensor fields and the Carter constant

Geodesic motion of test particles in Kerr (or Kerr-de
Sitter) spacetimes is known to admit a fourth constant of
motion (in addition to energy, angular momentum, and
four-velocity magnitude), known as the Carter constant,
which is quadratic in the momenta and is Noether related to
the existence of a Killing tensor field [83].
To our knowledge, the concept of a Killing tensor for

fluid flows has not been defined before, but the framework
outlined Sec. II provides the means to do so. Consider a
tensor field KαβðxÞ associated with a streamline invariant
quadratic in the momenta,

E ¼ Kαβpαpβ þ K; ð3:36Þ

where the scalar KðxÞ is a function of position. This
invariant can be considered a special case of the invariant
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(2.42) and follows from the generalized Noether theorem,
with kαðx; pÞ ¼ KαβðxÞpβ being the generator of the
symmetry transformations [102]. For the barotropic fluid
super-Hamiltonian (3.21), the Poisson bracket (2.45) is

fE; Hg ¼ ðh2∇γKαβ þ 2hgαβKγδ∇δh − gαβ∇γKÞuαuβuγ:
ð3:37Þ

The above bracket vanishes for all timelike streamlines if
and only if

h2∇ðγKαβÞ þ 2hgðαβKγÞδ∇δh − gðαβ∇γÞK ¼ 0: ð3:38Þ

That is, the quantity (3.36) is conserved along streamlines if
and only if K is a Killing tensor of the conformal
metric h2g.
In the case of a reducible Killing tensor of the form

Kαβ ¼ kαkβ, where kα is a Killing vector satisfying
Eq. (3.30), the condition (3.38) is automatically satisfied
while K again vanishes.
When the pressure vanishes, h ¼ 1, the scalar K must

vanish and the above condition reduces to the Killing
equation∇ðαKβγÞ ¼ 0, which is the necessary and sufficient
condition Kαβpαpβ being conserved along a geodesic of
gαβ. This is the condition satisfied by the Killing tensor in
the Kerr spacetime, which is Noether related to the Carter
constant [83,84]. In light of this, Eqs. (3.36)–(3.38) gen-
eralize the concept of a Carter constant to test fluids in Kerr
spacetime. Note, however, that the fluid configuration must
satisfy a generalized symmetry (in particular, the Hamilton-
Jacobi equation describing the flow [66] must be separable
in Boyer-Lindquist coordinates) in order for this constant
to exist.
A geodesic flow can be described by the super-

Hamiltonian H ¼ 1
2
gαβpαpβ, with pα ¼ uα, which is con-

served by virtue of the normalization condition (3.14). This
conserved quantity arises from gαβ being covariantly
constant and thus a Killing tensor, and is Noether related
to the super-Hamiltonian being independent of the affine
parameter τ. For barotropic flow, however, gαβ is not a
Killing tensor, as it does not satisfy the condition (3.38)
except in the geodesic limit. (If gαβ were a Killing tensor,
then gαβpαpβ ¼ −h2 would be a streamline constant, but
this is not true unless h ¼ 1.) However, Kαβ ¼ gαβ=h is a
Killing tensor, since it satisfies the condition (3.38)
provided that K ¼ h. The quadratic streamline constant
(3.36) associated with this Killing tensor is simply the
super-Hamiltonian (3.21).

C. Baroclinic flows

1. Hamilton’s principle for a baroclinic-fluid element

The possibility of expressing the equations of baroclinic
(nonisentropic) fluid flows in canonical form has been

demonstrated by Carter [27]. An intuitively simple action
principle (different from but equivalent to Carter’s) may be
obtained as follows.
A free test particle of rest mass m, moving along a

geodesic of spacetime, extremizes the action S ¼
−m

R
τ2
τ1
dτ [103]. For barotropic flows, as indicated by

Eq. (3.16), the pressure force on a fluid element can be
accounted for by replacing rest mass by the specific
enthalpy hm. For baroclinic flows, in light of Eqs. (3.6),
(3.8) and (3.10), the natural generalization is to replace rest
mass in the above action by the chemical potential μ ¼ gm
or, equivalently, the specific Gibbs free energy g (the rest
mass can be dropped without affecting the equations of
motion). Upon inspection, it becomes immediately clear
that Eq. (3.13) is indeed the Euler-Lagrange equation of the
action functional

S ¼ −
Z

τ2

τ1

gdτ ¼ −
Z

λ2

λ1

�
h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gαβ

dxα

dλ
dxβ

dλ

r
− S

�
dλ

ð3:39Þ

provided that the (nonaffine) canonical time parameter

λðτÞ ≔
Z

τ
Tðτ0Þdτ0 ð3:40Þ

is used to parametrize the action. Note that entropy breaks
time-parametrization invariance: unlike the barotropic-fluid
action (3.16), the baroclinic fluid action (3.39) is not
parametrization invariant. Consequently, parameter choices
other than (3.40), such as proper time τ or coordinate time t,
lead to incorrect equations of motion. The Lagrangian

Lðx; vÞ ¼ −h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gαβvαvβ

q
þ S ð3:41Þ

is associated, by virtue of Eqs. (2.7) and (2.9b), with the
canonical velocity and canonical momentum

vα ¼ dxα

dλ
¼ 1

T
dxα

dτ
¼ 1

T
uα ð3:42aÞ

pα ¼
∂L
∂vα

¼ Thvα ¼ huα: ð3:42bÞ

On shell, by virtue of Eq. (3.14), one has vαvα ¼ −T−2 and
the Lagrangian takes the value L ¼ −g=T ¼ −h=T þ S
and, by virtue of Eq. (2.12), the super-Hamiltonian takes
the value H ¼ −S. Then, the Euler-Lagrange Eq. (2.10)
becomes

£u⃗=TðhuÞ ¼ dðS − h=TÞ ð3:43Þ

and the Hamilton Eq. (2.14) becomes
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u⃗
T
· dðhuÞ ¼ dS: ð3:44Þ

Both of these equations are equivalent expressions of the
relativistic Euler Eq. (3.13) for baroclinic fluids.
Carter [27] introduced a different Lagrangian analogous

to Eq. (3.20)

Lðx; vÞ ¼ 1

2
Thgαβvαvβ −

1

2

�
g
T
− S

�
; ð3:45Þ

that is associated with the same canonical velocity and
momentum (3.42), has the same on-shell value as our
Lagrangian (3.41), and leads to the same equation of
motion (3.43). The Legendre transformation (2.12) yields
the super-Hamiltonian

Hðx; pÞ ¼ 1

2Th
gαβpαpβ þ

h
2T

− S; ð3:46Þ

which has the same on-shell value and leads to the
canonical equation of motion (3.44).

2. Conservation of circulation in baroclinic flows

The canonical momentum and canonical vorticity are
given by the same expressions (3.18) and (3.19) as for
barotropic flows. However, the vorticity is no longer Lie
dragged by the fluid four-velocity u⃗: the exterior derivative
of Eq. (3.13) reads

£u⃗dðhuÞ ¼ dT ∧ dS: ð3:47Þ
Thus, the circulation around a fluid ring cτ ¼ ΨτðcÞ
dragged along by the flow (where Ψτ is the family of
diffeomorphisms generated by fluid four-velocity u⃗) is not
generally conserved:

d
dτ

I
cτ

hu ¼ d
dτ

Z
Sτ

dðhuÞ

¼
Z
S
£u⃗dðhuÞ ¼

Z
S
dT ∧ dS: ð3:48Þ

Hence, Kelvin’s theorem has been commonly thought to
not hold for baroclinic flows, except in a weaker form: the
circulation computed initially along a fluid ring of constant
temperature or specific entropy is conserved [32,104].
In lieu of a conserved circulation law, one may introduce

the potential vorticity, defined in general relativity by
selecting the scalar field in Eq. (2.34), or the negative
Hamiltonian in Eq. (2.36), to coincide with specific entropy
S (i.e. setting l ¼ dS), to obtain a flux conservation law of
the form (3.49):

∇αð∇βS⋆ΩβαÞ ¼ 0: ð3:49Þ
Using the continuity equation, this law can also be written
in terms of a Lie derivative along fluid velocity and, as

mentioned earlier, it is the relativistic generalization of
Ertel’s theorem obtained by Friedman [104] (see also
Katz [105]).
Here, we take a different route, and show that Carter’s

framework [106] implies the existence of a strong circu-
lation law. We have just shown above that an inviscid
baroclinic fluid is a Hamiltonian system and, as such, must
possess a Poincaré-Cartan integral invariant. Indeed, the
exterior derivative of Eq. (3.43) implies that the canonical
vorticity (3.19) is Lie-dragged by the canonical fluid
velocity (2.7):

£u⃗=TdðhuÞ ¼ 0 ð3:50Þ

as dictated by Eq. (2.18). Hence, the circulation around a
fluid ring cλ ¼ ΨλðcÞ, obtained by moving each point of c a
canonical time λ [cf. Eq. (3.40)] along the flow through that
point, is indeed conserved:

d
dλ

I
cλ

hu ¼ d
dλ

Z
Sλ

dðhuÞ ¼
Z
S
£u⃗=TdðhuÞ ¼ 0 ð3:51Þ

as dictated by Eqs. (2.20)–(2.21). Here, the circulation can
be initially computed along an arbitrary fluid ring c. Thus,
unlike the previous weak form, this circulation theorem is a
strong form of Kelvin’s theorem, applicable to baroclinic
fluids.
It will be shown below that this circulation theorem can

be further extended to barotropic or baroclinic, perfectly or
poorly conducting, magnetofluids. These (new and old)
circulation theorems are again special cases of the
Poincaré-Cartan integral invariant (2.20). The fluid helicity,
on the other hand, is not conserved for baroclinic fluids, as
these systems are not uniformly canonical.

D. Ideal magnetoflows

1. Maxwell equations

Consider an electromagnetic field in M, described by
the electromagnetic 2-form F, known as the Faraday
tensor, satisfying the Maxwell equations which, in natural
Heaviside-Lorentz units, read ∇αð⋆FαβÞ ¼ 0, ∇αFαβ ¼
Jβ or

dF ¼ 0 ð3:52aÞ

d⋆F ¼ ⋆J; ð3:52bÞ

where ⋆F is the 2-form Hodge dual of F, namely
⋆Fαβ ≔ 1

2
ϵαβγδFγδ, and ⋆J is the 3-form Hodge dual of

the 1-form J associated with the electric 4-current J⃗,
namely ⋆Jαβγ ≔ ϵαβγδJδ.
The electric 4-current may be decomposed as J⃗ ¼ eu⃗þ ⃗j

where e ¼ −u · J⃗ is the proper charge density, eu⃗ is the
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convection current and ⃗j is the conduction current, satisfy-
ing u · ⃗j ¼ 0. For an isotropically conducting medium,
Ohm’s law can be written as

j ¼ σE ð3:53Þ

where σ is the conductivity of the medium and E is the
electric field measured by an observer comoving with the
fluid, given by Eq. (3.60) below. In the perfect conductivity
limit, σ → ∞, the electric field vanishes,E → 0. In the poor
conductivity limit, σ → 0, the conduction current van-
ishes, j → 0.

2. Magnetohydrodynamic Euler equation

The relativistic MHD-Euler equation can be obtained
from the conservation law of energy-momentum,

∇ · ðTfl þ TemÞ ¼ 0; ð3:54Þ

where Tem is the energy-momentum tensor of the electro-
magnetic field:

Tem
αβ ¼ FγαF

γ
β −

1

4
FγδFγδgαβ: ð3:55Þ

This tensor is trace-free: gαβTem
αβ ¼ 0. Taking the divergence

of Eq. (3.55) and using the Maxwell Eqs. (3.52), one
obtains the well-known relation

∇ · Tem ¼ −F · J⃗: ð3:56Þ

Substituting Eqs. (3.11) and (3.56) into the conservation
law (3.54) yields the MHD-Euler equation for baroclinic
magnetofluids:

u⃗ · dðhuÞ ¼ TdSþ 1

ρ
F · J⃗: ð3:57Þ

As shown in Ref. [57], the specific form (3.57) is
well adapted to the cases where the spacetime exhibits
some symmetries. Projecting the MHD-Euler equation
along u⃗ yields T£u⃗S ¼ 1

ρE · J⃗. The right-hand side of
this equation, which represents Joule heating, vanishes in
the limit of perfect conductivity, whence the flow is
adiabatic:

£u⃗S ¼ u⃗ · ∇S ¼ 0: ð3:58Þ

For barotropic magnetofluids, the above equation simpli-
fies to

u⃗ · dðhuÞ ¼ 1

ρ
F · J⃗: ð3:59Þ

In the absence of pressure and currents (h → 1 and J → 0),
this equation reduces to the geodesic equation, u⃗ · du ¼ 0,
as expected.

3. Perfectly conducting magnetoflows

The electric field 1-form E and the magnetic field vector
B⃗ measured in the fluid rest frame, by an observer of
4-velocity u⃗, are given in terms of F by

E ¼ −u⃗ · F; B ¼ u⃗ · ⋆F ð3:60Þ

and satisfy

E · u⃗ ¼ 0; B · u⃗ ¼ 0: ð3:61Þ

Equivalently, we can decompose F into electric and
magnetic parts with respect to the rest frame defined by
the vector u⃗, as

F ¼ u ∧ Eþ ⋆ðu ∧ BÞ ð3:62aÞ

⋆F ¼ ⋆ðu ∧ EÞ − u ∧ B: ð3:62bÞ

The scalar invariants of the field are given by

1

2
FαβFαβ ¼ B⃗ · B − E⃗ · E ð3:63Þ

1

2
ð⋆FαβÞFαβ ¼ B⃗ · E: ð3:64Þ

In ideal MHD, one assumes that the fluid occupying the
part D ⊂ M of spacetime is a perfect conductor. By this,
we mean that the observers comoving with the fluid
measure a vanishing electric field. By virtue of Ohm’s
law (3.53), this expresses the infinite conductivity con-
dition. From (3.60), this condition amounts to

E ¼ F · u⃗ ¼ 0: ð3:65Þ

The electromagnetic field then reduces to

F ¼ ⋆ðu ∧ BÞ ð3:66aÞ

⋆F ¼ −u ∧ B ð3:66bÞ

and the Maxwell Eq. (3.52) simplifies to

d⋆ðu ∧ BÞ ¼ 0 ⇔ ∇αðuαBβ − uβBαÞ ¼ 0: ð3:67Þ

This equation is a special case of Eq. (2.37), for reasons that
will become clear below. In ideal MHD, one only has to
evolve the magnetic field Eq. (3.67). The current has no
dynamical degrees of freedom and is merely defined in
terms of the magnetic field via Eq. (3.66a) and the Maxwell
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Eq. (3.52b). One then evolves the MHD-Euler Eq. (3.57)
after evaluating the Lorentz force term in its right-
hand side.
Alternatively, by writing F in terms of the electromag-

netic potential 1-form A,

F ¼ dA; ð3:68Þ

one automatically satisfies the Maxwell Eq. (3.52). The
perfect conductivity condition (3.65) is then used to evolve
the electromagnetic potential [107,108]:

u · dA ¼ 0 ⇔ uαð∇αAβ −∇βAαÞ ¼ 0: ð3:69Þ

In 3þ 1 dimensions, Eq. (3.67) is the curl of Eq. (3.69), as
shown in Sec. III D 11.

4. Action of a magnetic field frozen
into the flow

A magnetic field frozen into the fluid, as defined by the
perfect conductivity condition (3.65), is characterized by
the action functional

S ¼
Z

τ2

τ1

Aα
dxα

dτ
dτ ð3:70Þ

where the electromagnetic potential A is considered a
function of x only. From the Lagrangian [27]

Lðx; uÞ ¼ uαAα ð3:71Þ

we finds that the canonical momentum 1-form (2.9b) is the
electromagnetic potential

pα ¼
∂L
∂uα

¼ Aα ð3:72Þ

and the canonical vorticity 2-form (2.17) is simply the
Faraday tensor

F ¼ dA: ð3:73Þ

Because the super-Hamiltonian (2.12) vanishes,

H ¼ 0; ð3:74Þ

the canonical equation of motion (2.14) takes the form of
the perfect conductivity condition (3.69).

5. Alfvén’s theorem: Conservation of magnetic flux

If we express the Lie derivative of F along u⃗ via the
Cartan identity,

£u⃗F ¼ u⃗ · dFþ dðu⃗ · FÞ; ð3:75Þ

and take into account the Maxwell Eq. (3.52a) and the
perfect conductivity condition (3.65), we get

£u⃗F ¼ 0: ð3:76Þ

This result, which also follows from Eq. (2.18), is the
geometrical expression of Alfvén’s magnetic flux theorem:
the magnetic flux through a fluid ring cτ dragged along by
the flow is conserved

d
dτ

I
cτ

A ¼ d
dτ

Z
Sτ

F ¼
Z
S
£u⃗F ¼ 0: ð3:77Þ

This follows directly from Eq. (2.21) for the Lagrangian
(3.71) and is therefore simply a special case of the Poincaré-
Cartan integral invariant (2.20). Intuitively, Alfvén’s theorem
is a consequence of perfect conductivity. If one attempts to
change themagnetic field and thus the magnetic flux through
the ring cτ of fluid, then, in accordance with Lenz’s law,
induced currents will generate a compensatory magnetic
field in an attempt to cancel the change of flux. In the limit of
perfect conductivity, this cancellation is perfect and the flux
is exactly conserved.

6. Magnetic helicity

Since the super-Hamiltonian (3.74) is constant, the
system is uniformly canonical, and the magnetic helicity,

hem ≔ A⃗ · ⋆F; ð3:78Þ

obtained by substituting Eqs. (3.72) and (3.73) into (2.38),
is conserved

∇αhαem ¼ 0 ð3:79Þ

by virtue of Eq. (2.39). This implies a corresponding global
conservation of the integrated flux of hαem across a spatial
hypersurface, which amounts to the relativistic generaliza-
tion of Woltjer’s magnetic helicity [32,70,72].

7. Einstein-Maxwell-Euler spacetimes

The classical action describing an Einstein-Maxwell-
Euler spacetime ðM; gÞ, coupled with a perfect fluid
carrying an electric current, is given by [60]

A ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−ϵþ 1

16π
R −

1

4
FαβFαβ þ AαJα

�
;

ð3:80Þ

where R is the Ricci scalar. By writing F in terms of a
1-form potential A, Eq. (3.68), one satisfies the Maxwell
Eq. (3.52). Varying the action with respect to the metric g
yields the Einstein equations, varying with respect to
the electromagnetic 4-potential A yields the Maxwell
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Eq. (3.52b), and varying with respect to the fluid variables
yields the MHD Euler Eq. (3.57).
Instead of imposing the perfect MHD condition after

varying the action, one may incorporate it into the action.
This can be done by replacing the action (3.80) with

A ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−ϵþ 1

16π
R −

1

2
BαBα

þ aα∇βðBαuβ − BβuαÞ
�

ð3:81Þ

where the 1-form a is a Lagrange multiplier used to enforce
the flux freezing condition (3.67). In writing the action
functional above, we have taken into account Eq. (3.63) in
order to evaluate the magnetic energy term. This action
functional differs by a surface term from that of
Bekenstein-Oron [29] which, in our notation, reads

A ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−ϵþ 1

16π
R −

1

2
BαBα þ bαFαβuβ

�
:

Here, the Lagrange multiplier b is used to enforce the
perfect conductivity condition (3.65) and is shown to be
the curl of a as indicated by Eq. (3.85) below. Our action
(3.81) closely resembles the nonrelativistic action of
Bekenstein-Oron [29], which is a more natural starting
point and simplifies the discussion below. Variation of
the action (3.81) with respect to the multiplier a yields
the Maxwell Eq. (3.67), while variation with respect to the
magnetic field B and integration by parts yields the
equation

u⃗ · da ¼ −B: ð3:82Þ

The multiplier a may thus be thought of as an auxiliary
field, with B the electric part of the 2-form

f ¼ da ð3:83Þ

[compare Eq. (3.82) with (3.60)]. Note that the above
equation automatically satisfies the orthogonality condition
(3.61). Comparing Eqs. (3.82) and (3.60), we infer that the
Faraday tensor F must be related to the 2-form f via a
relation ⋆F ¼ −f þ w where w is some 2-form satisfying
u⃗ · w ¼ 0. Since w has no electric part, it can be written in
terms of its magnetic part, b ¼ u⃗ · ⋆w, as w ¼ ⋆ðu ∧ bÞ.
Taking Eq. (3.66b) into account, we infer that

f ¼ ⋆ð−Fþ u ∧ bÞ ¼ u ∧ Bþ ⋆ðu ∧ bÞ: ð3:84Þ

That is, the 2-form (3.83) has an electric part given by
Eq. (3.82) and a magnetic part given by the 1-form

b ¼ u · ⋆da: ð3:85Þ

As pointed out by Bekenstein and Oron [29], the theory has
a Uð1Þ × Uð1Þ symmetry, since the observable field B
remains invariant under gauge transformations A → Aþ
dΛ and a → aþ dλ.
Taking the exterior derivative of Eq. (3.84) yields the

Maxwell Eq. (3.52b), with the Faraday tensor given by
Eq. (3.66a) and the current “defined” by

Jα ¼ ∇βðuαbβ − uβbαÞ ð3:86Þ

or

J ¼ ⋆d⋆ðu ∧ bÞ: ð3:87Þ

This expression has been obtained in [29] via a lengthy
route and will be referred to as the Bekenstein-Oron
current. Note that the above expression automatically
satisfies the continuity equation

∇ · J⃗ ¼ −⋆d⋆J ¼ 0 ð3:88Þ

regardless of any assumption about u and b. Physically,
the above equation expresses the conservation of electric
charge. The operator ⋆d⋆ is the codifferential and has been
expressed as the divergence taken with the ∇ connection.
For convenience, let us introduce an auxiliary vector q⃗ and
an auxiliary 1-form η defined by

qα ≔ bα=ρ; ηα ≔ Fαβqβ

or

q⃗ ≔ b⃗=ρ; η ≔ F · q⃗: ð3:89Þ

One may then use the continuity Eq. (3.12) to write the
Bekenstein-Oron current (3.87) as

J⃗ ¼ £q⃗ðρu⃗Þ þ ρu⃗ð∇ · q⃗Þ: ð3:90Þ

This expression can be used to write the Lorentz force term
in (3.104b) as

1

ρ
F · J⃗ ¼ 1

ρ
F · £q⃗ðρu⃗Þ ¼ −u⃗ · dη: ð3:91Þ

The last equality follows from projecting the Cartan
identity, £q⃗F ¼ q⃗ · dFþ dðq⃗ · FÞ, along the vector ρu⃗
and using Eq. (3.65). By virtue of the above equality,
the MHD-Euler Eq. (3.57) takes the canonical form

£u⃗ðhuþ ηÞ þ dh ¼ u⃗ · dðhuþ ηÞ ¼ TdS ð3:92Þ

which is valid for baroclinic magnetofluids. For barotropic
magnetofluids, the above equation simplifies to
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£u⃗ðhuþ ηÞ þ dh ¼ u⃗ · dðhuþ ηÞ ¼ 0: ð3:93Þ

The last equality was obtained by Bekenstein et al. [29,31].
The tensor or vector calculus-based derivations in

Ref. [29,31] did not clarify the generality of this approach.
In particular, one may question whether the Bekenstein-
Oron ansatz (3.87) for the current is generic enough to
accommodate any given ideal MHD flow. This question
boils down to whether Eq. (3.82) can be solved for any
given magnetofluid configuration with magnetic field B
and 4-velocity u⃗. The answer may be obtained by using the
Cartan identity to write Eq. (3.82) as £u⃗a − dðu⃗ · aÞ ¼ −B
and using the gauge freedom in a to set u⃗ · a ¼ 0 (this
gauge condition can be shown to be preserved by the flow if
satisfied initially). The resulting differential equation,
£u⃗a ¼ −B, is always solvable along the integral curves
of u⃗. We have thus shown that no loss of generality is
entailed in the Bekenstein-Oron description of ideal MHD
flows. For perfectly conductingmagnetofluids, the Einstein-
Maxwell-Euler action (3.80) may always be replaced by the
action (3.81), and theMHD-Euler Eq. (3.57) may always be
replaced by Eq. (3.92).

8. Hamilton’s principle for a barotropic
magnetofluid element

Carter [27] has allowed the possibility that the perfect
fluid be charged. His approach is valid for poorly con-
ducting fluids, but has been considered inapplicable to
conducting magnetofluids [30]. Nevertheless, it is shown
below that Carter’s framework can in fact accommodate
perfectly conducting fluids in the context of Bekenstein-
Oron magnetohydrodynamics. For a barotropic, perfectly
conducting magnetofluid, we generalize the action (3.16)
as follows:

S ¼
Z

τ2

τ1

�
−h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gαβ

dxα

dτ
dxβ

dτ

r
þ ηα

dxα

dτ

�
dτ ð3:94Þ

with Lagrangian

Lðx; uÞ ¼ −h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gαβuαuβ

q
þ ηαuα ð3:95Þ

and with η given by Eq. (3.89). The canonical velocity and
momentum of a magnetofluid element are given by

uα ¼ dxα

dτ
ð3:96aÞ

pα ¼
∂L
∂uα

¼ huα þ ηα: ð3:96bÞ

Alternatively, one may introduce a Lagrangian which
generalizes that of Carter, Eq. (3.20):

Lðx; uÞ ¼ 1

2
hgαβuαuβ −

1

2
hþ ηαuα: ð3:97Þ

The associated Hamiltonian,

Hðx; πÞ ¼ 1

2h
gαβðpα − ηαÞðpβ − ηβÞ þ

1

2
h; ð3:98Þ

vanishes on shell, so the Hamilton Eq. (2.14) yields
the MHD-Euler equation in the Bekenstein-Oron form,
Eq. (3.93).

9. Conservation of circulation in
barotropic magnetoflows

The canonical momentum 1-form of a barotropic ideal
magnetofluid element is given by Eq. (3.96b). Then, the
Poincaré 2-form (2.17) amounts to the canonical vorticity
2-form:

Ω ¼ dðhuþ ηÞ: ð3:99Þ

Then, the Cartan identity, combined with Eq. (3.92) and the
identity d2 ¼ 0, yields

£u⃗Ω ¼ 0: ð3:100Þ

This equation implies that the canonical vorticity of a
barotropic, perfectly conducting magnetofluid is preserved
by the flow. This leads to a generalization of Kelvin’s
theorem to magnetized fluids.
Indeed, for the system (3.94), the Poincaré-Cartan

theorem (2.21) implies that the circulation through a ring
cτ dragged along by the flow is conserved:

d
dτ

I
cτ

ðhuþ ηÞ ¼ 0: ð3:101Þ

This law follows directly from Eq. (3.100) and was first
obtained by Bekenstein and Oron [29,30]. It is a gener-
alization of the relativistic Kelvin circulation theorem
(3.48) (which is recovered in the nonmagnetic limit
η ¼ 0) to ideal MHD. The most interesting feature of this
conservation law is that it is exact in time-dependent
spacetimes, with gravitational and electromagnetic waves
carrying energy and angular momentum away from a
system. In particular, oscillating stars and radiating bina-
ries, if modeled as barotropic magnetofluids with no
viscosity, resistivity or other dissipation, exactly conserve
circulation.

10. Ideal magnetofluid helicity

Since the super-Hamiltonian (3.98) is constant (zero), the
system is uniformly canonical, and helicity is conserved:
Substituting Eq. (3.96b) into Eq. (2.38) yields the magneto-
lfuid helicity
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hmfl ≔ ðhu⃗þ ηÞ · ⋆Ω ð3:102Þ

which, by virtue of Eq. (2.39), is conserved:

∇α½ðhuβ þ ηαÞ⋆Ωβα� ¼ 0: ð3:103Þ

This implies a corresponding global conservation of the
integrated flux of hαmfl across a spatial hypersurface. One
may proceed analogously to Eq. (3.26) to obtain a con-
served volume integral, which amounts to the generaliza-
tion of Moffat’s fluid helicity [32,71,72] to ideal GRMHD.

11. A canonical evolution scheme for ideal MHD

In binary neutron-star inspiral, the temperature is
much lower than the Fermi temperature, and heat con-
duction, viscosity and resistivity can be neglected [60]. The
fluid may then be approximated as barotropic, adiabatic,
inviscid and perfectly conducting. In general relativity,
such fluids are described by the ideal MHD Eqs. (3.69)
and (3.59):

uαð∇αAβ −∇βAαÞ ¼ 0 ð3:104aÞ

uα½∇αðhuβÞ −∇βðhuαÞ� ¼
1

ρ
FβαJα; ð3:104bÞ

coupled to the continuity Eq. (3.12). One can evolve
Eq. (3.69) for the electromagnetic potential and compute
the Faraday tensor via Eq. (3.68). In ideal MHD, as
mentioned earlier, the current lacks dynamical degrees of
freedom and is merely defined in terms of the electromag-
netic potential via the Maxwell Eq. (3.52b). One then
evolves the MHD-Euler Eq. (3.104b) after evaluating the
Lorentz force term in its right-hand side.
In a chart ft; xig, the above system can be written in

3þ 1 hyperbolic form4 as

∂tAi − ∂iAt þ υjð∂jAi − ∂iAjÞ ¼ 0 ð3:105aÞ

∂tπi − ∂iπt þ υjð∂jπi − ∂iπjÞ ¼ fi ð3:105bÞ

where υi ¼ ui=ut ¼ dxi=dt is the fluid velocity measured
in local coordinates, πα ¼ huα denotes a (noncanonical)
momentum 1-form and fα ¼ ðρutÞ−1FαβJβ denotes the
Lorentz force per particle. The curl of the evolution
Eq. (3.105a) is an evolution equation for the magnetic
field. In particular, the exterior derivatives of the system
(3.105) yield an evolution system for the spatial parts of the
2-forms F ¼ dA and W ¼ dπ. In flux-conservative form,
this system reads:

∂tFjk þ ∂iðδiljkυmFmlÞ ¼ 0 ð3:106aÞ

∂tWjk þ ∂i½δiljkðυmWml − flÞ� ¼ 0 ð3:106bÞ

where δiljk ¼ ϵjknϵ
iln ¼ δijδ

l
k − δikδ

l
j is the generalized

Kronecker delta. Eq. (3.106a) is an evolution equation,
equivalent5 to Eq. (3.67), for the magnetic field. Numerical
evolution of the latter typically requires techniques such as
hyperbolic divergence cleaning or constrained transport to
avoid error accumulation from a finite magnetic divergence
[109]. Such numerical schemes can also be applied to
evolving the system (3.106) [as well as the system (3.110)
below]. Etienne et al. [107,108] have performed GRMHD
simulations that directly evolve the electromagnetic poten-
tial A by means of Eq. (3.105a) [or Eq. (3.109a)]. The
magnetic field is then computed from the curl of the vector
potential and has zero divergence by construction. This
numerical scheme can also be applied to evolving the
system (3.109) below, which is based on the Bekenstein-
Oron formulation.
Equations (3.104)–(3.106) constitute the usual formu-

lation of ideal MHD for barotropic magnetofluids. As
shown earlier, the Bekenstein-Oron description of ideal
MHD allows one to replace the MHD-Euler Eq. (3.59) by
the system of Eqs. (3.82) and (3.93), namely

uαð∇αAβ −∇βAαÞ ¼ 0 ð3:107aÞ

uαð∇αaβ −∇βaαÞ ¼ −Bβ ð3:107bÞ

uαð∇αpβ −∇βpαÞ ¼ 0 ð3:107cÞ

where

p ¼ huþ η ð3:108Þ

is the canonical momentum 1-form of a magnetofluid
element, as shown in the next section.
In a chart ft; xig, the above system can be written in

3þ 1 canonical hyperbolic form as

∂tAi − ∂iAt þ υjð∂jAi − ∂iAjÞ ¼ 0 ð3:109aÞ

∂tai − ∂iat þ υjð∂jai − ∂iajÞ ¼ −Bi ð3:109bÞ

∂tpi − ∂ipt þ υjð∂jpi − ∂ipjÞ ¼ 0. ð3:109cÞ

This system may be evolved analogously to the system
(3.104). One evolves the first equation for A and computes
the magnetic field B ¼ u⃗ · ⋆dA. With this source, one
evolves the second equation for a and computes the

4The four-momenta fAt; Aig and fπt; πig can be expressed in
terms of quantities normal or tangent to a t ¼ constant hyper-
surface in a manner described in Ref. [66].

5Unlike Eq. (3.67) which contains the metric and its con-
nection, Eq. (3.106a) contains no such dependence, yet both
equations are equivalent and exact in curved spacetime.
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auxiliary field b ¼ u⃗ · ⋆da. Finally, one solves the last
equation of the above system, taking Eqs. (3.89) and
(3.108) into account, to evolve the hydromagnetic flow.
The spatial exterior derivatives of the system (3.109)

yield an evolution system for the spatial parts of the 2-
forms (3.73), (3.83) and (3.99). In flux-conservative form,
this system reads

∂tFjk þ ∂iðδiljkυmFmlÞ ¼ 0 ð3:110aÞ

∂tfjk þ ∂i½δiljkðυmfml þ BlÞ� ¼ 0 ð3:110bÞ

∂tΩjk þ ∂iðδiljkυmΩmlÞ ¼ 0. ð3:110cÞ

As mentioned above, the numerical schemes developed for
the systems (3.105) or (3.106) can also be applied to
evolving the systems (3.109) or (3.110). Note that these
systems were obtained from equations involving only
exterior derivatives, and thus do not involve the spacetime
metric or its connection. Thus, these systems are indepen-
dent of gravity theory and they can be shown to be valid as
written6 even in the Newtonian limit. This is generally true
for equations of motion written in Euler-Lagrange or in
Hamiltonian form, cf. [66] for details. For nonmagnetic
fluids, Eq. (3.109c) was obtained from a 3þ 1 constrained
Hamiltonian formulation of the Euler equation in Ref. [66],
where it was shown to be strongly hyperbolic. Other
strongly hyperbolic formulations of the relativistic Euler
equation include the Valencia formulation [11] and the
symmetric hyperbolic Fraudendiner-Walton formulation
[110–113]. The hyperbolicity of the evolution system
(3.109) is the subject of future work. A notable feature
of the canonical evolution system (3.107) is that it
manifestly preserves magnetic flux and circulation, owing
to its symplecic structure. Equation (3.109a) can also be
obtained from a constrained Hamiltonian. Symplectic
evolution schemes based on the Hamiltonians of
Eqs. (3.109a) and (3.109c) are expected to numerically
preserve such properties. Moreover, if the system admits a
Noether symmetry, this canonical form quickly gives rise to
first integrals as discussed below.

12. Magnetars with helical symmetry

As an example, let us consider a helically symmetric
rigidly rotating system, such as a rigidly rotating magnetar
triaxially deformed by its off-axis frozen magnetic field.
The flow field may then be written in the form of Eq. (3.31).
Let us assume that all observable fields (such as h, u, B,
F, g) are helically symmetric, that is, their Lie derivatives

along the helical Killing vector k⃗, given by Eq. (3.32),
vanish.
Using gauge freedom, one can always find a gauge class

for which the electromagnetic potential A inherits the
Killing symmetries of F ¼ dA [57,114–116]. Then, using
Eq. (3.31) and the Cartan identity, £k⃗A ¼ k⃗ · dAþ
dðk⃗ · AÞ ¼ 0, we find that Eq. (3.107a) has the first integral

A · k⃗ ¼ At þ ΩAφ ¼ constant: ð3:111Þ

Similarly, using £k⃗a ¼ k⃗ · daþ dðk⃗ · aÞ and imposing the

gauge condition k⃗ · a ¼ 0 allows one to write Eq. (3.107b)
as £k⃗a ¼ −B=ut. This equation has the simple solution

a ¼ −Bt=ut; ð3:112Þ

where the scalar field t satisfies tα∇αt ¼ 1, so that
£k⃗t ¼ ð∂t þ Ω∂φÞt ¼ 1. Note that the auxiliary fields a
and b ¼ u⃗ · ⋆da are not observable and need not satisfy
helical symmetry (cf. Appendix B). Finally, Eq. (3.31) and
the Cartan identity allow one to write Eq. (3.107c) in the
form of Eq. (3.34), which has the first integral

p · k⃗þ f ¼ −h=ut þ f ¼ constant: ð3:113Þ

The first integrals (3.111) and (3.113) are consequences of
stationarity in an inertial (Ω ¼ 0) or rotating (Ω > 0) frame
and, like Eq. (3.35), can be considered generalizations of
von Zeipel’s law to relativistic magnetoflows. The scalar f
is such that df ¼ −£k⃗p or, by virtue of Eq. (3.108),

df ¼ −£k⃗η: ð3:114Þ

The right-hand side of this equation is proportional to the
Lorentz force. One way to see this is to act with £k on
Eq. (3.89),7

η ¼ dA · b⃗=ρ ¼ ðB2=ρÞu − da · B⃗=ρ; ð3:115Þ

and use Eq. (3.112), yielding

£k⃗η ¼ dðB=utÞ · B⃗=ρ: ð3:116Þ

Equation (3.114) then implies that the Lorentz force
must be the gradient of a scalar potential f in order for
helically symmetric corotating configurations solutions to
exist. This equation is subject to the integrability condition

d£k⃗η ¼ −d2f ¼ 0; ð3:117Þ
6With −pt replaced by the constrained Hamiltonian Hðpi; xjÞ,

and similarly for −At and −at, Eqs. (3.109) are formally valid in
both 3þ 1 general relativity and in Newtonian gravity [66].

7Note that, on shell, the fields η, A and b⃗ are independent of u⃗,
whereas B⃗ depends on u⃗ via Eq. (3.60).
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which constitutes a restriction on the magnetic field B on
which η depends. By virtue of Eq. (3.116), the above
condition becomes

dðB=utÞ ∧ dðB=ρÞ ¼ 0: ð3:118Þ

For corotating helically symmetric magnetoflows, the
system of nonlinear partial differential Eq. (3.107) has
been reduced to the system of algebraic Eqs. (3.111)–
(3.113) and the partial differential Eq. (3.114). The
Newtonian analogue of Eq. (3.117) has been considered
in Ref. [117]. A full description of a triaxial magnetar
requires specifying boundary (or junction) conditions at the
stellar surface for the electromagnetic field, as well as an
induced surface current (associated with the fact that the
condition (3.111) applies inside the star but not in the
vacuum outside the surface). This is beyond the scope of
this paper and a subject of future work.

13. Hamilton’s principle for a baroclinic
magnetofluid element

For a baroclinic, perfectly conducting magnetofluid, we
consider the action

S ¼
Z

λ2

λ1

�
−h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gαβ

dxα

dλ
dxβ

dλ

r
þ ηα

dxα

dλ
þ S

�
dλ ð3:119Þ

with η given by Eq. (3.89). Like its nonmagnetic limit
(3.39), the above functional is parametrized in terms of
canonical time λ, cf. Eq. (3.40). The Lagrangian of a
magnetofluid element

Lðx; vÞ ¼ −h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gαβvαvβ

q
þ ηαvα þ S ð3:120Þ

is associated with a canonical velocity and canonical
momentum

vα ¼ dxα

dλ
¼ 1

T
dxα

dτ
¼ 1

T
uα ð3:121aÞ

pα ¼
∂L
∂vα

¼ Thvα þ ηα ¼ huα þ ηα: ð3:121bÞ

On-shell, by virtue of Eqs. (3.14), (3.65) and (3.89), the
Lagrangian takes the value L ¼ −g=T ¼ −h=T þ S and,
by virtue of Eq. (2.12), the super-Hamiltonian takes
the value H ¼ −S. The Euler-Lagrange Eq. (2.10) thus
becomes

£u⃗=Tðhuþ ηÞ ¼ dðS − h=TÞ ð3:122Þ

and the Hamilton Eq. (2.14) becomes

u⃗
T
· dðhuþ ηÞ ¼ dS: ð3:123Þ

These equations are related via the Cartan identity and are
equivalent expressions of the MHD-Euler Eq. (3.92).
Alternatively, one may generalize Carter’s Lagrangian

(3.45) to perfectly conducting baroclinic magnetofluids: the
resulting Lagrangian

Lðx; vÞ ¼ 1

2
Thgαβvαvβ þ ηαvα −

1

2

�
g
T
− S

�
ð3:124Þ

is associated with the same canonical velocity and
momentum (3.96) and leads also to the equation of motion
(3.122). The Legendre transformation (2.12) yields the
super-Hamiltonian

Hðx; pÞ ¼ 1

2Th
gαβðpα − ηαÞðpβ − ηβÞ þ

h
2T

− S; ð3:125Þ

which leads to the canonical equation of motion (3.123).
Note that the 1-form η, defined by Eq. (3.89) or (3.115), is
consider independent of the four-velocity u⃗.

14. Conservation of circulation in
baroclinic magnetoflows

Like their nonmagnetic counterparts, baroclinic magne-
toflows do not Lie drag the vorticity (3.99): the exterior
derivative of Eq. (3.92) reads

£u⃗dðhuþ ηÞ ¼ dT ∧ dS: ð3:126Þ

Thus, as in Eq. (3.48), the circulation around a magneto-
fluid ring dragged along by the flow is not generally
conserved, except in a weak sense, i.e. for rings of constant
specific entropy or temperature.
Nevertheless, like their nonmagnetic counterparts, ideal

baroclinic magnetoflows are Lie dragged by the canonical
fluid velocity (3.96a):

£u⃗=Tdðhuþ ηÞ ¼ 0 ð3:127Þ

as dictated by Eq. (3.122), and this leads to a strong
conservation law. In particular, the circulation around a
magnetofluid ring cλ ¼ ΨλðcÞ, obtained by moving each
point of c a thermal time λ [cf. Eq. (3.40)] along the flow
through that point, is indeed conserved:

d
dλ

I
cλ

huþ η ¼ d
dλ

Z
Sλ

dðhuþ ηÞ

¼
Z
S
£u⃗=Tdðhuþ ηÞ ¼ 0. ð3:128Þ

Here, the circulation can be initially computed along an
arbitrary fluid ring c. This conservation of circulation law
generalizes the Bekenstein-Oron law (3.101) to baroclinic
magnetofluids. The conserved circulation is the Poincaré-
Cartan integral invariant of the Hamiltonian system
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described by the action (3.119). Although it has not
appeared in the literature before, it is a special case of
Eqs. (2.20) and (2.21), like all circulation integrals pre-
sented earlier.
A very similar conservation of circulation law can be

obtained for a poorly conducting fluid, simply by replacing
ηα with eAα, where e is the net charge per fluid element, in
the action (3.119) and all equations that follow from it
(cf. [27] for poorly conducting barotropic fluids). Although
conservation of circulation holds in the limits of infinite or
zero conductivity, we have not been able to obtain such a
law for finite conductivity. This may be attributed to the fact
that, for finite conductivity, the MHD-Euler Eq. (3.57) does
not follow from a Hamiltonian and, equivalently, does not
possess a Poincaré-Cartan integral invariant.

E. The geometry of barotropic flows

1. Hydrodynamic flows as geodesics in a Riemann space

In Riemann geometry, the line element is given by the
quadratic expression

dS2 ¼ −γαβðxÞdxαdxβ: ð3:129Þ

where γαβðxÞ is a Lorentzian metric on a Riemannian
manifoldM. The distance between two points (or events) 1
and 2 is then given by the integral

S ¼ −
Z

2

1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−γαβðxÞdxαdxβ

q
¼ −

Z
τ2

τ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−γαβðxÞ_xα _xβ

q
dτ

ð3:130Þ

where _xα ¼ dxα=dτ is the velocity. This functional is
independent of the parameter τ.
It was demonstrated above that if a perfect fluid is

barotropic, then the motion of a fluid element is confor-
mally geodesic. In particular, Synge [17] and Lichnerowicz
[18] have shown that the motions of fluid elements in a
barotropic fluid are geodesics of a manifoldM with metric

γαβðxÞ ¼ hðxÞ2gαβðxÞ ð3:131Þ

conformally related to the spacetime metric gαβðxÞ. As
shown earlier, such fluid motions can indeed be obtained
from the action (3.16), which represents the arc length
(3.130) between two events, and is independent of the
parameter τ.

2. Magnetohydrodynamic flows as geodesics
in a Finsler space

One may think that the above result of Synge and
Lichnerowicz ceases to apply in MHD, due to the highly
complicated nature of the MHD-Euler Eq. (3.57).
Surprisingly, however, the above results can be extended

to magnetofluids that are barotropic and perfectly con-
ducting. Such flows are described by the action (3.94),
which is independent of the parameter τ, and are geodesic
in a Finsler (rather than Riemann) space [118–120]. In
particular, in the context of Finsler spaces, Eq. (3.94) has
similarities with the Randers metric [121,122].
As pointed out by Chern [118], Finsler geometry is

simply Riemann geometry without the quadratic restriction
(3.129). In Finsler geometry, the line element is replaced by
the general expression

dS ¼ Lðx; dxÞ; ð3:132Þ
where L∶ R2 → R is an arbitrary function that can be
identified with the Lagrangian. Then, the distance between
two points is given by

S ¼
Z

2

1

Lðx; dxÞ ¼
Z

τ2

τ1

Lðx; _xÞdτ ð3:133Þ

where the last equality holds if and only if the function
Lðx; _xÞ is homogeneous of degree 1 in the velocity
_xα ¼ dxα=dτ:

Lðx; κ _xÞ ¼ κLðx; _xÞ ∀ κ > 0: ð3:134Þ

Lagrangians with this homogeneity property give rise to a
parametrization-independent action functional, and lay at
the foundation of Finsler geometry.
The Lagrangian in the perfect magnetofluid action

functional (3.94) satisfies the above homogeneity property
and can thus be expressed in the form of arc length in a
Finsler space. To show this explicitly, we proceed as
follows. Following Chern [118], we consider the projec-
tivized tangent bundle PT M (i.e. the bundle of line
elements) of the manifold M. All geometric quantities
constructed from the Lagrangian L are homogeneous of
degree zero in _xα and thus naturally live on PT M,
although L itself does not. Let fxμg be local coordinates
onM. Express tangent vectors as _xμ∂μ so that fxμ; _xμg can
be used as local coordinates of T M and, with _xμ

homogeneous, as local coordinates on PT M. Euler’s
theorem of homogeneous functions (c.f. Appendix A)
can be used to show that

Lðx; _xÞ ¼ ∂L
∂_xα|{z}
pα

_xα ¼ −
�1
2

∂
2L2

∂_xα∂_xβ|fflfflfflffl{zfflfflfflffl}
−γαβ

_xα _xβ
	
1=2

: ð3:135Þ

The Hessian

γαβðx; _xÞ ≔ −
1

2

∂
2L2

∂_xα∂_xβ
ð3:136Þ

plays the role of a metric on PT M. This is a metric in a
Finsler (rather than Riemann) space, as it depends on
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velocity in addition to position. A Finslerian metric is
homogeneous of degree zero in the velocity:

γαβðx; κ _xÞ ¼ γαβðx; _xÞ ∀ κ > 0; ð3:137Þ

as implied by Eqs. (3.134) and (3.136). That is, the
Finslerian metric γαβðx; _xÞ depends on the direction, but
not magnitude, of the velocity _xα. The line element (3.132)
can then be written as

dS2 ¼ −γαβðx; _xÞdxαdxβ; ð3:138Þ

and the functional (3.133) becomes

S ¼ −
Z

2

1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−γαβðx; _xÞdxαdxβ

q

¼ −
Z

τ2

τ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−γαβðx; _xÞ_xα _xβ

q
dτ: ð3:139Þ

For our particular application, substituting the ideal
MHD Lagrangian (3.95) into the definition (3.136) yields

γαβðx; _xÞ ¼ h2gαβ − ηαηβ − hðηαuβ þ ηβuαÞ
− hqαβηγuγ; ð3:140Þ

where uα ¼ _xαð−gβγ _xβ _xγÞ−1=2 is the unit vector along _xα,
qαβ ¼ gαβ þ uαuβ is the projection tensor orthogonal to that
vector, and gαβ is the Riemannian metric in the spacetime
M. As required by the homogeneity condition (3.137), the
expression (3.140) gives a metric that depends on the
direction, but not the magnitude, of the velocity.
Equation (3.140) may be compactly written as γαβ ¼
−pαpβ − hqαβpγuγ where pα ¼ huα þ ηα. On shell, we
have uα ¼ _xα and, by virtue of Eqs. (3.65) and (3.89),
ηαuα ¼ 0, i.e. the last term in Eq. (3.140) vanishes. The
Finsler metric γαβ plays the role of an effective metric felt
by a magnetofluid element. Note that the 1-form ηα, defined
by Eq. (3.89) or (3.115), is consider independent of _xα.
Therefore, the Lagrangian is linear in the velocity _xα and
the relevant Finsler space is of the Randers type [121,122].
With the aid of Eqs. (3.135) and (3.140), the action

functional (3.94) takes the form of the length (3.139). This
functional is independent of τ and represents the arc length
between events 1 and 2. That is, the motions of fluid
elements in a barotropic, perfectly conducting flow are
geodesics in a Finsler space with metric given by
Eq. (3.140).
The geodesic equation is obtained by minimizing the

functional (3.139) and using Eqs. (A7)–(A10). This yields

d2xλ

dτ2
þ Γλ

μν
dxμ

dτ
dxν

dτ
¼ 0; ð3:141Þ

where

Γλ
μν ≔

1

2
γλκ

�
∂γκμ
∂xν

þ ∂γκν
∂xμ

−
∂γμν
∂xκ

�
ð3:142Þ

denote the Finslerian Christoffel symbols [119]. Although
the above equations are identical to those of Riemannian
geometry, the transformation law of the symbols Γλ

μν is
more complicated since it involves the Cartan torsion
tensor:

Cαβγ ≔
1

2

∂γαβ
∂_xγ

¼ 3h

ð−gϵζ _xϵ _xζÞ1=2
qðαβqγÞδηδ: ð3:143Þ

By extending the notion of a metric in M to allow
for Finsler geometry, the problem of ideal MHD becomes
one of pure geometry. We note that the geometry of the
spacetime M remains Riemannian: no deviation from
general relativity has been assumed. In the limit ηα → 0,
the Cartan torsion tensor vanishes, the geometry of M
also becomes Riemannian, and we recover the Synge-
Lichnerowicz result on barotropic fluids.
We note that a similar approach may be used for poorly

conducting fluids, by replacing ηα with eAα in the equations
above, where e is the net charge per fluid element [27].
Furthermore, with the replacements h → 1, ηα → eAα, we
recover the motion of a charged particle under the influence
of an electromagnetic field in curved spacetime [121,123–
126]. We note, however, that for baroclinic fluids, the
action is not parametrization invariant, and thus cannot be
described within Riemann or Finsler geometry.

IV. DISCUSSION

We have illustrated that barotropic flows and magneto-
flows without viscosity, resistivity or other dissipation can
be described via simple variational principles. These action
principles can be written in terms of a Lagrangian density
integrated over spacetime, as done traditionally for fluids,
or in terms of a particlelike Lagrangian integrated over a
proper-time or affine parameter. The latter approach paves
the way for deriving simple Lagrangian and Hamiltonian
descriptions of ideal MHD, in Newtonian and relativistic
contexts. These descriptions are as valuable for fluids as
they have been for classical mechanics and carry the same
advantages over approaches focused on the equation-of-
motion level.
For instance, certain conserved quantities‡ whose origin

seems ad hoc when obtained by tedious algebraic manipu-
lation of the equations of motion—emerge directly from the
action in this geometric canonical approach. In particular,
when the ideal MHD Lagrangians (3.71) and (3.120) admit
continuous symmetries, Noether’s theorem immediately
yields the associated quantity conserved along streamlines
[76]. As shown by Carter and Lichnerowicz, the relativistic
hydrodynamics and magnetohydrodynamics are most nat-
urally expressed in the language of differential forms.
Cartan’s identity can then be used to simplify calculations
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tremendously compared to the usual tensor or vector
calculus, as demonstrated above. This approach to MHD
is not yet very widely known, but this has been changing in
recent years, and it is being used to obtain new results
[8,127–136]. For stationary and irrotational or corotating
magnetoflows, Cartan’s identity implies that these quan-
tities, given by Eqs. (3.111) and (3.113), are constant
throughout the fluid. These equations represent relativistic,
magnetized generalizations of Bernoulli’s principle and
provide a way to construct equilibrium solutions via
iterative methods [95,137]. Such results can be extended
to the case of generalized Noether symmetries generated by
Killing tensors (cf. [76] for details) and applied to the
theory of black-hole accretion rings [27,47].
Several theoretical insights arise from this formulation.

The symplectic geometry of phase space gives rise to
various circulation theorems that stem from the Poincaré-
Cartan integral invariant. The symplectic structure of the
perfect MHD equations can be exploited in numerical
simulations that use smoothed-particle hydrodynamic
methods [138]. For instance, symplectic or time-symmetric
methods can be used to conserve phase-space volume,
circulation, and energy.
Geometric considerations have led to deeper under-

standing of magnetic phenomena in fluids in curved
spacetime. Exploring the similarities of geodesic motion
to hydrodynamic and magnetohydrodynamic motion,
Lasota et al. [139] generalized the Penrose process [140]
from point particles to fluid particles and jets. Moreover,
the Finsler geometry described by the metric (3.140) allows
one to represent ideal MHD flows as purely geodesic flows
with no loss of generality. A notable feature of both pictures
is that they are exact in time-dependent spacetimes, with
gravitational and electromagnetic waves carrying energy
and angular momentum away from the system. Although
such geometrical insights have been sometimes used to
construct first integrals for nonmagnetized initial data
[137], they have not so far been used for magnetized initial
data or for evolving hydrodynamic and magnetohydrody-
namic flows in numerical general relativity. The integrals
(3.111), (3.113) and the evolution system (3.107) provide
avenues for exploiting such geometric properties in the
future.
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APPENDIX A: FINSLER GEOMETRY AND
EULER’S THEOREM

The homogeneity property (3.134) plays a fundamental
role in Finsler geometry. This property gives rise to many
important relations by means of Euler’s homogeneous
function theorem: Consider a function Zðx; vÞ that is
positively homogeneous of degree r with respect to vα,
that is,

Zðx; κvÞ ¼ κrZðx; vÞ ∀ κ > 0: ðA1Þ

Differentiating with respect to κ and setting κ ¼ 1 yields

vα
∂Zðx; vÞ
∂vα

¼ rZðx; vÞ: ðA2Þ

This is the mathematical statement of Euler’s theorem.
Applying the above theorem to the case of the Lagrangian
(3.134) yields

_xα
∂Lðx; _xÞ
∂_xα

¼ Lðx; _xÞ: ðA3Þ

Differentiating this expression with respect to _xα yields

_xα
∂
2Lðx; _xÞ
∂_xα∂_xβ

¼ 0: ðA4Þ

Then, differentiating the relation

1

2

∂L2ðx; _xÞ
∂_xα

¼ Lðx; _xÞ ∂Lðx; _xÞ
∂_xα

ðA5Þ

with respect to _xβ, contracting with _xα _xβ and using
Eqs. (A3) and (A4) yields

L2ðx; _xÞ ¼ 1

2

∂
2L2ðx; _xÞ
∂_xα∂_xβ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
−γαβ

_xα _xβ: ðA6Þ

Equations (A3) and (A6) reproduce (3.135). From
Eqs. (3.134) and (A6) we infer that the metric γαβðx; _xÞ
is homogeneous of degree zero in the velocity, Eq. (3.137).
Then, applying Euler’s theorem (A2) for γαβ with r ¼ 0

yields
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_xγCαβγ ¼ 0; ðA7Þ

where

Cαβγ ≔
1

2

∂γαβ
∂_xγ

¼ 1

4

∂
3L2

∂_xα∂_xβ∂_xγ
ðA8Þ

is the Cartan torsion tensor. The last equality, which
follows from Eq. (3.136), implies that the above tensor
is fully symmetric. From the above definition we infer that
Cαβγ is homogeneous of degree r ¼ −1 in the velocity.
Then, Euler’s theorem (A2) yields

_xδCαβγδ ¼ −Cαβγ; ðA9Þ

where

Cαβγδðx; _xÞ ¼
∂Cαβγðx; _xÞ

∂_xδ
: ðA10Þ

The geodesic equation in Finsler space can be obtained
with the same variational methods as in a Riemann space,
with additional use of Eqs. (A7)–(A10). Finsler geometry
reduces to Riemann geometry if and only if the Cartan
torsion tensor and its derivatives vanish, whence the metric
γαβ is independent of velocity [119].

APPENDIX B: BECKENSTEIN-ORON CURRENT
WITH ONE SYMMETRY

Assuming that the system obeys a Killing symmetry, i.e.

that there exists a vector field k⃗ such that

£k⃗ g ¼ 0; £k⃗u ¼ 0; £k⃗ j ¼ 0; ðB1Þ

£k⃗F ¼ 0; £k⃗h ¼ 0; £k⃗ρ ¼ 0; ðB2Þ

a natural question is whether or not one can impose the
same symmetry on the auxiliary quantities a and b. First,
note that

£k⃗b ¼ £k⃗ðu⃗ · ⋆daÞ ðB3Þ

¼ u⃗ · £k⃗ð⋆daÞ ðB4Þ

¼ u⃗ · ⋆£k⃗ðdaÞ ðsince k⃗ is KillingÞ ðB5Þ

¼ u⃗ · ⋆dð£k⃗aÞ ðsince d and £k⃗ commuteÞ: ðB6Þ

In addition, using Eq. (3.84), as well as the symmetries
(B1), (B2),

£k⃗da ¼ £k⃗½u ∧ Bþ ⋆ðu ∧ bÞ� ¼ ⋆ðu ∧ £k⃗bÞ: ðB7Þ

We have therefore that

£k⃗b ¼ 0 ⇔ £k⃗da ¼ 0 ⇔ £k⃗a closed ðB8Þ

and of course £k⃗a ¼ 0 implies £k⃗b ¼ 0. So in effect,
assuming that the auxiliary quantities a and b satisfy the
same symmetry as the physical quantities is equivalent to
assuming merely £k⃗a ¼ 0. If on the other hand we are ready
to sacrifice £k⃗a ¼ 0 and to assume only that £k⃗b ¼ 0, we
must still impose that £k⃗a is closed.
We first notice that £k⃗a ¼ 0 is not systematically

compatible with the gauge condition u⃗ · a ¼ 0. Indeed,

let us consider the case where u⃗ and k⃗ are parallel, i.e.

u⃗ ¼ fk⃗: ðB9Þ

The question is whether we can impose consistently the
three equations

u⃗ · a ¼ 0; ðB10Þ

£u⃗a ¼ −B; ðB11Þ

£k⃗a ¼ 0: ðB12Þ

Using the Cartan identity, we have

−B ¼ £u⃗a ¼ f£k⃗aþ ðk⃗ · aÞdf ¼ ðk⃗ · aÞdf ¼ 0 ðB13Þ

since u⃗ · a ¼ 0 implies k⃗ · a ¼ 0. This is in general
inconsistent.
Giving up the gauge condition u⃗ · a ¼ 0 does not

improve things. Let us put ϕ ¼ u⃗ · a and still assume that

u⃗ and k⃗ are colinear. Now we have £u⃗a ¼ u⃗ · daþ dðu⃗ · aÞ
and instead of (B10)–(B12) we must consider

u⃗ · a ¼ ϕ; ðB14Þ

£u⃗a ¼ −Bþ dϕ; ðB15Þ

£k⃗a ¼ 0: ðB16Þ

Then

£u⃗a ¼ ϕdðlog fÞ ¼ −Bþ dϕ; ðB17Þ

i.e.

B ¼ ϕd

�
log





ϕf





�
: ðB18Þ

This forces the magnetic field B to be exact modulo
multiplication by a scalar function, which is not a generic
property. Indeed consider the 1-form on R4
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α ¼ −ydxþ xdy ðB19Þ

whose divergence vanishes. Can we find a globally defined
smooth function ψ such that ψα be closed? This amounts to

2ψ þ x∂xψ þ y∂yψ ¼ 0; ðB20Þ

which imposes that ψ be homogeneous of degree −2 and
contradicts the fact that ψ be globally defined and smooth.
We conclude that we cannot in all generality assume that

the auxiliary fields a and b satisfy the same symmetry as the
physical quantities.

APPENDIX C: FLUID SUPER-HAMILTONIANS

The canonical form of the Euler Eq. (3.13) involves only
the thermodynamic variables T, S, h. We thus assert that the
super-Hamiltonian for this equation has the general form

H ¼ Hðh; S; T; NÞ; ðC1Þ

where N ≔ gαβpαpβ is the norm of the (generally non-
normalized) canonical momenta pα, whose nature is to be
determined. Furthermore, we assume that the Hamiltonian
generates a reparametrization with respect to the proper
time of the fluid which we denote by a parameter
dλ ¼ dτ=A, where A is some function of the variables
involved.
Computing Hamilton’s equations and comparing them

with the Euler equation we deduce that we are on shell only
if pα ¼ huα and thus N ¼ −h2. Additionally, the following
equalities must be satisfied by the Hamiltonian on shell in
order to reproduce the Euler equation:

∂H
∂T

¼ 0 ðC2Þ

∂H
∂h

¼ 2h
∂H
∂N

ðC3Þ

∂H
∂S

¼ −T
∂H
∂h

− 2Th
∂H
∂N

ðC4Þ

A ¼ 2h
∂H
∂N

: ðC5Þ

One way to satisfy this set of constraints on the form of the
Hamiltonian is via the expression

H ¼ C0ðSÞ
2Th

ðgαβpαpβ þ h2Þ − CðSÞ; ðC6Þ

where CðSÞ is an arbitrary function of the specific entropy
with C0ðSÞ ≠ 0 for S ≥ 0. The on-shell value of the con-
served super-Hamiltonian is then −CðSÞ and the canonical
time parameter λ satisfies dλ ¼ Tdτ=C0. Carter’s baroclinic
Hamiltonian (3.125) is obtained simply by setting
CðSÞ ¼ S.
For barotropic fluids one can use a similar approach to

obtain a set of Hamiltonians of the form

H ¼ −
DðhÞ
2h

ðgαβpαpβ þ h2Þ ðC7Þ

where DðhÞ is an arbitrary function of h, and the
parametrization corresponding to this Hamiltonian is
dλ ¼ dτ=D. The transition between the Hamiltonians
(C6) and (C7) for baroclinic and barotropic fluids depends
on the form of temperature expressed as a function of
entropy and enthalpy T ¼ Tðh; SÞ.
For baroclinic magnetofluids, we see from Eq. (3.93)

that the streamlines of a perfectly conducting fluid behave
as if under the influence of a vector potential η. We thus
assume that there is a canonical momentum pα such that
the Hamiltonian depends only on the normalization N ¼
gαβðpα − καÞðpβ − κβÞwith κα some vector. In that case, we
obtain the on-shell values pα ¼ huα þ ηα; κα ¼ ηα N ¼
−h2 and the same set of constraints as in (C2)–(C5). This
means that one class of super-Hamiltonians which repro-
duce the ideal MHD-Euler Eq. (3.93) is

H ¼ C0ðSÞ
2Th

½gαβðpα − ηαÞðpβ − ηβÞ þ h2� − CðSÞ; ðC8Þ

where the on-shell value of the super-Hamiltonian is
again −CðSÞ and the canonical time parameter λ satisfies
dλ ¼ Tdτ=C0.
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