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Abstract
We show that the rotating generalization of Hayward’s non-singular black 
hole previously studied in the literature is geodesically incomplete, and 
that its straightforward extension leads to a singular spacetime. We present 
another extension, which is devoid of any curvature singularity. The obtained 
metric depends on three parameters and, depending on their values, yields 
an event horizon or not. These two regimes, named respectively regular 
rotating Hayward black hole and naked rotating wormhole, are studied both 
numerically and analytically. In preparation for the upcoming results of the 
Event Horizon Telescope, the images of an accretion torus around Sgr A*, the 
supermassive object at the center of the Galaxy, are computed. These images 
contain, even in the absence of a horizon, a central faint region which bears a 
resemblance to the shadow of Kerr black holes and emphasizes the difficulty 
of claiming the existence of an event horizon from the analysis of strong-field 
images. The frequencies of the co- and contra-rotating orbits at the innermost 
stable circular orbit (ISCO) in this geometry are also computed, in the hope 
that quasi-periodic oscillations may permit to compare this model with Kerr’s 
black hole on observational grounds.

Keywords: non-singular black hole, rotating black hole, wormhole, gyoto, 
ray-tracing code, SgA*
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1. Introduction

With the advent of the Event Horizon Telescope (EHT) [1] and the VLTI/GRAVITY instru-
ment [2], black hole physics is entering a new era, where observational tests of the celebrated 
no-hair theorem of general relativity (see e.g. [3]) are becoming feasible. This theorem states 
that the unique solution for a steady isolated black hole in four-dimensional vacuum general 
relativity is the Kerr–Newman black hole, which depends on only three parameters: the mass 
M, the reduced angular momentum a  =  J/M and the electric charge Q (see [4] for a precise 
mathematical statement). In the (astrophysically relevant) electrically neutral case (Q  =  0), 
the solution reduces to the Kerr black hole. To prepare the observational tests, it is primordial 
to compute observables from theoretically plausible alternatives to the Kerr black hole (see 
[5] for a review).

Among the numerous alternatives, a large class is constituted by the so-called non-sin-
gular black holes, also named regular black holes, namely asymptotically flat spacetimes 
with a black hole region (and hence an event horizon) but without any curvature singularity. 
This class circumvents the no-hair theorem because the metrics are not vacuum solutions of 
Einstein equation. The first non-singular black hole spacetime has been proposed by Bardeen 
in 1968 [6]. It has been mentioned by Hawking and Ellis (p 265 of [7]), while discussing the 
famous Penrose singularity theorem [8], since it provides an instructive counter-example: all 
geodesics of Bardeen’s spacetime are regular, despite it contains trapped surfaces and obeys 
the weak energy condition. Actually, this spacetime violates the third hypothesis of Penrose 
theorem in its original version [8]: the existence of a Cauchy surface. It was shown later by 
Ayón-Beato and García [9] that the Bardeen metric is a solution of Einstein’s equations with 
the energy-momentum tensor arising from a magnetic monopole in some nonlinear electro-
dynamics theory, thereby giving some physical content to the model. Another famous regular 
black hole metric has been proposed by Hayward in 2006 [10]; it fulfills the weak energy con-
dition as well and was shown recently to be a solution of Einstein’s equations corresponding 
to a magnetic monopole, as the Bardeen black hole, but in another nonlinear electrodynamics 
theory [11]. Both Bardeen and Hayward black holes are actually part of a larger class of solu-
tions of Einstein’s equations coupled to nonlinear electrodynamics found recently by Fan and 
Wang [12] (see also [13, 14]).

The Bardeen and Hayward black holes, and more generally all solutions of the Fan–Wang 
class, are spherically symmetric and static outside the event horizon. Now, on astrophysi-
cal grounds, it sounds more relevant to consider rotating black holes and even rapidly rotat-
ing ones (see e.g. the spin values in tables  I and II of [15]). The metrics of Bardeen and 
Hayward have been generalized to rotating axisymmetric metrics by Bambi and Modesto [16] 
via the Newman–Janis algorithm. More generally, all metrics of the Fan–Wang class have 
been recently extended to rotating ones by Toshmatov et al [17, 18]. However, contrary to the 
nonrotating ones, the rotating metrics are only approximate solutions describing a magnetic 
monopole in some nonlinear electrodynamics theory [18, 19]. Another shortcoming of these 
spacetimes is being geodesically incomplete. Moreover, as we show below, their straightfor-
ward extension leads to singular black holes, i.e. to spacetimes with a curvature singularity.

In this article, we apply a prescription devised by Torres [20] to obtain a spacetime extended 
to negative values of the ‘radial’ coordinate r and representing a rotating non-singular black 
hole that reduces to the Hayward solution in the nonrotating limit. Moreover, we consider val-
ues in the parameter space for which the solution is trully a black hole one, that we call regular 
rotating Hayward black hole, but also those for which the solution has no event horizon. In 
the Kerr case, this would correspond to a  >  M and would yield a naked singularity. In our 
case, the regularity of spacetime is still preserved and we obtain instead a rotating traversable 
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wormhole configuration, which we call a naked rotating wormhole, to distinguish it from 
other rotating wormholes introduced in the literature [21–23].

The paper is organized as follows. In section 2, we start by giving a review of Hayward’s 
black hole and its generalization to nonzero rotation as introduced by Bambi and Modesto 
[16]. We show that this model still possesses a curvature singularity and apply Torres’ pre-
scription to obtain a regular rotating Hayward metric, whose features are investigated in detail. 
Section 3 is devoted to the numerical study of this model, with or without horizons, using the 
ray-tracing code Gyoto [24]. Finally in section 4 we investigate analytically the existence 
of circular orbits of massive particles as well as the propagation of photons in this geometry. 
We give the explicit expressions for the specific energy and angular momentum of a particle 
on a co- or contra-rotating orbit, which differ from the expressions of [17], and compute the 
frequencies of such particles at the innermost stable circular orbit (ISCO).

2. Metric and motivations

2.1. Spinning up Hayward’s black hole

2.1.1. Hayward’s original metric. A standard example of a non-singular static black hole of 
mass m is provided by Hayward’s metric [10]:

ds2 = −
(

1 − 2M(r)
r

)
dt2 +

(
1 − 2M(r)

r

)−1

dr2 + r2 dθ2 + r2 sin2 θ dφ2,

 (1)
with

M(r) := m
r3

r3 + 2mb2 , (2)

where m and b are two constants having the dimension of a length (or a mass in the geom-
etrized units used here). The metric (1) reduces to Schwarzschild’s metric of mass m in 
the limit r → +∞, where the effective mass M tends to m. Furthermore, if b �= 0, we have 
2M(r)/r ∼ r2/b2 for r → 0, so that Hayward’s metric behaves as a de Sitter metric with cos-
mological constant Λ = 3/b2 around r  =  0, thereby avoiding any singularity.

Hayward [10] interpreted the parameter b as a cut-off of the order of the Planck length, i.e. 
a length at which general relativity is no longer valid. An alternative interpretation of b, allow-
ing for macroscopic values, has been provided by Fan and Wang [12] (see also [13]). These 
authors have shown that the metric (1) and (2) can be obtained as a solution of Einstein’s equa-
tions sourced by the energy-momentum tensor of a magnetic monopole within some nonlinear 
electrodynamics. The parameter b is then related to the amplitude of the total magnetic charge 
Qmag by

Qmag =

(
bm4

2

)1/3

, (3)

while the nonlinear electrodynamics theory is defined by the Lagrangian density

L = L(F) :=
6
b2

(2b2F)3/2

(1 + (2b2F)3/4)2 , (4)

F  being the invariant F := FµνFµν of the electromagnetic field. Note that standard (Maxwell) 
electrodynamics corresponds to L(F) = F .

F Lamy et alClass. Quantum Grav. 35 (2018) 115009
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2.1.2. A first attempt to generalize Hayward’s metric to nonzero rotation. By means of the 
Newman–Janis algorithm [25], Bambi and Modesto [16] (see also [26]) have obtained some 
rotating generalization of Hayward’s metric as

ds2 =−
(

1 − 2rM(r)
Σ

)
dt2 − 4arM(r) sin2 θ

Σ
dt dφ+

Σ

∆
dr2 +Σ dθ2

+ sin2 θ

(
r2 + a2 +

2a2rM(r) sin2 θ

Σ

)
dφ2,

 

(5)

where

Σ := r2 + a2 cos2 θ, ∆ := r2 − 2M(r)r + a2,

M(r) := m
r3

r3 + 2mb2 .
 

(6)

In addition to the total mass m and the characteristic length b, the new parameter with respect 
to Hayward’s metric (1) and (2) is the spin parameter a, such that the total angular momentum 
is J  =  am. Note that the function M(r) is identical to that defined by equation (2) and that, 
except for the dependency of M with respect to r, the line element (5) is identical to that of the 
Kerr metric expressed in Boyer–Lindquist coordinates.

As claimed in [16], there is no singularity at r  =  0 as long as b �= 0 (see [26] for a rigorous 
proof). However, as in the Kerr case, if the above metric is limited to r � 0, it yields a space-
time that is not geodesically complete: some timelike and null geodesics stop at r  =  0 for a 
finite value of their affine parameter, while (i) there is no curvature singularity there and (ii) 
r  =  0 is not a coordinate singularity as in Minkowski’s spacetime. The last point can be seen 
by considering the value of the metric (5) and (6) at r  =  0:

ds2
∣∣
r=0 = −dt2 + cos2 θ dr2 + a2 cos2 θ dθ2 + a2 sin2 θ dφ2. (7)

If a �= 0, this defines a regular (i.e. nondegenerate) metric, except for θ = π/2, the vanishing of 
sin2 θ at θ = 0 or π reflecting only the standard coordinate singularity of spherical coordinates 
on the rotation axis. The regularity of the metric at r  =  0 and the unphysical ending of geodesics 
there leads one to extend the spacetime to negative values of r. In other words, we consider

M = R2 × S2 (8)

as the spacetime manifold, with (t, r) spanning R2 and (θ,φ) spanning the 2-sphere S2.
Now, M endowed with the metric (5) and (6) suffers from some curvature singularity, 

albeit not at r  =  0. Indeed, the Ricci scalar is (see appendix A.1 for the computation)

R = −
24m2b2r2

(
r3 − 4mb2

)
(

a2 cos (θ)
2
+ r2

)
(r3 + 2mb2)

3
, (9)

which is singular in the entire hypersurface defined by r = −(2mb2)1/3. Similarly, the Kretschmann 
scalar K := RµνρσRµνρσ diverges at the same value of r (see figure 1). We conclude that the rotat-
ing generalization (5) and (6) of Hayward’s metric does not describe a regular black hole.

2.2. The rotating Hayward metric extended to r  <  0

2.2.1. Metric. Following a prescription applied by Torres [20] to rotating regular black boles 
arising from quantum gravity consideration, we define the metric tensor in all M = R2 × S2 
by
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ds2 =−
(

1 − 2rM(r)
Σ

)
dt2 − 4arM(r) sin2 θ

Σ
dt dφ+

Σ

∆
dr2 +Σ dθ2

+ sin2 θ

(
r2 + a2 +

2a2rM(r) sin2 θ

Σ

)
dφ2,

 
(10)

with

Σ := r2 + a2 cos2 θ, ∆ := r2 − 2M(r)r + a2,

M(r) := m
|r|3

|r|3 + 2mb2 .
 

(11)

The difference with Bambi–Modesto’s metric (5) and (6) lies only in the replacement of r by 
|r| in the function M(r). This is motivated by the expression of M(r) in Torres’ work [20]:

M(r)Torres = m
|r|3

|r|3 + ω̃(|r|+ γm)
, (12)

where ω̃  and γ are two constants.

2.2.2. The hypersurface r  =  0. In M = R2 × S2, the hypersurface r  =  0 is a 3-dimensional 
cylinder T0 = R× S2, spanned by the coordinates (t, θ,φ), which we call the throat, as in the 
Kerr case [27]. The metric induced on T0 by the spacetime metric (10) and (11) is

dσ2 = −dt2 + a2 cos2 θ dθ2 + a2 sin2 θ dφ2. (13)

We may then split T0 into three components: T0 = T+
0 ∪ R ∪ T−

0 , where T+
0  is the Northern 

hemisphere 0 � θ < π/2 times (Cartesian product) R , R  is the equatorial ring θ = π/2 times 
R  and T−

0  is the Southern hemisphere π/2 < θ � π  times R . Introducing in T+
0  or T−

0  the 
coordinates

{
X = a sin θ cosφ,
Y = a sin θ sinφ

X2 + Y2 � a2, (14)

the line element (13) reduces to

Figure 1. Ricci scalar (left) (in units of m−2) and Kretschmann scalar (right) (in units  
of m−4) as functions of r for the extension to r  <  0 of Bambi and Modesto [16]’s rotating 
version of Hayward’s metric with a/m  =  0.9 and b/m  =  1. Note that both scalars are 
diverging at r/m = − 3

√
2 ≈ −1.26.

F Lamy et alClass. Quantum Grav. 35 (2018) 115009
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dσ2 = −dt2 + dX2 + dY2. (15)

We recognize a 3-dimensional Minkowskian metric and conclude that, as long as a �= 0, the 
throat T0 comprises two flat open disks of radius a times R: T+

0  and T−
0 . Moreover, from the 

signature of (13), it appears that the throat is timelike; it is therefore a 2-way membrane, i.e. 
it can be crossed by particles from the region r  >  0 to the region r  <  0, in the reverse way as 
well.

2.2.3. Regularity. The metric (10) and (11) has no curvature singularity. This can be seen on 
figures 2(a), (b) and 3(a), (b), where the Ricci scalar R, Kretschmann scalar K, Chern–Pontry-
agin scalar CP and Euler scalar E are plotted for a/m  =  0.9, b/m  =  1 and various values of θ 
(see appendix A.1 for details). The curvature scalars remain finite, although the Ricci scalar is 
discontinuous at the equatorial ring r  =  0 and θ = π/2.

2.2.4. Horizons. In the context of the stationary metric (10), the trapping horizons, which 
identify to Killing horizons, are the null hypersurfaces where the expansion of a congruence 
of null outgoing geodesics vanishes. This condition reduces to

∆ = r2 − 2M(r)r + a2 = 0. (16)

This equation admits some real solutions depending on the values of the parameters a and b. 
We will call event horizon the outermost Killing horizon, which corresponds to the biggest 
value of the radial coordinate among the solutions of (16). The region of existence of Killing 
horizons is depicted on figure 4.

When b  =  0 one recovers the Kerr case: two horizons exist for values of a ranging from 
a  =  0 to a  =  m, the latter value corresponding to the extremal Kerr black hole, where the two 
horizons coincide. The most interesting cases with horizons are the metrics well different 
from Kerr (b  =  0) and Hayward (a  =  0) ones, for instance the metric with a  =  b  =  0.5m. The 
image of such configurations, computed using the ray-tracing code4 Gyoto [24], will be 
discussed in section 3.1.

In the absence of horizon (hence of trapped region), the spacetime can no longer be quali-
fied of a regular rotating black hole. That is why we call it a naked rotating wormhole. Indeed, 

Figure 2. Ricci scalar (a) (in units of m−2) and Kretschmann scalar (b) (in units of m−4) 
of the improved rotating Hayward metric (10) and (11) with a/m  =  0.9 and b/m  =  1 as 
a function of r for θ = 0, π/4 and π/2.

4 Freely available at http://gyoto.obspm.fr

F Lamy et alClass. Quantum Grav. 35 (2018) 115009
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the wormhole whose throat is located at r  =  0, which is also present in Kerr’s case (with a 
singularity), is no longer hidden by any horizon. Photons can even go through the throat and 
come back to the observer, as will be shown in section 3.2.

2.2.5. Causality. The Kerr spacetime possesses a well-known acausal region, the Carter time 
machine [28]. In this region, the Killing vector η = ∂φ is timelike, giving birth to closed time-
like curves. However the whole spacetime does not become acausal thanks to the presence of 
an event horizon: the particles that are able to move backward in time are trapped inside the 
black hole.

Considering now the rotating Hayward metric extended to r  <  0, one has to check whether 
η can become timelike even in the absence of horizons, in which case the whole spacetime 
would be acausal. In view of (10), one has

η · η = gφφ =

(
r2 + a2 +

2a2M(r)r sin2 θ

r2 + a2 cos2 θ

)
sin2 θ, (17)

Figure 3. Chern–Pontryagin scalar (a) and Euler scalar (b) (in units of m−4) of the 
improved rotating Hayward metric (10) and (11) with a/m  =  0.9 and b/m  =  1 as a 
function of r for θ = 0, π/4 and π/2.

Figure 4. Region of existence of one (black line) or two (in blue) Killing horizon(s), 
depending on the parameters a and b.

F Lamy et alClass. Quantum Grav. 35 (2018) 115009
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so that

η timelike ⇔ (r2 + a2)(r2 + a2 cos2 θ) + 2a2M(r)r sin2 θ < 0. (18)

The only negative contribution in the left-hand side of (18) comes from the second term, when 
r  <  0. It reaches a minimum for θ = π/2. Figure 5 shows that there exists a red region (region 
I) for which gφφ < 0 while no event horizon is present. The parameters a and b associated 
with such a region thus correspond to acausal spacetimes, which we will not deal with in this 
paper.

Region II also has causality issues, but these are hidden behind an event horizon. Regions 
III and IV are totally free of closed timelike curves, the latter is also devoid of any event hori-
zon and represents a naked rotating wormhole.

2.2.6. Energy conditions. The existence of horizons, hence of trapped surfaces, along with 
the absence of singularity, questions the hypotheses of Penrose’s singularity theorem. As men-
tionned in section 1, both Bardeen and Hayward nonrotating metrics fulfill the weak energy 
condition and circumvent the original Penrose theorem [8] by the lack of a Cauchy surface. 
In an improved version of the singularity theorem, by Hawking and Penrose (1970) [7, 29], 
the hypothesis of existence of a Cauchy surface is relaxed, at the price of replacing the weak 
energy condition by the strong one. This version is still compatible with Bardeen’s and Hay-
ward’s regular black holes because both violate the strong energy condition.

In the rotating case, it has been shown by Torres [20] that any metric of the type (10) with 
a �= 0 violates the weak energy condition in all the region r  <  0 as soon as M′(r) < 0 there. 
This is the case for our choice (11) for M(r).

Here, we investigate the violation of the weakest of all energy conditions, the null energy 
condition (NEC). It is the weakest condition in the sense that its violation also implies the 
violation of the weak, strong and dominant energy conditions. For any null vector kµ the NEC 
reads

Tµνkµkν � 0. (19)

In order to compute this scalar we switch to the locally nonrotating frame which diagonalizes 
the metric [30]. Its basis is such that eµ̂ · eν̂ = ηµ̂ν̂. The dual cobasis at each point (t, r, θ,φ) 
reads

Figure 5. Regions of existence of an event horizon (in blue) and of negative gφφ for 
θ = π/2 in the absence of horizons (in red), depending on the parameters a and b.

F Lamy et alClass. Quantum Grav. 35 (2018) 115009
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e(t) =

√
Σ∆

A
dt,

e(r) =

√
Σ

∆
dr,

e(θ) =
√
Σ dθ,

e(φ) = −2M(r)ar sin θ√
ΣA

dt +

√
A
Σ

sin θ dφ,

 

(20)

with

A := (r2 + a2)2 − a2∆sin2 θ. (21)

Solving Einstein’s equations ‘in reverse’, we obtain Tµ̂ν̂kµ̂kν̂ = Gµ̂ν̂kµ̂kν̂/8π. This effective 
energy density is plotted in figure 6 in the case a  =  0.9, b  =  1 (see appendix A.1 for details). 
One can see that the NEC is violated from near the centre up to r → −∞.

3. Numerical study of the regular rotating Hayward metric with Gyoto

3.1. Regular rotating Hayward black hole

This section aims at discussing the differences in ray-traced images between the regular rotat-
ing Hayward black hole and the standard Kerr black hole.

We now use the ray-tracing code Gyoto to obtain images from an accretion torus sur-
rounding the two black holes (see appendix A.2 for details). Another approach could con-
sist in computing analytically the contour of the shadow based on the formula developed 
by Tsukamoto [31], but here we opt for a numerical computation in an astrophysical con-
text instead. The set-up is composed of an accretion torus identical to the one presented in 
[32]. It is a magnetized optically thin torus, with angular momentum l  =  4m, inner radius 
rinner = 8.3m, where we take m to be the mass of Sgr A* (m = 4.31 × 106 M�). The outer 
radius varies according to the value of the spin parameter, it is for instance router = 30m for 
a  =  0.9. The central temperature is of T = 5.3 × 1010  K and the central electron number den-
sity ne = 6.3 × 106 cm−3. We compute the thermal synchrotron radiation emitted in the mil-
limeter band by this torus, the ray-traced photons are observed at a frequency of 230 GHz. 
Such an accretion flow was shown (see [32]) to reproduce well the millimeter spectral data of 
Sgr A*, as well as the constraints on the size of the emitting region imposed by early EHT data 
[33]. The observer is located at a radial coordinate which corresponds to the distance between 
Earth and Sgr A*, and at an inclination (angle between the black hole rotation axis and the 
line of sight) of θ = 90◦.

In the case a/m  =  0.5, b/m  =  0.5, the outer horizon is located at r0 ≈ 1.65m. It is thus 
at a smaller value of the radial coordinate from the center than in the Kerr black hole case 
(b/m  =  0), where r+ = m +

√
m2 − a2 ≈ 1.87m. Hence, for a given ADM mass, the black 

hole radius is smaller when b �= 0.
The millimeter images of these two black holes are visible on figure 7. On both panels, 

we observe the distorted primary image of the torus, that forms an Einstein ring. The very 
center of the image shows a thin lensing ring delineating the black hole shadow. The shadow 
is defined as the region in the observer’s sky comprising the directions of photons that asymp-
totically approach the event horizon in a backward ray-tracing computation [34]. The lensing 
ring is the secondary image of the torus. The higher-order images of the torus, hardly visible 
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on figure 7, converge to the photon ring, which is the projection of the innermost photon orbit 
on the observer’s sky. This photon orbit marks the innermost limit an approaching photon 
can visit without falling into the event horizon [34]. The differences between the millimeter 
images of the two black holes appear to be indistinguishable with the naked eye. However, 
substracting one image from another we can distinguish the two different lensing rings (figure 
8). The difference of diameter between these two rings is about 2 μas (≈3%). This difference 
is out of reach for the observations in the foreseeable future, but we may hope that a telescope 
would be able to measure the radius of the lensing ring in a far future, or equivalently the area 
of the shadow, and could thus discriminate between the two black holes for a given ADM 
mass.

It should be noted that we considered here a macroscopic value of b (b  =  0.5m) when com-
puting these images. The underlying assumption is that this parameter arises because of some 
‘macroscopic’ energy-momentum tensor supporting this regular geometry, similar to that aris-
ing from a nonlinear-electrodynamics magnetic monopole in the non-rotating case [9, 11, 12]. 
Had we assumed that the singularity was resolved by using b as a Planckian cut-off, the dif-
ference between the images would have been invisible to any telescope even in the far future.

3.2. Naked rotating wormhole

Let us now discuss the case of geometries without horizons described by the rotating Hayward 
metric extended to r  <  0 (10), that we call naked rotating wormholes. We will first describe 
the results obtained with Gyoto as well as their consequences, and then explain them by 
studying some relevant geodesics.

The major difference in this configuration, with respect to the previous section, is the 
absence of horizons. Hence, the images obtained with this geometry do not contain any shad-
ows, in the precise sense defined above. However, they do contain a central faint region show-
ing a mixture of low-flux regions and strongly lensed contours (of increasing order from left to 
right, see figure 9). The shape of these contours highly depends on the value of the parameter 
b/m. It it is thus very important to stress that observing such strongly lensed contours, which 
can look like a lensing ring without a good enough resolution, does not imply the existence of 
an event horizon, just as in the case of boson stars [35].

Figure 6. Tµ̂ν̂kµ̂kν̂ as a function of r for θ = π/6,π/3,π/2 and a = 0.9, b = 1. The 
NEC is violated when any of the curves goes below zero.

F Lamy et alClass. Quantum Grav. 35 (2018) 115009



11

The two panels of figure 9 are remarkably similar to the images of accretion tori surround-
ing rotating boson stars (see the middle- and lower-right panels of figure 5 in [35]). However, 
these spacetimes are completely different, the spacetimes analyzed here being naked rotating 
wormholes spacetimes, while boson stars are compact distributions of fundamental scalar 
fields. It is thus rather intriguing that such very different spacetimes lead to images that are 
difficult to differentiate. Further studies would be necessary in order to determine whether 
the distorted, hyper-lensed contours of figure 9 are general features of spacetimes of compact 
object with no event horizon and no hard surface (i.e. different from neutron stars).

Another interesting feature appears when the accretion torus is observed from an inclination 
angle θ different from 90◦. In this case, the disk r  =  0 located in the equatorial plane becomes 

Figure 7. Images of an accretion torus surrounding a Kerr black hole (a) and a 
regular rotating Hayward black hole (b), seen from a distance of 8.31 kpc. The field 
of view is 200 µas and the inclination θ = 90◦. The specific intensity Iν is plotted in 
CGS units, as will be the case for the following images. (a) a/m = 0.5, b/m = 0. (b) 
a/m = 0.5, b/m = 0.5.

Figure 8. Difference of the images of figure 7. The lensing rings of the configurations 
b/m  =  0.5 (black) and b/m  =  0 (white) are visible at the centre.
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visible. It can hardly be seen on the left of figure 10, but a zoom clearly allows identifying a cen-
tral dark ellipse5 on the image on the right. Its contour corresponds to the throat of the wormhole.

The blue pixels forming this ellipse-like shape (right panel) represent geodesics coming 
from r → −∞; a similar distorded disk also appears in the case of naked Kerr singularities 
[36]. These pixels are not completely black since a part of the torus, located between the 
throat and the observer, emits some photons directly towards the latter. However there also 
exists luminous (green and yellow) pixels inside the dark ellipse. All these illuminated pixels 
are associated with photons emitted from the torus and travelling through negative values of 
r back to the observer. The location of this luminous feature inside the dark ellipse highly 
depends on the value of b/m, as is illustrated on the right panel of figure 10.

There exists a sharp contrast between the dark ellipse and this luminous feature, which can 
be studied in further detail if we consider three different geodesics (figure 11).

The green geodesic of figure  11 corresponds to a luminous pixel just outside the dark 
ellipse. This geodesic comes from r = +∞, crosses the torus on its way in, approaches the 
r  =  0 disk (represented by the grey sphere on figure 11) without reaching it, and escapes to the 
observer (crossing a second time the torus on its way out). Similarly, the blue geodesic comes 
from r = +∞ and crosses the torus on its way in. Contrarily to the green geodesic, it enters 
the wormhole throat, reaching negative values of r. It also reaches a turning point and comes 
back to r  >  0, also eventually reaching the observer after having crossed the torus a second 
time on its way out. Finally, the red geodesic originates from r = −∞. It emerges from the 
throat and crosses the torus only once, on its way out to the observer.

4. Analytical study of the regular rotating Hayward metric

4.1. Circular orbits in the equatorial plane

4.1.1. Energy and angular momentum of a massive particle. Let us consider the geodesic 
motion of a test particle with momentum p and mass m0  >  0, following a circular orbit in the 

Figure 9. Images of an accretion torus surrounding a naked rotating wormhole with 
a/m  =  0.9, b/m  =  0.4 (a) and b/m  =  0.7 (b). The field of view is 200 µas and the 
inclination θ = 90◦.

5 It is not necessarily an ellipse in the mathematical sense.
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background of the metric (10). This motion occurs in the equatorial plane (θ = π/2) due to 
the axisymmetry of the metric. Along with the property of stationarity, this also implies the 
existence of two Killing vectors ξ = ∂t and η = ∂φ. The energy and angular momentum of 
the particle read:

E = −ξ · p = −pt(gtt + gtφΩ)

L = η · p = pt(gφt + gφφΩ),
 (22)

with Ω := dφ
dt .

The angular velocity Ω can be found by considering the Euler–Lagrange equation for a free 
particle whose Lagrangian is

L =
1
2

gµν ẋµẋν , (23)

with ẋµ := dxµ
dλ , where λ is an affine parameter. The Euler–Lagrange equation supplemented 

by the conditions for a circular orbit ṙ = r̈ = 0 boils down to:

gtt,r ṫ2 + 2gtφ,r ṫφ̇+ gφφ,rφ̇
2 = 0, (24)

where the coma denotes a derivative with respect to the radial coordinate.

Figure 10. Images of an accretion torus surrounding a naked rotating wormhole with 
a/m  =  0.9, b/m  =  1 (upper row) and a/m  =  0.9, b/m  =  0.5 (lower row). The inclination 
is θ = 80◦ while the field of view is 200 µas (left column) or 25 µas (right column).

F Lamy et alClass. Quantum Grav. 35 (2018) 115009



14

The angular velocity of a particle on a circular co- or contra-rotating orbit is then:

Ω± =
−gtφ,r ±

√
gtφ,r − gtt,rgφφ,r

gφφ,r
. (25)

The specific energy and angular momentum of a massive particle on a circular orbit in a sta-
tionary axisymmetric spacetime thus read:

E± :=
E±

m0
= − gtt + gtφΩ±√

−(gtt + 2gtφΩ± + gφφΩ2
±)

L± :=
L±

m0
=

gφt + gφφΩ±√
−(gtt + 2gtφΩ± + gφφΩ2

±)
.

 

(26)

In the context of our metric (10), we obtain in the equatorial plane (θ = π/2):

E± =
r3 + a2rM′(r)− M(r)

(
a2 + 2r2 ∓ 2ar

√
A(r)

)

(r3 − a2M(r) + a2rM′(r))
√

r2B±(r)
(r3−a2M(r)+a2rM′(r))2

L± =
−(a3 + 3ar2)M(r) + (a3r + ar3)M′(r)± (a2r2 + r4 + 2a2rM(r))

√
A(r)

(r3 − a2M(r) + a2rM′(r))
√

r2B±(r)
(r3−a2M(r)+a2rM′(r))2

,

 

(27)

where

Figure 11. The null geodesics associated with three different pixels, starting from the 
accretion torus for a/m  =  0.9, b/m  =  1, are plotted in a frame with x = er sin θ cosφ, 
y = er sin θ sinφ, z = er cos θ. A frame is drawn at the origin, where r → −∞. Geodesic 
I (in green) has a turning point and does not enter the grey sphere of radius r  =  0. 
Geodesic II (in red) has no turning point, it represents the trajectory of a photon in the 
central dark ellipse coming from r → −∞. Finally, geodesic III (in blue) enters the 
sphere of radius r  =  0 but has a turning point inside, and goes back to an observer at 
r → +∞.
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A(r) =
M(r)

r
− M′(r)

B±(r) = −a2r2M′2(r) + r4 − 3a2M(r)2 − 3(a2r + r3)M(r) + (3a2r2 + r4 + 4a2rM(r))M′(r)

± 2
[
(a3 + 3ar2)M(r)− (a3r + ar3)M′(r)

]√
A(r).

These expressions differ from Toshmatov et al [17] (see appendix A.1 for details and a com-
parison with the results of Bardeen et al [30]).

Circular orbits can therefore exist only for A(r) � 0 and B±(r) > 0. These three functions 
are plotted below, for a/m  =  0.9 and b/m  =  1. The regions of allowed co-rotating circular 
orbits are pictured in grey on figure 12. The region of positive r goes up to r → +∞, while the 
one of negative values of r exists only near the center. This is coherent, since from r → −∞ 
the metric (10) behaves as a Schwarzschild metric with negative mass: the repulsive gravity 
does not allow circular orbits for large enough negative radii.

4.1.2. Influence of the spin. Let us study how the regions of allowed circular orbits are modi-
fied when the spin varies. First of all, it should be noted that A(r) does not depend on the 
value of the spin. Hence for a fixed b, e.g. b/m  =  1 like on figure 12, the shaded regions will 
be modified only if B±(r) changes. As shown on figure 13, decreasing the value of a only 
widens the zone of circular orbits below r  =  0. It thus does not have any impact on the allowed 
circular orbits with r  >  0.

4.1.3. Influence of the parameter b. Contrarily to the spin, the parameter b has a direct influ-
ence on the region of allowed circular orbits of positive radius. Going from b/m  =  1 (figure 
12) to b/m  =  0.7 and b/m  =  0.4 (figure 14), at a constant a/m  =  0.9, we observe that circular 
orbits can occur for smaller and smaller positive values of r.

Meanwhile, the region of allowed circular orbits with negative radius shrinks as b decreases. 
This region even disappears for b/m  =  0, as one can see on figure 15 below. In this configura-
tion, two horizons exist and circular orbits occur only for values of the radial coordinate above 
the radius of the outer horizon. For b/m  =  0.2 (left of figure 15), some circular orbits can also 
occur below the radius of the inner horizon.

4.1.4. Innermost stable circular orbit (ISCO). The innermost stable circular orbit (ISCO), 
which corresponds to the stable circular orbit of smaller r, is astrophysically relevant since 
it provides the highest orbital frequency possible around the central object. In particular, the 
ISCO frequency is involved in various models of quasi-periodic oscillations (QPO) [37].

In the Kerr case, it has been shown by Carter [28] that the radial geodesic motion is gov-
erned by the following relation:

Σ
dr
dλ

=
√
R

R =
[
(r2 + a2)E − aL

]2 −∆
[
(aE − L)2 + m2

0r2 +Q
]

,
 (28)

where λ is an affine parameter, m0 the mass of the particle, and Q, E, L are the three integrals 
of motion (respectively the Carter constant, the energy and the angular momentum of the test 
particle). The zeros of R thus represent turning points of the motion of such a test particle in 
Kerr’s spacetime.
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Stable circular orbits are defined by the three conditions

R(r) = 0,
dR(r)

dr
= 0, and

d2R(r)
dr2 � 0. (29)

The frequency (25) of a particle following a circular orbit reads:

Ω± =
4 ab2m2r − amr4 ±

(
4 b4m2 + 4 b2mr3 + r6

)√
− 4 b2m2r2−mr5

4 b4m2+4 b2mr3+r6

r7 − (a2 − 4 b2)mr4 + 4 (a2b2 + b4)m2r
.

 (30)

Figure 12. Plot of A(r), B+ (r) and B−(r) in the case a/m  =  0.9, b/m  =  1. The shaded 
regions represent the zones where circular orbits are allowed.

Figure 13. Plot of A(r), B+ (r) and B−(r) in the case b/m  =  1, for two different values 
of the spin. The shaded region for the negative values of r gets wider as a decreases. (a) 
a/m  =  0.8. (b) a/m  =  0.7.
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The ISCO values of the radius and the orbital frequency (30), for co-rotating and contra-
rotating orbits in the equatorial plane (Q = 0), have been computed for different values of a 
and b (see appendix A.1 for details). The result is shown in table 1.

4.2. Null geodesics

Let us now focus on the propagation of light rays in order to understand the images that can 
be seen by an observer on Earth, such as the ones of figure 10. Due to (28), in which we now 
take m0  =  0, the condition for the existence of a photon of energy E with angular momentum 
L and Carter’s constant Q is

[
(r2 + a2)E − aL

]2 −
(
r2 + a2 − 2rM(r)

) [
(aE − L)2 +Q

]
� 0, (31)

with M(r) given by equation (11).
In the case of a Kerr spacetime, M(r) = m and equation (31) is polynomial in r, of degree 

4. It can then be shown that a photon trajectory has at most one radial turning point in the 
black hole exterior [38]. Here, due to the form (11) of M(r), equation (31) reduces to a poly-
nomial equation of degree 7. The phenomenology is thus much richer than in Kerr’s case. 
In par ticular, some photon trajectories can have more than one radial turning point. This is 

Figure 14. Plot of A(r), B+ (r) and B−(r) in the case a/m  =  0.9 for two different values 
of b. The shaded region for the negative (resp. positive) values of r gets narrower (resp. 
wider) as b decreases. (a) b/m  =  0.7. (b) b/m  =  0.4.

Figure 15. Plot of A(r), B+ (r) and B−(r) in the case a/m  =  0.9, in the presence of two 
horizons (black vertical lines), for two different values of b. (a) b/m  =  0.2. (b) b/m  =  0.

F Lamy et alClass. Quantum Grav. 35 (2018) 115009



18

illustrated on figure 16 below. The central shaded region of figure (b) is particularly striking: 
photons with energy E0, angular momentum L0 and a Carter constant Q0 can oscillate back and 
forth between two radial turning points, around r  =  0.

This analysis, using the inequality (31), also allows us to understand the behaviour of the 
photons travelling into the region with r  <  0 (figure 10) before reaching an observer on Earth. 
Figure 17 shows the allowed region for a photon with E1/m  =  1, L1/m  =  −2, Q1/m2 = −1 in 
two different cases: b/m  =  0 (left) and b/m  =  1 (right), while a/m  =  0.9. One can see that in 
both cases, a photon going from r  >  0 to r  <  0 has a radial turning point and goes back to the 
region with positive radial coordinate. However, in the case b/m  =  0 where a trapped region 
is located between the two Killing horizons (black vertical lines), this photon cannot cross the 
inner horizon and thus reach the observer. When b/m  =  1 no horizon is present, which allows 
a photon from the accretion torus to travel towards the region r  <  0, reach a turning point and 
then an observer on Earth.

Table 1. Radial coordinate of the ISCO and orbital frequency of a test particle at the 
ISCO for various values of the parameters a/m and b/m, and m = mSgr A∗. Four different 
results are associated with each combination of a/m and b/m: the radius of the ISCO 
(left) and the frequency Ω of the co-rotating (resp. contra-rotating) orbit (right) are 
located on the upper (resp. lower) pannel. The bold text correspond to the classical Kerr 
(and Schwarzschild for a  =  0) black hole, the italic text to the regime of rotating regular 
black hole (zones II and III of figure 5), while the others are associated with a naked 
rotating wormhole (zone IV of figure 5).

  a/m         
b/m

0 0.5 1

0 6m +3.20 mHz 5 .84m + 3 .31 mHz 5.19m +3.86 mHz
6m −3.20 mHz 5 .84m − 3 .31 mHz 5.19m −3.86 mHz

0.5 4.23m +5.10 mHz 3 .82m + 5 .80 mHz 1.59m +1.08 mHz
7.55m −2.32 mHz 7 .46m − 2 .36 mHz 7.14m −2.50 mHz

0.9 2.32m +10.6 mHz 1.04m +8.54 mHz 1.59m +1.07 mHz
8.72m −1.89 mHz 8.65m −1.91 mHz 8.43m −1.98 mHz

Figure 16. Plot of R as a function of the radial coordinate r/m. The shaded regions 
represent the allowed regions for a photon with E0/m  =  1, L0/m  =  2, Q0/m2 = −1, in 
the case of a rotating Hayward black hole with a/m  =  0.9 and b/m  =  0 (a) (the black 
lines denote the outer and inner horizons) and of a naked rotating wormhole with 
b/m  =  1 (b).
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5. Conclusion

We have investigated the geometry of a non-singular rotating black hole, both numerically 
and analytically. To this end we have extended the geodesically incomplete rotating Hayward 
spacetime [16] to the region r  <  0, thereby obtaining a regular rotating Hayward metric. This 
metric describes a regular rotating Hayward black hole in the presence of an event horizon, 
and a naked rotating wormhole otherwise.

The numerical study of the regular rotating Hayward black hole using the ray-tracing code 
Gyoto has shown that, at a given spin a, the image of an accretion torus around such a black 
hole possesses a smaller shadow compared to that of the Kerr black hole. This difference is 
however out of reach of the observations in the foreseeable future.

Some images in the horizonless case (naked rotating wormhole) have also been com-
puted. They display a central faint region with hyper-lensed contours whose shape depends 
on the value of the parameter b. The simulations with Gyoto allow distinguishing very well 
these contours from the shadows associated with the standard Kerr case or with the rotating 
Hayward black hole, as can be seen by comparing figures 9 and 10 to 7(a) and (b). Without 
any good resolution data, we must stress that distinguishing these contours from the lensing 
ring delineating the shadow of a Kerr black hole could be extremely challenging, as in the case 
of boson stars [35].

Another interesting feature of the naked rotating wormhole occurs when we compute 
images with some inclination angle θ �= π/2. A dark ellipse then appears at the centre, corre-
sponding to the image of the wormhole’s throat on the observer’s sky. This ellipse is mainly 
dark because there is no source in the region with r  <  0. However, a luminous feature appears 
in it, whose shape depends on the value of b: it is produced by photons emitted from the accre-
tion torus, which have crossed the throat and made some journey in the region r  <  0 before 
coming back to the observer.

An analytical study of this geometry also has been performed. After giving the expressions 
for the specific energy and angular momentum of massive particles in co- and contra-rotating 
orbits in the equatorial plane, which differ from the results of Tomashtov et al [17], we com-
puted the radius of the ISCO for various values of the parameters a and b. The values of the 
frequency of the orbits at the ISCO, highly depending on b, open up the possibility of distin-
guishing regular rotating and Kerr black holes thanks to quasi-periodic oscillations.

Figure 17. Plot of R as a function of the radial coordinate r/m. The shaded regions 
represent the allowed regions for a photon with E1/m  =  1, L1/m  =  −2, Q1/m2 = −1, 
in the case of a rotating Hayward black hole with a/m  =  0.9 and b/m  =  0 (a) (the black 
lines denote the outer and inner horizons) and of a naked rotating wormhole with 
b/m  =  1 (b).
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With the upcoming results of the EHT, studies of alternatives to Kerr black holes happen 
to be particularly timely. This study of a regular rotating black hole is not designed to make 
a case for the existence of such an object at the center of the Galaxy, especially because it is 
only an approximate solution of non-linear electrodynamics. But it comes within the scope of 
previous works on boson stars [35] or hairy black holes [34] aiming at better understanding 
the data coming from the EHT. The intriguing similarities observed between boson stars and 
regular black holes spur to investigate other horizonless geometries in order to make out a 
common pattern.

Appendix. Calculation details

A.1. SageMath worksheets

Computation of geometric quantities relative to the metric (10) and (11) have been performed 
by means of the free computer algebra system SageMath [39], thanks to its tensor calculus 
part (SageManifolds [40]). The corresponding worksheets are available at the following url’s:

 •  Curvature of the naively extended rotating Hayward metric (equation (9)):

  https://cocalc.com/projects/09367c7f-3a39-4079-9d4d-cd59ebdca289/files/Rotating_
Hayward_metric_curvature.ipynb

 •  Curvature of the regular rotating Hayward metric (10) extended to the region r  <  0  
(figures 2(a) and (b)):

  https://cocalc.com/projects/09367c7f-3a39-4079-9d4d-cd59ebdca289/files/rotating_
Hayward_metric_ext.ipynb

 •  Null energy condition in the regular rotating Hayward metric (10) extended to the region 
r  <  0 (figure 6):

  https://cocalc.com/share/09367c7f-3a39-4079-9d4d-cd59ebdca289/Locally_nonro-
tating_frames_and_NEC.ipynb?viewer=share

 •  Expressions of the energy, angular momentum and angular velocity of a test particle in 
the regular rotating Hayward metric (10) extended to the region r  <  0; comparison with 
Toshmatov et al [17] and Bardeen et al [30]:

  https://cocalc.com/share/09367c7f-3a39-4079-9d4d-cd59ebdca289/Comparison_
of_E_L_and_Omega.ipynb?viewer=share

 •  Stable circular orbits in the regular rotating Hayward metric (10) extended to the region 
r  <  0 (table 1):

  https://cocalc.com/projects/09367c7f-3a39-4079-9d4d-cd59ebdca289/files/Stable_cir-
cular_orbits.ipynb

A.2. Gyoto plugin

A Gyoto metric class has been developed inside Gyoto to obtain all the ray-tracing images 
displayed in the present paper. It encodes Hayward’s regular rotating metric (10) extended to 
r  <  0, and boils down to the metric of a Kerr black hole when b  =  0. This metric class is part 
of the standard distribution of Gyoto, freely available at http://gyoto.obspm.fr.
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