
Journées Nationales de Calcul Formel

Rencontre organisée par :
Carole El Bacha, Luca De Feo, Pascal Giorgi, Marc Mezzarobba et Alban Quadrat

2018

Éric Gourgoulhon and Marco Mancini
Symbolic tensor calculus on manifolds: a SageMath implementation
Vol. 6, no 1 (2018), Course no I, p. 1-54.

<http://ccirm.cedram.org/item?id=CCIRM_2018__6_1_A1_0>

Centre international de rencontres mathématiques
U.M.S. 822 C.N.R.S./S.M.F.
Luminy (Marseille) France

cedram
Texte mis en ligne dans le cadre du

Centre de diffusion des revues académiques de mathématiques
http://www.cedram.org/

http://ccirm.cedram.org/item?id=CCIRM_2018__6_1_A1_0
http://www.cedram.org/
http://www.cedram.org/


Les cours du C.I.R.M.
Vol. 6 no 1 (2018) 1-54
Cours no I

Symbolic tensor calculus on manifolds: a
SageMath implementation

Éric Gourgoulhon and Marco Mancini

Preface

These notes correspond to two lectures given by one of us (EG) at Journées Nationales de
Calcul Formel 2018 (French Computer Algebra Days), which took place at Centre International de
Rencontres Mathématiques (CIRM), in Marseille, France, on 22-26 January 2018. The slides, demo
notebooks and videos of these lectures are available at

https://sagemanifolds.obspm.fr/jncf2018/
EG warmly thanks Marc Mezzarobba and the organizers of JNCF 2018 for their invitation and

the perfect organization of the lectures. He also acknowledges the great hospitality of CIRM and
many fruitful exchanges with the conference participants. We are very grateful to Travis Scrimshaw
for his help in the writing of these notes, especially for providing a customized LATEX environment
to display Jupyter notebook cells.

Course taught during the meeting “Journées Nationales de Calcul Formel” organized by Carole El Bacha, Luca De
Feo, Pascal Giorgi, Marc Mezzarobba and Alban Quadrat. 22-26 janvier 2018, C.I.R.M. (Luminy).

I–1

https://sagemanifolds.obspm.fr/jncf2018/


Éric Gourgoulhon and Marco Mancini

Contents

Preface 1

Chapter 1. Introduction 3
1. What is tensor calculus on manifolds? 3
2. A few words of history 3
3. Software for differential geometry 3
4. A brief overview of SageMath 4
5. The purpose of this lecture 4

Chapter 2. Differentiable manifolds 7
1. Introduction 7
2. Differentiable manifolds 7
2.1. Topological manifolds 7
2.2. Coordinate charts 9
2.3. Smooth manifolds 10
2.4. Smooth maps 12
3. Scalar fields and their algebra 12
3.1. Definition and implementation 12
3.2. Scalar field algebra 16
3.3. Implementation of algebra operations 18

Chapter 3. Vector fields 23
1. Introduction 23
2. Tangent vectors 23
2.1. Definitions 23
2.2. SageMath implementation 23
3. Vector fields 27
3.1. Definition 27
3.2. Module of vector fields 28
3.3. SageMath implementation 29
3.4. Construction and manipulation of vector fields 33
3.5. Implementation details regarding vector fields 37
3.6. Action of vector fields on scalar fields 42

Chapter 4. Tensor fields 43
1. Introduction 43
2. Differential forms 43
3. More general tensor fields 45
4. Riemannian metric 46
4.1. Defining a metric 46
4.2. Levi-Civita connection 48
4.3. Curvature 49
4.4. Volume form 50

Chapter 5. Conclusion and perspectives 51

References 53

I–2



Course no I— Symbolic tensor calculus on manifolds: a SageMath implementation

CHAPTER 1

Introduction

Contents

1. What is tensor calculus on manifolds? 3
2. A few words of history 3
3. Software for differential geometry 3
4. A brief overview of SageMath 4
5. The purpose of this lecture 4

1. What is tensor calculus on manifolds?

We shall provide precise definitions in Chaps. 2 and 3. Here, let us state briefly that tensor
calculus on manifolds stands for calculus on vector fields, and more generally tensor fields, on
differentiable manifolds, involving the following operations [12]:

• arithmetics of tensor fields;
• tensor product, contraction;
• (anti)symmetrization;
• Lie derivation along vector fields;
• pullback and pushforward associated with smooth manifold maps;
• exterior (Cartan) calculus on differential forms;
• covariant derivation with respect to a given affine connection;
• evaluating the torsion and the curvature of an affine connection.

Moreover, on pseudo-Riemannian manifolds, i.e. differentiable manifolds endowed with a metric
tensor, we may add the following operations [11, 17]:

• musical isomorphisms (i.e. raising and lowering indices with the metric tensor);
• determining the Levi-Civita connection;
• evaluating the curvature tensor of the Levi-Civita connection (Riemann tensor);
• Hodge duality;
• computing geodesics.

2. A few words of history

Symbolic tensor calculus has a long history, which started almost as soon as computer algebra
itself in the 1960s. Probably, the first tensor calculus program was GEOM, written by J.G. Fletcher
in 1965 [7]. Its main capability was to compute the Riemann tensor of a given metric. In 1969,
R.A. d’Inverno developed ALAM (for Atlas Lisp Algebraic Manipulator) and used it to compute the
Riemann and Ricci tensors of the Bondi metric. According to [22], the original calculations took
Bondi and collaborators 6 months to finish, while the computation with ALAM took 4 minutes
and yielded the discovery of 6 errors in the original paper by Bondi et al. Since then, numerous
packages have been developed; the reader is referred to [14] for a recent review of computer algebra
systems for general relativity (see also [13] for a review up to 2002), and to [10, 4] for more recent
reviews focused on tensor calculus. It is also worth to point out the extensive list of tensor calculus
packages maintained by J. M. Martin-Garcia at http://www.xact.es/links.html.

3. Software for differential geometry

Software packages for differential geometry and tensor calculus can be classified in two categories:

I–3

http://www.xact.es/links.html


Éric Gourgoulhon and Marco Mancini

(1) Applications atop some general purpose computer algebra system. Notable examples1 are
the xAct suite [15] and Ricci [20], both running atop Mathematica, DifferentialGeometry [1]
integrated into Maple, GRTensorIII [8] atop Maple, Atlas 2 [2] for Mathematica and Maple,
ctensor and itensor for Maxima [26] and SageManifolds [21] integrated in SageMath.

(2) Standalone applications. Recent examples are Cadabra [19] (field theory), SnapPy [6]
(topology and geometry of 3-manifolds) and Redberry [5] (tensors); older examples can be
found in Refs. [13, 14].

All applications listed in the second category are free software. In the first category, xAct and Ricci
are also free software, but they require a proprietary product, the source code of which is closed
(Mathematica).

As far as tensor calculus is concerned, the above packages can be distinguished by the type of
computation that they perform: abstract calculus (xAct/xTensor, Ricci, itensor, Cadabra, Redberry), or
component calculus (xAct/xCoba, DifferentialGeometry, GRTensorIII, Atlas 2, ctensor, SageManifolds).
In the first category, tensor operations such as contraction or covariant differentiation are performed
by manipulating the indices themselves rather than the components to which they correspond. In
the second category, vector frames are explicitly introduced on the manifold and tensor operations
are carried out on the components in a given frame.

4. A brief overview of SageMath

Since the tensor calculus method presented here is implemented in SageMath, we give first a
brief overview of the latter.

SageMath2 is a free, open-source mathematics software system, which is based on the Python
programming language. It makes use of over 90 open-source packages, among which are Maxima,
Pynac and SymPy (symbolic calculations), GAP (group theory), PARI/GP (number theory), Singular
(polynomial computations), matplotlib (high quality 2D figures), and Jupyter (graphical interface).
SageMath provides a uniform Python interface to all these packages; however, SageMath is much
more than a mere interface: it contains a large and increasing part of original code (more than
750,000 lines of Python and Cython, involving 5344 classes). SageMath was created in 2005 by
William Stein [24] and since then its development has been sustained by more than a hundred
researchers (mostly mathematicians). In particular, a strong impulse is currently being provided by
the European Horizon 2020 project OpenDreamKit [18]. Very good introductory textbooks about
SageMath are [9, 27, 28, 3].

Apart from the syntax, which is based on a popular programming language (Python) and not on
some custom script language, a difference between SageMath and, e.g., Maple or Mathematica is the
use of the parent/element pattern. This pattern closely reflects actual mathematics. For instance,
in Mathematica, all objects are trees of symbols and the program is essentially a set of sophisticated
rules to manipulate symbols. On the contrary, in SageMath each object has a given type (i.e. is an
instance of a given Python class3), and one distinguishes parent types, which model mathematical
sets with some structure (e.g. algebraic structure), from element types, which model set elements.
Moreover, each parent belongs to some dynamically generated class that encodes information about
its category, in the mathematical sense of the word.4 Automatic conversion rules, called coercions,
prior to a binary operation, e.g. x+ y with x and y having different parents, are implemented.

5. The purpose of this lecture

This lecture aims at presenting a symbolic tensor calculus method that
• runs on fully specified smooth manifolds (described by an atlas);
• is not limited to a single coordinate chart or vector frame;

1See https://en.wikipedia.org/wiki/Tensor_software for more examples.
2http://www.sagemath.org
3Let us recall that within an object-oriented programming language (as Python), a class is a structure to declare

and store the properties common to a set of objects. These properties are data (called attributes or state variables)
and functions acting on the data (called methods). A specific realization of an object within a given class is called
an instance of that class.

4See http://doc.sagemath.org/html/en/reference/categories/sage/categories/primer.html for a discus-
sion of SageMath’s category framework

I–4

https://en.wikipedia.org/wiki/Tensor_software
http://www.sagemath.org
http://doc.sagemath.org/html/en/reference/categories/sage/categories/primer.html


Course no I— Symbolic tensor calculus on manifolds: a SageMath implementation

• runs even on non-parallelizable manifolds (i.e. manifolds that cannot be covered by a single
vector frame);
• is independent of the symbolic backend (e.g., Pynac/Maxima, SymPy, ...) used to perform

calculus at the level of coordinate expressions.
The aim is to present not only the main ideas of the method, but also some details of its implemen-
tation in SageMath. This implementation has been performed via the SageManifolds project:

https://sagemanifolds.obspm.fr,
the contributors to which are listed at

https://sagemanifolds.obspm.fr/authors.html.

I–5

https://sagemanifolds.obspm.fr
https://sagemanifolds.obspm.fr/authors.html




Course no I— Symbolic tensor calculus on manifolds: a SageMath implementation

CHAPTER 2

Differentiable manifolds

Contents

1. Introduction 7
2. Differentiable manifolds 7
3. Scalar fields and their algebra 12

1. Introduction

Starting from basic mathematical definitions, we present the implementation of manifolds
and coordinate charts in SageMath (Sec. 2). We then focus on the algebra of scalar fields on a
manifold (3). As we shall see in Chap. 3, this algebra plays a central role in the implementation of
vector fields, the latter being considered as forming a module over it.

2. Differentiable manifolds

2.1. Topological manifolds. Let K be a topological field. In most applications K = R or K = C.
Given an integer n ≥ 1, a topological manifold of dimension n over K is a topological space
M obeying the following properties:

(1) M is a separated space (also called Hausdorff space): any two distinct points of M
admit disjoint open neighbourhoods.

(2) M has a countable base:5 there exists a countable family (Uk)k∈N of open sets of M such
that any open set of M can be written as the union (possibly infinite) of some members of
this family.

(3) Around each point of M , there exists a neighbourhood which is homeomorphic to an open
subset of Kn.

Property 1 excludes manifolds with “forks”. Property 2 excludes “too large” manifolds; in particular
it permits setting up the theory of integration on manifolds. In the case K = R, it also allows for a
smooth manifold of dimension n to be embedded smoothly into the Euclidean space R2n (Whitney
theorem). Property 3 expresses the essence of a manifold: it means that, locally, M “resembles”
Kn.

Let us start to discuss the implementation of manifolds in SageMath. We shall do it on a concrete
example, exposed in a Jupyter notebook which can be downloaded from the page devoted to these
lectures:

https://sagemanifolds.obspm.fr/jncf2018/
As for all SageMath, the syntax used in this notebook is Python one. However, no a priori knowledge
of Python is required, since we shall explain the main notations as they appear. The first cell of
the Jupyter notebook is to have all outputs rendered with LATEX:

In [1]: %display latex

In SageMath, manifolds are constructed by means of the global function Manifold:

In [2]: M = Manifold(2, ’M’)
print(M)

2-dimensional differentiable manifold M

5In the language of topology, one says that M is a second-countable space.

I–7

https://sagemanifolds.obspm.fr/jncf2018/


Éric Gourgoulhon and Marco Mancini

UniqueRepresentation Parent

ManifoldSubset
element: ManifoldPoint

TopologicalManifold

DifferentiableManifold

OpenInterval

RealLine

Element

ManifoldPointGeneric SageMath class
SageManifolds class
(differential part)

Figure 2.1: Python classes for topological manifolds, differentiable manifolds, subsets of them
and points on them (ManifoldPoint).

By default, the function Manifold returns a manifold over K = R:

In [3]: M.base_field()

Out[3]: R

Note the use of the standard object-oriented notation (ubiquitous in Python): the method
base_field() is called on the object M; since this method does not require any extra argument
(all the information lies in M), its argument list is empty, hence the final (). Base fields different
from R must be specified with the optional keyword field, for instance
M = Manifold(2, ’M’, field=’complex’)
to construct a complex manifold6. We may check that M is a topological space:

In [4]: M in Sets().Topological()

Out[4]: True

Actually, M belongs to the following categories:

In [5]: M.categories()

Out[5]:
[SmoothR,DifferentiableR,ManifoldsR,TopologicalSpaces(Sets),

Sets,SetsWithPartialMaps,Objects]
As we can see from the first category in the above list, Manifold constructs a smooth mani-
fold by default. If one would like to stick to the topological level, one should add the keyword
argument structure=’topological’ to Manifold, i.e.
M = Manifold(2, ’M’, structure=’topological’)
Then M would have been a topological manifold without any further structure.

Manifolds are implemented by the Python classes TopologicalManifold and
DifferentiableManifold (see Fig. 2.1), actually by dynamically generated subclasses of those,
via SageMath category framework:7

6Note however that the functionalities regarding complex manifolds are pretty limited at the moment. Volunteers
are welcome to implement them! See https://sagemanifolds.obspm.fr/contrib.html.

7See http://doc.sagemath.org/html/en/reference/categories/sage/categories/primer.html for details.

I–8

https://sagemanifolds.obspm.fr/contrib.html
http://doc.sagemath.org/html/en/reference/categories/sage/categories/primer.html


Course no I— Symbolic tensor calculus on manifolds: a SageMath implementation

In [6]: type(M)

Out[6]: <class ’sage.manifolds.differentiable.manifold.
DifferentiableManifold_with_category’>

Let us check that the actual class of M, i.e. DifferentiableManifold-with-category, is a subclass
of DifferentiableManifold:

In [7]: isinstance(M,
sage.manifolds.differentiable.manifold.DifferentiableManifold)

Out[7]: True

and hence of TopologicalManifold according to the inheritance diagram of Fig. 2.1:

In [8]: isinstance(M, sage.manifolds.manifold.TopologicalManifold)

Out[8]: True

Notice from Fig. 2.1 that TopologicalManifold itself is a subclass of ManifoldSubset (the
class for generic subsets of a manifold), which reflects the fact that M ⊂M .

2.2. Coordinate charts. Property 3 in the definition of a topological manifold (Sec. 2.1) means
that one can label the points of M in a continuous way by n numbers (xα)α∈{0,...,n−1} ∈ Kn, which
are called coordinates. More precisely, given an open subset U ⊂ M , a coordinate chart (or
simply a chart) on U is a homeomorphism8

(2.1)
X : U ⊂M −→ X(U) ⊂ Kn

p 7−→ (x0, . . . , xn−1).

We declare a chart, along with the symbols used to denote the coordinates (here x = x0 and y = x1)
by

In [9]: U = M.open_subset(’U’)
XU.<x,y> = U.chart()
XU

Out[9]: (U, (x, y))

Open subsets of a differentiable manifold are implemented by a (dynamically generated) sub-
class of DifferentiableManifold, since they are differentiable manifolds in their own:

In [10]: isinstance(U,
sage.manifolds.differentiable.manifold.DifferentiableManifold)

Out[10]: True

Points on M are created from their coordinates in a given chart:

In [11]: p = U((1,2), chart=XU, name=’p’)
print(p)

Point p on the 2-dimensional differentiable manifold M

The syntax U(...) used to create p as an element of U reflects the parent/element pattern employed
in SageMath; indeed U is the parent of p:

In [12]: p.parent()

8Let us recall that a homeomorphism between two topological spaces (here U and X(U)) is a bijective map X
such that both X and X−1 are continuous.

I–9



Éric Gourgoulhon and Marco Mancini

Out[12]: U

Points are implemented by a dynamically generated subclass of ManifoldPoint (cf. Fig. 2.1).
The principal attribute of this class is the one storing the point’s coordinates in various charts; it is
implemented as a Python dictionary,9 whose keys are the charts:

In [13]: p._coordinates

Out[13]: {(U, (x, y)) : (1, 2)}

The leading underscore in the name _coordinates is a notation convention to specify that this
attribute is a private one: the dictionary _coordinates should not be manipulated by the end
user or involved in some code outside of the class ManifoldPoint. It belongs to the internal
implementation, which may be changed while the user interface of the class ManifoldPoint is kept
fixed. We show this private attribute here because we are precisely interested in implementation
features. The public way to recover the point’s coordinates is to let the chart act on the point
(reflecting thereby the definition (2.1) of a chart):

In [14]: XU(p)

Out[14]: (1, 2)

Usually, one needs more than a single coordinate system to cover M . An atlas on M is a set of
pairs (Ui, Xi)i∈I , where I is a set, Ui an open set of M and Xi a chart on Ui, such that the union
of all Ui’s covers M :

(2.2)
⋃
i∈I

Ui = M.

Here we introduce a second chart on M :

In [15]: V = M.open_subset(’V’)
XV.<xp,yp> = V.chart("xp:x’ yp:y’")
XV

Out[15]: (V, (x′, y′))

and declare that M is covered by only two charts, i.e. that M = U ∪ V :

In [16]: M.declare_union(U, V)

In [17]: M.atlas()

Out[17]: [(U, (x, y)) , (V, (x′, y′))]

2.3. Smooth manifolds. For manifolds, the concept of differentiability is defined from the smooth
structure of Kn, via an atlas: a smooth manifold, is a topological manifold M equipped with an
atlas (Ui, Xi)i∈I such that for any non-empty intersection Ui ∩ Uj , the map

(2.3) Xi ◦X−1
j : Xj(Ui ∩ Uj) ⊂ Kn −→ Xi(Ui ∩ Uj) ⊂ Kn

is smooth (i.e. C∞). Note that the above map is from an open set of Kn to an open set of Kn, so
that the invoked differentiability is nothing but that of Kn. Such a map is called a change of

9A dictionary, also known as associative array, is a data structure that generalizes the concept of array in the
sense that the key to access to an element is not restricted to an integer or a tuple of integers.

I–10



Course no I— Symbolic tensor calculus on manifolds: a SageMath implementation

coordinates or, in the mathematical literature, a transition map. The atlas (Ui, Xi)i∈I is called
a smooth atlas.

Remark 1: Strictly speaking a smooth manifold is a pair (M,A) where A is a (maximal) smooth atlas on
M . Indeed a given topological manifold M can have non-equivalent differentiable structures, as shown by
Milnor (1956) [16] in the specific case of the unit sphere of dimension 7, S7: there exist smooth manifolds,
the so-called exotic spheres, that are homeomorphic to S7 but not diffeomorphic to S7. On the other side,
for n ≤ 6, there is a unique smooth structure for the sphere Sn. Moreover, any manifold of dimension
n ≤ 3 admits a unique smooth structure. Amazingly, in the case of Rn, there exists a unique smooth
structure (the standard one) for any n 6= 4, but for n = 4 (the spacetime case!) there exist uncountably
many non-equivalent smooth structures, the so-called exotic R4 [25].

For the manifold M under consideration, we define the transition map XU → XV on W = U ∩ V
as follows:

In [18]: XU_to_XV = XU.transition_map(XV,
(x/(x^2+y^2), y/(x^2+y^2)),
intersection_name=’W’,
restrictions1= x^2+y^2!=0,
restrictions2= xp^2+yp^2!=0)

XU_to_XV.display()

Out[18]:

{
x′ = x

x2+y2

y′ = y
x2+y2

The argument restrictions1 means that W = U \ {S}, where S is the point of coordinates
(x, y) = (0, 0), while the argument restrictions2 means that W = V \ {N}, where N is the point
of coordinates (x′, y′) = (0, 0). Since M = U ∪ V , we have then

(2.4) U = M \ {N}, V = M \ {S}, and W = M \ {N,S}.

The transition map XV → XU is obtained by computing the inverse of the one defined above:

In [19]: XU_to_XV.inverse().display()

Out[19]:

{
x = x′

x′2+y′2

y = y′

x′2+y′2

At this stage, the smooth manifold M is fully specified, being covered by one atlas with all
transition maps specified. The reader may have recognized that M is nothing but the 2-dimensional
sphere:

(2.5) M = S2,

with XU (resp. XV) being the chart of stereographic coordinates from the North pole N (resp.
the South pole S).

Since the transition maps have been defined, we can ask for the coordinates (x′, y′) of the point
p, whose (x, y) coordinates were (1, 2):

In [20]: XV(p)

Out[20]:
(

1
5 ,

2
5

)
This operation has updated the internal dictionary _coordinates (compare with Out [13]):

In [21]: p._coordinates

Out[21]:
{

(U, (x, y)) : (1, 2), (V, (x′, y′)) :
(

1
5 ,

2
5

)}

I–11



Éric Gourgoulhon and Marco Mancini

2.4. Smooth maps. Given two smooth manifolds, M and M ′, of respective dimensions n and n′,
we say that a map Φ : M →M ′ is smooth map if and only if in some (and hence all, thanks to
the smoothness of (2.3)) coordinate systems of M and M ′ belonging to the smooth atlases of M
and M ′, the coordinates of the image Φ(p) of any point p ∈M are smooth functions Kn → Kn′ of
the coordinates of p. The map Φ is said to be a diffeomorphism iff it is bijective and both Φ
and Φ−1 are smooth. This implies n = n′.

Back to our example manifold, a natural smooth map is the embedding of S2 in R3. To define it,
we start by declaring R3 as a 3-dimensional smooth manifold, canonically endowed with a single
chart, that of Cartesian coordinates (X,Y, Z):

In [22]: R3 = Manifold(3, ’R^3’, r’\mathbb{R}^3’)
XR3.<X,Y,Z> = R3.chart()
XR3

Out[22]:
(
R3, (X,Y, Z)

)
The embedding Φ : S2 → R3 is then defined in terms of its coordinate expression in the two
charts covering M = S2:

In [23]: Phi = M.diff_map(R3, {(XU, XR3):
[2*x/(1+x^2+y^2), 2*y/(1+x^2+y^2),
(x^2+y^2-1)/(1+x^2+y^2)],

(XV, XR3):
[2*xp/(1+xp^2+yp^2), 2*yp/(1+xp^2+yp^2),
(1-xp^2-yp^2)/(1+xp^2+yp^2)]},

name=’Phi’, latex_name=r’\Phi’)
Phi.display()

Out[23]:

Φ : M −→ R3

on U : (x, y) 7−→ (X,Y, Z) =
(

2x
x2 + y2 + 1 ,

2 y
x2 + y2 + 1 ,

x2 + y2 − 1
x2 + y2 + 1

)
on V : (x′, y′) 7−→ (X,Y, Z) =

(
2x′

x′2 + y′2 + 1
,

2 y′

x′2 + y′2 + 1
,−x

′2 + y′
2 − 1

x′2 + y′2 + 1

)
We may use Φ for graphical purposes, for instance to display the grids of the stereographic
charts XU (in red) and XV (in green), with the point p atop:

In [24]: graph = XU.plot(chart=XR3, mapping=Phi, number_values=25,
label_axes=False) + \

XV.plot(chart=XR3, mapping=Phi, number_values=25,
color=’green’, label_axes=False) + \

p.plot(chart=XR3, mapping=Phi, label_offset=0.05)
show(graph, viewer=’threejs’, online=True)

Out[24]: (see Figure 2.2)

3. Scalar fields and their algebra

3.1. Definition and implementation. Given a smooth manifold M over a topological field K, a
scalar field (also called a scalar-valued function) on M is a smooth map

(3.1)
f : M −→ K

p 7−→ f(p).

I–12



Course no I— Symbolic tensor calculus on manifolds: a SageMath implementation

Figure 2.2: Output corresponding to In [24].

A scalar field has different coordinate representations F , F̂ , etc. in different charts X, X̂, etc.
defined on M :

(3.2) f(p) = F ( x1, . . . , xn︸ ︷︷ ︸
coord. of p
in chart X

) = F̂ ( x̂1, . . . , x̂n︸ ︷︷ ︸
coord. of p
in chart X̂

) = . . .

In SageMath, scalar fields are implemented by the class DiffScalarField10 and the various
representations (3.2) are stored in the private attribute _express of this class, which is a Python
dictionary whose keys are the various charts defined on M :

(3.3) f._express =
{
X : F, X̂ : F̂ , . . .

}
.

Each representation F is an instance of the class ChartFunction, devoted to functions of coordinates,
allowing for different internal representations: SageMath symbolic expression, SymPy expression,
etc.

For instance, let us define a scalar field on our example manifold M = S2:

In [25]: f = M.scalar_field({XU: 1/(1+x^2+y^2), XV: (xp^2+yp^2)/(1+xp^2+yp^2)},
name=’f’)

f.display()

Out[25]:

f : M −→ R

on U : (x, y) 7−→ 1
x2+y2+1

on V : (x′, y′) 7−→ x′2+y′2

x′2+y′2+1

The internal dictionary _express is then

In [26]: f._express

10http://doc.sagemath.org/html/en/reference/manifolds/sage/manifolds/differentiable/scalarfield.html

I–13

http://doc.sagemath.org/html/en/reference/manifolds/sage/manifolds/differentiable/scalarfield.html


Éric Gourgoulhon and Marco Mancini

Out[26]:

{
(U, (x, y)) : 1

x2 + y2 + 1 , (V, (x
′, y′)) : x′

2 + y′
2

x′2 + y′2 + 1

}
The reader may wonder about the compatibility of the two coordinate expressions provided
in the definition of f . Actually, to ensure the compatibility, it is possible to declare the scalar field
in a single chart, XU say, and then to obtain its expression in chart XV by analytic continuation
from the expression in W = U ∩ V , where both expressions are known, thanks to the transition
map XV → XU:

In [27]: f0 = M.scalar_field({XU: 1/(1+x^2+y^2)})
f0.add_expr_by_continuation(XV, U.intersection(V))
f == f0

Out[27]: True

The representation of the scalar field in a given chart, i.e. the public access to the private directory
_express, is obtained via the method coord_function():

In [28]: fU = f.coord_function(XU)
fU.display()

Out[28]: (x, y) 7→ 1
x2 + y2 + 1

In [29]: fV = f.coord_function(XV)
fV.display()

Out[29]: (x′, y′) 7→ x′
2 + y′

2

x′2 + y′2 + 1
As mentioned above, each chart representation is an instance of the class ChartFunction:

In [30]: isinstance(fU, sage.manifolds.chart_func.ChartFunction)

Out[30]: True

Mathematically, chart functions are K-valued functions on the codomain of the considered
chart. They map coordinates to elements of the base field K:

In [31]: fU(1,2)

Out[31]:
1
6

In [32]: fU(*XU(p))

Out[32]:
1
6

Note the use of Python’s star operator in *XU(p) to unpack the tuple of coordinates returned by
XU(p) (in the present case: (1,2)) to positional arguments for the function fU (in the present case:
1, 2). On their side, scalar fields map manifold points, not coordinates, to K:

In [33]: f(p)

Out[33]:
1
6

Note that the equality between Out[32] and Out[33] reflects the identity f = F ◦ X, where
F is the chart function (denoted fU above) representing the scalar field f on the chart X (cf.
Eq. (3.2)).

I–14



Course no I— Symbolic tensor calculus on manifolds: a SageMath implementation

Internally, each chart function stores coordinate expressions with respect to various computational
backends:

• SageMath symbolic engine, based on the Pynac11 backend, with Maxima used for some
simplifications or computation of integrals;

• SymPy12 (Python library for symbolic mathematics);
• in the future, more symbolic or numerical backends will be implemented.

The coordinate expressions are stored in the private dictionary _express13 of the class ChartFunction,
whose keys are strings identifying the computational backends. By default only SageMath symbolic
expressions, i.e. expressions pertaining to the so-called SageMath’s Symbolic Ring (SR), are stored:

In [34]: fU._express

Out[34]:
{

SR : 1
x2 + y2 + 1

}
The public access to the private dictionary _express is performed via the method expr():

In [35]: fU.expr()

Out[35]:
1

x2 + y2 + 1

In [36]: type(fU.expr())

Out[36]: <type ’sage.symbolic.expression.Expression’>

Actually, fU.expr() is a shortcut for fU.expr(’SR’) since SR is the default symbolic backend.
Note that the class Expression is that devoted to SageMath symbolic expressions. The method
expr() can also be invoked to get the expression in another symbolic backend, for instance SymPy:

In [37]: fU.expr(’sympy’)

Out[37]: 1/(x**2 + y**2 + 1)

In [38]: type(fU.expr(’sympy’))

Out[38]: <class ’sympy.core.power.Pow’>

This operation has updated the internal dictionary _express (compare with Out [34]):

In [39]: fU._express

Out[39]:
{

SR : 1
x2 + y2 + 1 , sympy : 1/(x**2 + y**2 + 1)

}
The default calculus backend for chart functions of chart XU can changed thanks to the method
set_calculus_method():

In [40]: XU.set_calculus_method(’sympy’)
fU.expr()

Out[40]: 1/(x**2 + y**2 + 1)

Reverting to SageMath’s symbolic engine:

11http://pynac.org
12https://www.sympy.org
13not to be confused with the attribute _express of class DiffScalarField presented at In [26]

I–15

http://pynac.org
https://www.sympy.org


Éric Gourgoulhon and Marco Mancini

UniqueRepresentation Parent

ScalarFieldAlgebra
element: ScalarField

category: CommutativeAlgebras(base_field)

DiffScalarFieldAlgebra
element: DiffScalarField

CommutativeAlgebraElement

ScalarField
parent: ScalarFieldAlgebra

DiffScalarField
parent: DiffScalarFieldAlgebra

Generic SageMath class
SageManifolds class
(differential part)

Figure 3.1: SageMath classes for scalar fields on a manifold.

In [41]: XU.set_calculus_method(’SR’)
fU.expr()

Out[41]:
1

x2 + y2 + 1
Symbolic expressions can be accessed directly from the scalar field, f.expr(XU) being a shortcut
for f.coord_function(XU).expr():

In [42]: f.expr(XU)

Out[42]:
1

x2 + y2 + 1

In [43]: f.expr(XV)

Out[43]:
x′

2 + y′
2

x′2 + y′2 + 1

3.2. Scalar field algebra. The set C∞(M) of all scalar fields on M has naturally the structure
of a commutative algebra over K: it is clearly a vector space over K and it is endowed with a
commutative ring structure by pointwise multiplication:
(3.4) ∀f, g ∈ C∞(M), ∀p ∈M, (f.g)(p) := f(p)g(p).
The algebra C∞(M) is implemented in SageMath via the parent class
DiffScalarFieldAlgebra,14 in the category CommutativeAlgebras. The corresponding element
class is of course DiffScalarField (cf. Fig. 3.1).

The SageMath object representing C∞(M) is obtained from M via the method
scalar_field_algebra():

In [44]: CM = M.scalar_field_algebra()
CM

Out[44]: C∞ (M)

In [45]: CM.category()

14http://doc.sagemath.org/html/en/reference/manifolds/sage/manifolds/differentiable/scalarfield_algebra.html

I–16

http://doc.sagemath.org/html/en/reference/manifolds/sage/manifolds/differentiable/scalarfield_algebra.html


Course no I— Symbolic tensor calculus on manifolds: a SageMath implementation

Out[45]: CommutativeAlgebrasSR

As for the manifold classes, the actual Python class implementing C∞(M) is inherited from
DiffScalarFieldAlgebra via SageMath’s category framework (cf. Sec. 2.1), hence it bares the
name DiffScalarFieldAlgebra_with_category:

In [46]: type(CM)

Out[46]: <class ’sage.manifolds.differentiable.scalarfield_algebra.
DiffScalarFieldAlgebra_with_category’>

The class DiffScalarFieldAlgebra_with_category is dynamically generated as a subclass of
DiffScalarFieldAlgebra with extra functionalities, like for instance the method is_commutative():

In [47]: CM.is_commutative()

Out[47]: True

To have a look at the corresponding code, we use the double question mark, owing to the fact that
SageMath is open-source:

In [48]: CM.is_commutative??

1 def is_commutative(self):
2 """
3 Return ‘‘True ‘‘, since commutative magmas are commutative.
4

5 EXAMPLES ::
6

7 sage: Parent(QQ ,category=CommutativeRings ()). is_commutative ()
8 True
9 """

10 return True
11 File: .../ local/lib/python2 .7/site -packages/sage/categories/magmas.py

We see from the File field in line 11 that the code belongs to the category part of SageMath, not to
the manifold part, where the class DiffScalarFieldAlgebra is defined. This shows that the method
is_commutative() has indeed be added to the methods of the base class DiffScalarFieldAlgebra,
while dynamically generating the class
DiffScalarFieldAlgebra-with-category.

Regarding the scalar field f introduced in Sec. 3.1, we have of course

In [49]: f in CM

Out[49]: True

Actually, in SageMath language, CM=C∞(M) is the parent of f:

In [50]: f.parent() is CM

Out[50]: True

The zero element of the algebra C∞(M) is

In [51]: CM.zero().display()

I–17



Éric Gourgoulhon and Marco Mancini

Out[51]:

0 : M −→ R

on U : (x, y) 7−→ 0
on V : (x′, y′) 7−→ 0

while its unit element is
In [52]: CM.one().display()

Out[52]:

1 : M −→ R

on U : (x, y) 7−→ 1
on V : (x′, y′) 7−→ 1

3.3. Implementation of algebra operations. Let us consider some operation in the algebra
C∞(M):

In [53]: h = f + 2*CM.one()
h.display()

Out[53]:

M −→ R

on U : (x, y) 7−→ 2 x2+2 y2+3
x2+y2+1

on V : (x′, y′) 7−→ 3 x′2+3 y′2+2
x′2+y′2+1

In [54]: h(p)

Out[54]:
13
6

Let us examine how the addition in In [53] is performed. For the Python interpreter h =
f + 2*CM.one() is equivalent to h = f.__add__(2*CM.one()), i.e. the + operator amounts to
calling the method __add__() on its left operand, with the right operand as argument. To have a
look at the source code of this method, we use the double question mark:15

In [55]: f.__add__??

1 File: .../ src/sage/structure/element.pyx
2 def __add__(left , right):
3 """
4 Top -level addition operator for :class:‘Element ‘ invoking
5 the coercion model.
6

7 See :ref:‘element_arithmetic ‘.
8 ...
9 """

10 cdef int cl = classify_elements(left , right)
11 if HAVE_SAME_PARENT(cl):
12 return (<Element >left). _add_(right)
13 # Left and right are Sage elements => use coercion model
14 if BOTH_ARE_ELEMENT(cl):
15 return coercion_model.bin_op(left , right , add)
16 ...

From lines 1 and 4, we see that the method __add__() is implemented at the level of the class
Element from which DiffScalarField inherits, via CommutativeAlgebraElement (cf. Fig. 3.1).
In the present case, left = f and right = 2*CM.one() have the same parent, namely the algebra
CM, so that the actual result is computed in line 12. The latter invokes the method _add_()

15In this transcript of code and in those that follow, some parts have been skipped, being not relevant for the
discussion; they are marked by “...”.

I–18



Course no I— Symbolic tensor calculus on manifolds: a SageMath implementation

(note the single underscore on each side of add). This operator is implemented at the level of
ScalarField, as checked from the source code (see line 24 below):

In [56]: f._add_??

1 def _add_(self , other):
2 """
3 Scalar field addition.
4

5 INPUT:
6 - ‘‘other ‘‘ -- a scalar field (in the same algebra as ‘‘self ‘‘)
7

8 OUTPUT:
9 - the scalar field resulting from the addition of ‘‘self ‘‘ and

10 ‘‘other ‘‘
11 ...
12 """
13 ...
14 # Generic case:
15 com_charts = self.common_charts(other)
16 if com_charts is None:
17 raise ValueError("no␣common␣chart␣for␣the␣addition")
18 result = type(self)(self.parent ())
19 for chart in com_charts:
20 # ChartFunction addition:
21 result._express[chart] = self._express[chart] + other._express[chart]
22 ...
23 return result
24 File: .../ local/lib/python2 .7/site -packages/sage/manifolds/scalarfield.py

This reflects a general strategy16 in SageMath: the arithmetic Python operators __add__(),
__sub__(), etc. are implemented at the top-level class Element, while specific element subclasses,
like ScalarField here, implement single-underscore methods _add_(), _sub_(), etc., which per-
form the actual computation when both operands have the same parent. Looking at the code
(lines 15 to 23), we notice that the first step is to search for the charts in which both operands of
the addition operator have a coordinate expression (line 15). This is performed by the method
common_charts(); in the current example, we get the two stereographic charts defined on M :

In [57]: f.common_charts(2*CM.one())

Out[57]: [(U, (x, y)) , (V, (x′, y′))]

In general, common_charts() returns the charts for which both operands have already a known
coordinate expression or for which a coordinate expression can be computed by a known transition
map, as we can see on the source code:
In [58]: f.common_charts??

1 def common_charts(self , other ):
2 """
3 Find common charts for the expressions of the scalar field and
4 ‘‘other ‘‘.
5

6 INPUT:
7 - ‘‘other ‘‘ -- a scalar field
8

9 OUTPUT:
10 - list of common charts; if no common chart is found , ‘‘None ‘‘ is
11 returned (instead of an empty list)
12 ...

16See http://doc.sagemath.org/html/en/thematic_tutorials/coercion_and_categories.html for details.

I–19

http://doc.sagemath.org/html/en/thematic_tutorials/coercion_and_categories.html


Éric Gourgoulhon and Marco Mancini

13 """
14 if not isinstance(other , ScalarField ):
15 raise TypeError("the␣second␣argument␣must␣be␣a␣scalar␣field")
16 coord_changes = self._manifold._coord_changes
17 resu = []
18 #
19 # 1/ Search for common charts among the existing expressions , i.e.
20 # without performing any expression transformation.
21 # -------------------------------------------------------------
22 for chart1 in self._express:
23 if chart1 in other._express:
24 resu.append(chart1)
25 # Search for a subchart:
26 known_expr1 = self._express.copy()
27 known_expr2 = other._express.copy()
28 for chart1 in known_expr1:
29 if chart1 not in resu:
30 for chart2 in known_expr2:
31 if chart2 not in resu:
32 if chart2 in chart1._subcharts:
33 self.expr(chart2)
34 resu.append(chart2)
35 if chart1 in chart2._subcharts:
36 other.expr(chart1)
37 resu.append(chart1)
38 #
39 # 2/ Search for common charts via one expression transformation
40 # ----------------------------------------------------------
41 for chart1 in known_expr1:
42 if chart1 not in resu:
43 for chart2 in known_expr2:
44 if chart2 not in resu:
45 if (chart1 , chart2) in coord_changes:
46 self.coord_function(chart2 , from_chart=chart1)
47 resu.append(chart2)
48 if (chart2 , chart1) in coord_changes:
49 other.coord_function(chart1 , from_chart=chart2)
50 resu.append(chart1)
51 if resu == []:
52 return None
53 else:
54 return resu
55 File: .../ local/lib/python2 .7/site -packages/sage/manifolds/scalarfield.py

Once the list of charts in which both operands have a coordinate expression has been found,
the addition is performed at the chart function level (cf. Sec. 3.1), via the loop on the charts in
lines 19-21 of the code for _add_(). The code for the addition of chart functions defined on the
same chart is (recall that fU is the chart function representing f in chart XU):
In [59]: fU._add_??

1 def _add_(self , other):
2 """
3 Addition operator.
4

5 INPUT:
6 - ‘‘other ‘‘ -- a :class:‘ChartFunction ‘ or a value
7

8 OUTPUT:
9 - chart function resulting from the addition of ‘‘self ‘‘

10 and ‘‘other ‘‘
11 ...

I–20



Course no I— Symbolic tensor calculus on manifolds: a SageMath implementation

12 """
13 curr = self._calc_method._current
14 res = self._simplify(self.expr() + other.expr ())
15 if curr ==’SR’ and res.is_trivial_zero ():
16 # NB: "if res == 0" would be too expensive (cf. #22859)
17 return self.parent (). zero()
18 else:
19 return type(self)(self.parent(), res)
20 File: .../ local/lib/python2 .7/site -packages/sage/manifolds/chart_func.py

We notice that the addition is performed in line 14 on the symbolic expression with respect to
the symbolic backend currently at work (SageMath/Pynac, SymPy, ...), as returned by the method
expr() (see Sec. 3.1). Let us recall that the user can change the symbolic backend at any time
by means of the method set_calculus_method(), applied either to a chart or to an open subset
(possibly M itself). Besides, we notice on line 14 above that the result of the symbolic addition
is automatically simplified, by means of the method _simplify. The latter invokes a chain of
simplifying functions, which depends on the symbolic backend.17

Let us now discuss the second case in the __add__() method of Element, namely the case for
which the parents of both operands are different (lines 14-15 in the code listed as a result of In
[55], on page 18). This case is treated via SageMath coercion model, which allows one to deal
with additions like
In [60]: h1 = f + 2

h1.display()

Out[60]:

M −→ R

on U : (x, y) 7−→ 2 x2+2 y2+3
x2+y2+1

on V : (x′, y′) 7−→ 3 x′2+3 y′2+2
x′2+y′2+1

A priori, f + 2 is not a well defined operation, since the integer 2 does not belong to the al-
gebra C∞(M). However SageMath manages to treat it because 2 can be coerced (i.e. automatically
and unambiguously converted) via CM(2) into a element of C∞(M), namely the constant scalar
field whose value is 2:
In [61]: CM(2).display()

Out[61]:

M −→ R

on U : (x, y) 7−→ 2
on V : (x′, y′) 7−→ 2

This happens because there exists a coercion map from the parent of 2, namely the ring of
integers Z (denoted ZZ in SageMath), to C∞(M):

In [62]: 2.parent()

Out[62]: Z

In [63]: CM.has_coerce_map_from(ZZ)

Out[63]: True

17See https://github.com/sagemath/sage/blob/develop/src/sage/manifolds/utilities.py for details; note
that the simplifications regarding the SymPy engine are not fully implemented yet.

I–21

https://github.com/sagemath/sage/blob/develop/src/sage/manifolds/utilities.py




Course no I— Symbolic tensor calculus on manifolds: a SageMath implementation

CHAPTER 3

Vector fields

Contents

1. Introduction 23
2. Tangent vectors 23
3. Vector fields 27

1. Introduction

This chapter is devoted to the most basic objects of tensor calculus: vector fields. We start by
defining tangent vectors and tangent spaces on a differentiable manifold (Sec. 2), and then move to
vector fields (Sec. 3).

2. Tangent vectors

2.1. Definitions. Let M be a smooth manifold of dimension n over the topological field K and
C∞(M) the corresponding algebra of scalar fields introduced in Sec. 3.2. For p ∈M , a tangent
vector at p is a map

(2.1) v : C∞(M) −→ K

such that (i) v is K-linear and (ii) v obeys

(2.2) ∀f, g ∈ C∞(M), v(fg) = v(f)g(p) + f(p)v(g).

Because of property (2.2), one says that v is a derivation at p.
The set TpM of all tangent vectors at p is a vector space of dimension n over K; it is called the

tangent space to M at p.

2.2. SageMath implementation. To illustrate the implementation of tangent vectors in Sage-
Math, we shall consider the same example M = S2 as in Chap. 2. First of all, we recreate
the same objects as in Chap. 2, starting with the manifold M and its two stereographic charts
XU = (U, (x, y)) and XV = (V, (x′, y′)), with M = U ∪ V (the full Jupyter notebook is available at
https://sagemanifolds.obspm.fr/jncf2018/):

In [1]: %display latex

In [2]: M = Manifold(2, ’M’)
U = M.open_subset(’U’)
XU.<x,y> = U.chart()
V = M.open_subset(’V’)
XV.<xp,yp> = V.chart("xp:x’ yp:y’")
M.declare_union(U,V)
XU_to_XV = XU.transition_map(XV,

(x/(x^2+y^2), y/(x^2+y^2)),
intersection_name=’W’,
restrictions1= x^2+y^2!=0,
restrictions2= xp^2+yp^2!=0)

XV_to_XU = XU_to_XV.inverse()
M.atlas()

I–23

https://sagemanifolds.obspm.fr/jncf2018/


Éric Gourgoulhon and Marco Mancini

Out[2]: [(U, (x, y)) , (V, (x′, y′)) , (W, (x, y)) , (W, (x′, y′))]

Then we introduce the point p ∈ U of coordinates (x, y) = (1, 2):

In [3]: p = U((1,2), chart=XU, name=’p’)
print(p)

Point p on the 2-dimensional differentiable manifold M

The canonical embedding of S2 in R3 is defined mostly for graphical purposes:

In [4]: R3 = Manifold(3, ’R^3’, r’\mathbb{R}^3’)
XR3.<X,Y,Z> = R3.chart()
Phi = M.diff_map(R3, {(XU, XR3):

[2*x/(1+x^2+y^2), 2*y/(1+x^2+y^2),
(x^2+y^2-1)/(1+x^2+y^2)],

(XV, XR3):
[2*xp/(1+xp^2+yp^2), 2*yp/(1+xp^2+yp^2),
(1-xp^2-yp^2)/(1+xp^2+yp^2)]},

name=’Phi’, latex_name=r’\Phi’)
Phi.display()

Out[4]:

Φ : M −→ R3

on U : (x, y) 7−→ (X,Y, Z) =
(

2 x
x2+y2+1 ,

2 y
x2+y2+1 ,

x2+y2−1
x2+y2+1

)
on V : (x′, y′) 7−→ (X,Y, Z) =

(
2 x′

x′2+y′2+1 ,
2 y′

x′2+y′2+1 ,−
x′2+y′2−1
x′2+y′2+1

)
In [5]: graph = XU.plot(chart=XR3, mapping=Phi, number_values=25,

label_axes=False) + \
XV.plot(chart=XR3, mapping=Phi, number_values=25,

color=’green’, label_axes=False) + \
p.plot(chart=XR3, mapping=Phi, label_offset=0.05)

show(graph, viewer=’threejs’, online=True)

Finally, the last objects defined in Chap. 2 are the scalar field f :

I–24



Course no I— Symbolic tensor calculus on manifolds: a SageMath implementation

In [6]: f = M.scalar_field({XU: 1/(1+x^2+y^2), XV: (xp^2+yp^2)/(1+xp^2+yp^2)},
name=’f’)

f.display()

Out[6]:

f : M −→ R

on U : (x, y) 7−→ 1
x2+y2+1

on V : (x′, y′) 7−→ x′2+y′2

x′2+y′2+1

and its parent, namely the commutative algebra C∞(M) of smooth maps M → R:

In [7]: CM = M.scalar_field_algebra()
CM

Out[7]: C∞ (M)

The tangent space at the point p introduced in In [3] is generated by

In [8]: Tp = M.tangent_space(p)
Tp

Out[8]: TpM

It is a vector space over K (here K = R, which is represented by SageMath’s Symbolic Ring
SR):

In [9]: print(Tp.category())

Category of finite dimensional vector spaces over Symbolic Ring

The dimension of the vector space TpM equals that of the manifold M :

In [10]: dim(Tp)

Out[10]: 2

Tangent spaces are implemented as a class inherited from TangentSpace via the category framework:

In [11]: type(Tp)

Out[11]: <class
’sage.manifolds.differentiable.tangent_space.TangentSpace_with_category’>

FiniteRankFreeModule,18, which, in SageMath is devoted to free modules of finite rank with-
out any distinguished basis:

In [12]: isinstance(Tp, FiniteRankFreeModule)

Out[12]: True

Remark 1: In SageMath, free modules with a distinguished basis are created with the command FreeModule
or VectorSpace and belong to classes different from FiniteRankFreeModule. The differences are illustrated
at
http://doc.sagemath.org/html/en/reference/modules/sage/tensor/modules/finite_rank_free_module.html#diff-freemodule.

Two bases of TpM are already available: those generated by the derivations at p along the
coordinates of charts XU and XV respectively:

18http://doc.sagemath.org/html/en/reference/tensor_free_modules/sage/tensor/modules/finite_rank_free_module.
html

I–25

http://doc.sagemath.org/html/en/reference/modules/sage/tensor/modules/finite_rank_free_module.html#diff-freemodule
http://doc.sagemath.org/html/en/reference/tensor_free_modules/sage/tensor/modules/finite_rank_free_module.html
http://doc.sagemath.org/html/en/reference/tensor_free_modules/sage/tensor/modules/finite_rank_free_module.html


Éric Gourgoulhon and Marco Mancini

In [13]: Tp.bases()

Out[13]:
[(

∂

∂x
,
∂

∂y

)
,

(
∂

∂x′
,
∂

∂y′

)]
None of these bases is distinguished, but one if the default one, which simply means that it
is the basis to be considered if the basis argument is skipped in some methods:

In [14]: Tp.default_basis()

Out[14]:
(
∂

∂x
,
∂

∂y

)

A tangent vector is created as an element of the tangent space by the standard SageMath
procedure new_element = parent(...), where ... stands for some material sufficient to construct
the element:
In [15]: vp = Tp((-3, 2), name=’v’)

print(vp)

Tangent vector v at Point p on the 2-dimensional differentiable manifold M

Since the basis is not specified, the pair (−3, 2) refers to components with respect to the default
basis:
In [16]: vp.display()

Out[16]: v = −3 ∂

∂x
+ 2 ∂

∂y

We have of course
In [17]: vp.parent()

Out[17]: TpM

In [18]: vp in Tp

Out[18]: True

As other manifold objects, tangent vectors have some plotting capabilities:

In [19]: graph += vp.plot(chart=XR3, mapping=Phi, scale=0.5, color=’gold’)
show(graph, viewer=’threejs’, online=True)

Out[19]: (see Figure 2.1)

The main attribute of the object vp representing the vector v is the private dictionary _components,
which stores the components of v in various bases of TpM :
In [20]: vp._components

Out[20]:
{(

∂

∂x
,
∂

∂y

)
:

1-index components w.r.t. Basis (d/dx,d/dy) on the Tangent space at Point p

on the 2-dimensional differentiable manifold M
}

The keys of the dictionary _components are the bases of TpM , while the values belong to the class
Components19 devoted to store ring elements indexed by integers or tuples of integers:

19http://doc.sagemath.org/html/en/reference/tensor_free_modules/sage/tensor/modules/comp.html

I–26

http://doc.sagemath.org/html/en/reference/tensor_free_modules/sage/tensor/modules/comp.html


Course no I— Symbolic tensor calculus on manifolds: a SageMath implementation

Figure 2.1: Output corresponding to In [19].

In [21]: vpc = vp._components[Tp.default_basis()]
vpc

Out[21]: 1-index components w.r.t. Basis (d/dx,d/dy) on the Tangent space at Point p
on the 2-dimensional differentiable manifold M

In [22]: type(vpc)

Out[22]: <class ’sage.tensor.modules.comp.Components’>

The components themselves are stored in the private dictionary _comp of the Components ob-
ject, with the indices as keys:

In [23]: vpc._comp

Out[23]: {(0) : −3, (1) : 2}

Hence the components are not stored via a sequence data type (list or tuple), as one might have
expected, but via a mapping type (dictionary). This is a general feature of the class Components
and all its subclasses, which permits to not store vanishing components and, in case of symmetries
(for multi-index objects like tensors), to store only non-redundant components.

3. Vector fields

3.1. Definition. The tangent bundle of M is the disjoint union of the tangent spaces at all
points of M :

(3.1) TM =
∐
p∈M

TpM.

I–27



Éric Gourgoulhon and Marco Mancini

Elements of TM are usually denoted by (p,u), with u ∈ TpM . The tangent bundle is canonically
endowed with the projection map:

(3.2)
π : TM −→ M

(p,u) 7−→ p.

The tangent bundle inherits some manifold structure from M : TM is a smooth manifold of
dimension 2n over K (n being the dimension of M).

A vector field on M is a continuous right-inverse of the projection map, i.e. it is a map

(3.3)
v : M −→ TM

p 7−→ v|p
such that π ◦ v = IdM , i.e. such that
(3.4) ∀p ∈M, v|p ∈ TpM.

3.2. Module of vector fields. The set X(M) of all vector fields on M is naturally endowed with
two algebraic structures:

(1) X(M) is a (infinite dimensional) vector space over K — the base field of M —, the scalar
multiplication K× X(M)→ X(M), (λ,v) 7→ λv being defined by

(3.5) ∀p ∈M, (λv)|p = λv|p ,

where the right-hand side involves the scalar multiplication in the vector space TpM ;
(2) X(M) is a module over C∞(M) — the commutative algebra of scalar fields —, the scalar

multiplication C∞(M)× X(M)→ X(M), (f,v) 7→ fv being defined by
(3.6) ∀p ∈M, (fv)|p = f(p)v|p ,

where the right-hand side involves the scalar multiplication by f(p) ∈ K in the vector space
TpM .

An important subcase of 2 is when X(M) is a free module over C∞(M), i.e. when X(M) admits
a basis (a generating set consisting of linearly independent elements). If this occurs, then X(M)
is actually a free module of finite rank over C∞(M) and its rank is n – the dimension of M
over K, which means that all bases share the same cardinality, namely n. One says that M is a
parallelizable manifold. A basis (ea)1≤a≤n of X(M) is called a vector frame; for any p ∈ M ,
(ea|p)1≤a≤n is then a basis of the tangent vector space TpM . Any vector field has a unique
decomposition with respect to the vector frame20 (ea)1≤a≤n:
(3.7) ∀v ∈ X(M), v = vaea, with va ∈ C∞(M).
At each point p ∈M , Eq. (3.7) gives birth to an identity in the tangent space TpM :
(3.8) v|p = va(p) ea|p , with va(p) ∈ K,

which is nothing but the expansion of the tangent vector v|p on the basis (ea|p)1≤a≤n of the vector
space TpM .

Note that if M is covered by a chart X, i.e. M is the domain of the chart X, then M is
parallelizable and a vector frame is (∂/∂xa)1≤a≤n, where the xa’s are the coordinates of chart X.
Such a vector frame is called a coordinate frame or natural basis. More generally, examples of
parallelizable manifolds are [12]

• the Cartesian space Rn for n = 1, 2, . . .,
• the circle S1,
• the torus T2 = S1 × S1,
• the sphere S3 ' SU(2), as any Lie group,
• the sphere S7,
• any orientable 3-manifold (Steenrod theorem [23]).

On the other hand, examples of non-parallelizable manifolds are

20Einstein’s convention for summation on repeated indices is assumed.

I–28



Course no I— Symbolic tensor calculus on manifolds: a SageMath implementation

UniqueRepresentation Parent

VectorFieldModule
ring: DiffScalarFieldAlgebra

element: VectorField

ca
te
go
ry
:
Mo
du
le
s

TensorFieldModule
ring: DiffScalarFieldAlgebra

element: TensorField

cate
gor

y: M
odu

les

VectorFieldFreeModule
ring: DiffScalarFieldAlgebra

element: VectorFieldParal

TensorFieldFreeModule
ring: DiffScalarFieldAlgebra

element: TensorFieldParal

FiniteRankFreeModule
ring: CommutativeRing

element: FiniteRankFreeModuleElement

TensorFreeModule
element:

FreeModuleTensor

TangentSpace
ring: SR
element:

TangentVector

category: Modules

Generic SageMath class

SageManifolds class
(algebraic part)

SageManifolds class
(differential part)

Figure 3.1: SageMath classes for modules involved in differentiable manifolds.

• the sphere S2 (as a consequence of the hairy ball theorem), as well as any sphere Sn with
n 6∈ {1, 3, 7},

• the real projective plane RP2.
Actually, “most” manifolds are non-parallelizable. As noticed above, if a manifold is covered by a
single chart, it is parallelizable (the prototype being Rn). But the reverse is not true: S1 and T2

are parallelizable and require at least two charts to cover them.

3.3. SageMath implementation. Among the two algebraic structures for X(M) discussed in
Sec. 3.2, we select the second one, i.e. we consider X(M) as a C∞(M)-module. With respect to
the infinite-dimensional K-vector space point of view, the advantage for the implementation is the
reduction to finite-dimensional structures: free modules of rank n on parallelizable open subsets of
M . Indeed, if U is such an open subset, i.e. if X(U) is a free C∞(U)-module of rank n, the generic
class FiniteRankFreeModule discussed in Sec. 2.2 can be used to implement X(U). The great
benefit is that all calculus implemented on the free module elements, like the addition or the scalar
multiplication, can be used as such for vector fields. This implies that vector fields will be described
by their (scalar-field) components on vector frames, as defined by Eq. (3.7), on parallelizable open
subsets of M .

If the manifold M is not parallelizable, we assume that it can be covered by a finite number m
of parallelizable open subsets Ui (1 ≤ i ≤ m):

(3.9) M =
m⋃
i=1

Ui, with Ui parallelizable

In particular, this holds if M is compact, for any compact manifold admits a finite atlas.
For each i ∈ {1, . . . ,m}, X(Ui) is a free module of rank n = dimM and is implemented in Sage-

Math as an instance of VectorFieldFreeModule, which is a subclass of FiniteRankFreeModule.
This inheritance is illustrated in Fig. 3.1. On that figure, we note that the class TangentSpace
discussed in Sec. 2.2 inherits from
FiniteRankFreeModule as well.

A vector field v ∈ X(M) is then described by its restrictions
(

v|Ui

)
1≤i≤m to each of the Ui’s.

Assuming that at least one vector frame is introduced in each of the Ui’s, (ei,a)1≤a≤n say, the
restriction v|Ui

of v to Ui is decribed by its components vai in that frame:
(3.10) v|Ui

= vai ei,a, with vai ∈ C∞(Ui).

I–29



Éric Gourgoulhon and Marco Mancini

Let us illustrate this strategy with the example of S2. We get X(M) by21

In [24]: YM = M.vector_field_module()
YM

Out[24]: X (M)

As discussed above, X(M) is considered as a module over C∞(M):

In [25]: YM.category()

Out[25]: ModulesC∞(M)

Since the algebra C∞(M) is denoted CM, we have

In [26]: YM.base_ring() is CM

Out[26]: True

X(M) is not a free module; in particular, we can check that its SageMath implementation does not
belong to the class FiniteRankFreeModule:

In [27]: isinstance(YM, FiniteRankFreeModule)

Out[27]: False

This is because M = S2 is not a parallelizable manifold:

In [28]: M.is_manifestly_parallelizable()

Out[28]: False

Via SageMath category framework, the module X(M) is implemented by a dynamically-generated
subclass of the class VectorFieldModule, which is devoted to modules of vector fields on non-
parallelizable manifolds:

In [29]: type(YM)

Out[29]: <class ’sage.manifolds.differentiable.vectorfield_module.
VectorFieldModule_with_category’>

On the contrary, the set X(U) of vector fields on U is a free module of finite rank over the
algebra C∞(U):

In [30]: YU = U.vector_field_module()
isinstance(YU, FiniteRankFreeModule)

Out[30]: True

In [31]: YU.base_ring()

Out[31]: C∞ (U)

This is because the open subset U is a parallelizable manifold:

In [32]: U.is_manifestly_parallelizable()

21We are using YM to denote X(M) and not XM, because we reserve the symbol X to denote coordinate charts, as
XU, XV or XR3.

I–30



Course no I— Symbolic tensor calculus on manifolds: a SageMath implementation

Out[32]: True

being the domain of a coordinate chart:

In [33]: U.is_manifestly_coordinate_domain()

Out[33]: True

We can check that in U ’s atlas, at least one chart has U for domain:

In [34]: U.atlas()

Out[34]: [(U, (x, y)) , (W, (x, y)) , (W, (x′, y′))]

This chart is XU = (U, (x, y)), i.e. the chart of stereographic coordinates from the North pole.
The rank of X(U) as a free C∞(U)-module is the manifold’s dimension:

In [35]: rank(YU)

Out[35]: 2

Via the category framework, the free module X(U) is implemented by a dynamically-generated
subclass of the class VectorFieldFreeModule, which is devoted to modules of vector fields on
parallelizable manifolds:

In [36]: type(YU)

Out[36]: <class ’sage.manifolds.differentiable.vectorfield_module.
VectorFieldFreeModule_with_category’>

The class VectorFieldFreeModule is itself a subclass of the generic class
FiniteRankFreeModule:

In [37]: class_graph(
sage.manifolds.differentiable.vectorfield_module.VectorFieldFreeModule

).plot()

Out[37]: (see Figure 3.2)

Since U is a chart domain, the free module X(U) is automatically endowed with a basis, which
is the coordinate frame associated to the chart:

In [38]: YU.bases()

Out[38]:
[(
U,

(
∂

∂x
,
∂

∂y

))]
Let us denote by eU this frame. We can set eU = YU.bases()[0] or alternatively

In [39]: eU = YU.default_basis()
eU

Out[39]:
(
U,

(
∂

∂x
,
∂

∂y

))
Another equivalent instruction would have been eU = U.default_frame().

Similarly, X(V ) is a free module, endowed with the coordinate frame associated to stereographic
coordinates from the South pole, which we denote by eV:

In [40]: YV = V.vector_field_module()
YV.bases()

I–31



Éric Gourgoulhon and Marco Mancini

Figure 3.2: Output corresponding to In [37].

Out[40]:
[(
V,

(
∂

∂x′
,
∂

∂y′

))]
In [41]: eV = YV.default_basis()

eV

Out[41]:
(
V,

(
∂

∂x′
,
∂

∂y′

))

If we consider the intersection W = U ∩ V , we notice its module of vector fields is endowed with
two bases, reflecting the fact that W is covered by two charts: (W, (x, y)) and (W, (x′, y′)):

In [42]: W = U.intersection(V)
YW = W.vector_field_module()
YW.bases()

Out[42]:
[(
W,

(
∂

∂x
,
∂

∂y

))
,

(
W,

(
∂

∂x′
,
∂

∂y′

))]
Let us denote by eUW and eUV these two bases, which are actually the restrictions of the vec-
tor frames eU and eV to W :

In [43]: eUW = eU.restrict(W)
eVW = eV.restrict(W)
YW.bases() == [eUW, eVW]

Out[43]: True

I–32



Course no I— Symbolic tensor calculus on manifolds: a SageMath implementation

The free module X(W ) is also automatically endowed with automorphisms connecting the two
bases, i.e. change-of-frame operators:

In [44]: W.changes_of_frame()

Out[44]: {((
W,

(
∂

∂x′
,
∂

∂y′

))
,

(
W,

(
∂

∂x
,
∂

∂y

)))
:

Field of tangent-space automorphisms on the Open subset W of the 2-dimensional differen-
tiable manifold M, ((

W,

(
∂

∂x
,
∂

∂y

))
,

(
W,

(
∂

∂x′
,
∂

∂y′

)))
:

Field of tangent-space automorphisms on the Open subset W of the 2-dimensional differen-

tiable manifold M
}

The first of them is
In [45]: P = W.change_of_frame(eUW, eVW)

P

Out[45]: Field of tangent-space automorphisms on the Open subset W of the
2-dimensional differentiable manifold M

It belongs to the general linear group of the free module X(W ):

In [46]: P.parent()

Out[46]: GL (X (W ))

and its matrix is deduced from the Jacobian matrix of the transition map XV → XU:

In [47]: P[:]

Out[47]:

 −x2 + y2 −2xy
−2xy x2 − y2



3.4. Construction and manipulation of vector fields. Let us introduce a vector field v on
M :
In [48]: v = M.vector_field(name=’v’)

v[eU, 0] = f.restrict(U)
v[eU, 1] = -2
v.display(eU)

Out[48]: v =
(

1
x2 + y2 + 1

)
∂

∂x
− 2 ∂

∂y

Notice that, at this stage, we have defined v only on U , by setting its components in the vector
frame eU, either explicitly as scalar fields, like the component v0 set to the restriction of f to U
or implicitly, like the component v1: the integer -2 will be coerced to the constant scalar field of
value −2 (cf. Sec. 3.3). We can ask for the scalar-field value of a component via the double-bracket
operator; since eU is the default frame on M , we do not have to specify it:

In [49]: v[[0]]

Out[49]: f

In [50]: v[[0]].display()

I–33



Éric Gourgoulhon and Marco Mancini

Out[50]:

f : U −→ R

(x, y) 7−→ 1
x2+y2+1

on W : (x′, y′) 7−→ x′2+y′2

x′2+y′2+1

Note that, for convenience, the single bracket operator returns a chart function of the component:

In [51]: v[0]

Out[51]:
1

x2 + y2 + 1
The restriction of v to W is of course
In [52]: v.restrict(W).display(eUW)

Out[52]: v =
(

1
x2 + y2 + 1

)
∂

∂x
− 2 ∂

∂y

Since we have a second vector frame on W , namely eVW, and the change-of-frame automorphisms
are known, we can ask for the components of v with respect to that frame:

In [53]: v.restrict(W).display(eVW)

Out[53]: v =
(

4xy3 − x2 + 4
(
x3 + x

)
y + y2

x6 + y6 + (3x2 + 1)y4 + x4 + (3x4 + 2x2)y2

)
∂

∂x′

+
(
−

2
(
x4 − y4 + x2 + xy − y2)

x6 + y6 + (3x2 + 1)y4 + x4 + (3x4 + 2x2)y2

)
∂

∂y′

Notice that the components are expressed in terms of the coordinates (x, y) since they form
the default chart on W . To have them expressed in terms of the coordinates (x′, y′), we have to add
the restriction of the chart (V, (x′, y′)) to W as the second argument of the method display():

In [54]: v.restrict(W).display(eVW, XV.restrict(W))

Out[54]: v =

−x′4 − 4x′y′3 − y′4 − 4
(
x′

3 + x′
)
y′

x′2 + y′2 + 1

 ∂

∂x′

+

−2
(
x′

4 + x′
3
y′ + x′y′

3 − y′4 + x′
2 − y′2

)
x′2 + y′2 + 1

 ∂

∂y′

We extend the expression of v to the full vector frame XV by continuation of this expression:

In [55]: v.add_comp_by_continuation(eV, W, chart=XV)

We have then
In [56]: v.display(eV)

Out[56]: v =

−x′4 − 4x′y′3 − y′4 − 4
(
x′

3 + x′
)
y′

x′2 + y′2 + 1

 ∂

∂x′

+

−2
(
x′

4 + x′
3
y′ + x′y′

3 − y′4 + x′
2 − y′2

)
x′2 + y′2 + 1

 ∂

∂y′

At this stage, the vector field v is defined in all M . According to the hairy ball theorem, it
has to vanish somewhere. Let us show that this occurs at the North pole, by first introducing the
latter, as the point of stereographic coordinates (x′, y′) = (0, 0):

I–34



Course no I— Symbolic tensor calculus on manifolds: a SageMath implementation

In [57]: N = M((0,0), chart=XV, name=’N’)
print(N)

Point N on the 2-dimensional differentiable manifold M

As a check, we verify that the image of N by the canonical embedding Φ : S2 → R3 is the point of
Cartesian coordinates (0, 0, 1):

In [58]: XR3(Phi(N))

Out[58]: (0, 0, 1)

The vanishing of v|N :

In [59]: v.at(N).display()

Out[59]: v = 0

On the other hand, v does not vanish at the point p introduced above:

In [60]: v.at(p).display()

Out[60]: v = 1
6
∂

∂x
− 2 ∂

∂y

We may plot the vector field v in terms of the stereographic coordinates from the North pole:

In [61]: v.plot(chart=XU, chart_domain=XU, max_range=2,
number_values=5, scale=0.4, aspect_ratio=1)

or in term of those from the South pole:

In [62]: v.plot(chart=XV, chart_domain=XV, max_range=2,
number_values=9, scale=0.05, aspect_ratio=1)

I–35



Éric Gourgoulhon and Marco Mancini

Thanks to the embedding Φ, we may also have a 3D plot of the vector field v atop of the 3D plot
already obtained:

In [63]: graph_v = v.plot(chart=XR3, mapping=Phi, chart_domain=XU,
number_values=7, scale=0.2) + \

v.plot(chart=XR3, mapping=Phi, chart_domain=XV,
number_values=7, scale=0.2)

show(graph + graph_v, viewer=’threejs’, online=True)

Note that the sampling, performed on the two charts XU and XV is not uniform on the sphere. A
better sampling would be achieved by introducing spherical coordinates.

I–36



Course no I— Symbolic tensor calculus on manifolds: a SageMath implementation

3.5. Implementation details regarding vector fields. Let us now investigate some internals of
the implementation of vector fields. Vector fields onM are implemented via the class VectorField22

(actually by a dynamically generated subclass of it, within SageMath category framework):

In [64]: isinstance(v, sage.manifolds.differentiable.vectorfield.VectorField)

Out[64]: True

Since M is not parallelizable, the defining data of a vector field v on M are its restrictions(
v|Ui

)
1≤i≤m to parallelizable open subsets Ui, following the scheme presented in Sec. 3.3. These

restrictions are stored in the private dictionary _restrictions, whose keys are the open subsets:

In [65]: v._restrictions

Out[65]: {V : v,W : v, U : v}

Let us consider one of these restrictions, for instance the restriction v|U to U :

In [66]: vU = v._restrictions[U]
vU is v.restrict(U)

Out[66]: True

Since U is a parallelizable open subset, the object vU belongs to the class VectorFieldParal, which
is devoted to vector fields on parallelizable manifolds:

In [67]: isinstance(vU, sage.manifolds.differentiable.vectorfield.VectorFieldParal)

Out[67]: True

The class VectorFieldParal inherits both from FiniteRankFreeModuleElement (as TangentVector)
and from VectorField (see Fig. 3.3). The defining data of v|U are its sets of components with
respect to (possibly various) vector frames on U , according to Eq. (3.10). The sets of components
are stored in the private dictionary _components, whose keys are the vector frames:

In [68]: vU._components

Out[68]:
{(

U,

(
∂

∂x
,
∂

∂y

))
: 1-index components w.r.t. Coordinate frame (U, (d/dx,d/dy))

}
Similarly, we have:

In [69]: v._restrictions[W]._components

Out[69]: {(
W,

(
∂

∂x
,
∂

∂y

))
: 1-index components w.r.t. Coordinate frame (W, (d/dx,d/dy)),(

W,

(
∂

∂x′
,
∂

∂y′

))
: 1-index components w.r.t. Coordinate frame (W, (d/dxp,d/dyp)

}
The values of the dictionary _components belong to the same class Components as that discussed
in Sec. 2.2 for the storage of components of tangent vectors:

In [70]: vUc = vU._components[eU]
vUc

22http://doc.sagemath.org/html/en/reference/manifolds/sage/manifolds/differentiable/vectorfield.html

I–37

http://doc.sagemath.org/html/en/reference/manifolds/sage/manifolds/differentiable/vectorfield.html


Éric Gourgoulhon and Marco Mancini

Element

ModuleElement

FreeModuleTensor
parent:

TensorFreeModule

AlternatingContrTensor
parent:

ExtPowerFreeModule

FiniteRankFreeModuleElement
parent:

FiniteRankFreeModule

TangentVector
parent:

TangentSpace

TensorField
parent:

TensorFieldModule

MultivectorField
parent:

MultivectorModule

VectorField
parent:

VectorFieldModule

TensorFieldParal
parent:

TensorFieldFreeModule

MultivectorFieldParal
parent:

MultivectorFreeModule

VectorFieldParal
parent:

VectorFieldFreeModule

Generic SageMath class
SageManifolds class
(algebraic part)

SageManifolds class
(differential part)

Figure 3.3: SageMath classes for tensor fields involved in differentiable manifolds. There are
various multiple inheritances involving diamond diagrams; Python’s method resolution order
algorithm (MRO) relies on the ordering of the parents in the class declaration and this order
can be read from the left to the right in this figure. For instance, the class VectorFieldParal is
declared as class VectorFieldParal(FiniteRankFreeModuleElement, MultivectorFieldParal,
VectorField).

Out[70]: 1-index components w.r.t. Coordinate frame (U, (d/dx,d/dy))

In [71]: type(vUc)

Out[71]: <class ’sage.tensor.modules.comp.Components’>

As already mentioned in Sec. 2.2, the components themselves are stored in the private attribute
_comp of the Components object; this is a dictionary whose keys are the indices:

In [72]: vUc._comp

Out[72]:
{

(0) : f,
(1) : Scalar field on the Open subset U of the 2-dimensional differentiable manifold M

}
The difference with the tangent vector case is that the values of that dictionary are now scalar
fields, i.e. elements of C∞(U) in the present case. This is of course in agreement with the treatment
of X(U) as a free module over C∞(U), as discussed in Sec. 3.3. Taking into account the storage of
scalar fields presented in Sec. 3.1, the full storage structure of vector fields is presented in Fig. 3.4
(the latter actually regards tensor fields, of which vector fields constitute a subcase).

Let us perform some algebraic operation on vector fields:

In [73]: w = v + f*v
w

I–38



Course no I— Symbolic tensor calculus on manifolds: a SageMath implementation

TensorField
T

dictionary TensorField._restrictions

domain 1:
U1

TensorFieldParal
T |U1 = T abea ⊗ eb = T â

b̂
εâ ⊗ εb̂ = . . .

domain 2:
U2

TensorFieldParal
T |U2

. . .

dictionary TensorFieldParal._components

frame 1:
(ea)

Components
(T ab)1≤a, b≤n

frame 2:
(εâ)

Components
(T â

b̂
)1≤â, b̂≤n

. . .

dictionary Components._comp

(1, 1) : DiffScalarField
T 1

1
(1, 2) : DiffScalarField

T 1
2

. . .

dictionary DiffScalarField._express

chart 1:
(xa)

ChartFunction
T 1

1
(
x1, . . . , xn

) chart 2:
(ya)

ChartFunction
T 1

1
(
y1, . . . , yn

) . . .

dictionary ChartFunction._express

SR:
Expression
x1 cosx2 SymPy: Basic

x1 cosx2 . . .

Figure 3.4: Internal storage of tensor fields. Red boxes represent Python dictionaries, yellow
boxes are dictionary values, with the corresponding dictionary key located on the left of them.
The Python class of each dictionary value is indicated in typewriter font at the top of the yellow
box. In the hierarchical tree, only the leftmost branch is indicated by grey connectors. In the
special case of vector fields, the classes TensorField and TensorFieldParal are to be replaced
by VectorField and VectorFieldParal respectively.

Out[73]: Vector field on the 2-dimensional differentiable manifold M

The code for the addition is accessible via
In [74]: v.__add__??

1 File: .../ src/sage/structure/element.pyx
2 def __add__(left , right):
3 """
4 Top -level addition operator for :class:‘Element ‘ invoking
5 the coercion model.
6

7 See :ref:‘element_arithmetic ‘.
8 ...
9 """

10 cdef int cl = classify_elements(left , right)
11 if HAVE_SAME_PARENT(cl):
12 return (<Element >left). _add_(right)
13 # Left and right are Sage elements => use coercion model
14 if BOTH_ARE_ELEMENT(cl):
15 return coercion_model.bin_op(left , right , add)
16 ...

This is exactly the same method __add__() as that discussed in Sec. 3.3 for the addition of scalar
fields (cf. page 18), namely the method __add__() of the top-level class Element, from which
both VectorField and DiffScalarField inherit, cf. the inheritance diagrams of Figs. 3.3 and 3.1
(taking into account that CommutativeAlgebraElement is a subclass of Element). In the present
case, left = v and right = f*v have the same parent, so that the actual result is computed in

I–39



Éric Gourgoulhon and Marco Mancini

line 12, via the method _add_() (note the single underscore on each side of add). This operator is
implemented at the level of TensorField, as it can be checked from the source code (see lines 3
and 29 below):

In [75]: v._add_??

1 def _add_(self , other):
2 """
3 Tensor field addition.
4

5 INPUT:
6

7 - ‘‘other ‘‘ -- a tensor field , in the same tensor module as ‘‘self ‘‘
8

9 OUTPUT:
10

11 - the tensor field resulting from the addition of ‘‘self ‘‘
12 and ‘‘other ‘‘
13 ...
14 """
15 resu_rst = {}
16 for dom in self._common_subdomains(other):
17 resu_rst[dom] = self._restrictions[dom] + other._restrictions[dom]
18 some_rst = next(itervalues(resu_rst ))
19 resu_sym = some_rst._sym
20 resu_antisym = some_rst._antisym
21 resu = self._vmodule.tensor(self._tensor_type , sym=resu_sym ,
22 antisym=resu_antisym)
23 resu._restrictions = resu_rst
24 if self._name is not None and other._name is not None:
25 resu._name = self._name + ’+’ + other._name
26 if self._latex_name is not None and other._latex_name is not None:
27 resu._latex_name = self._latex_name + ’+’ + other._latex_name
28 return resu
29 File: .../site -packages/sage/manifolds/differentiable/tensorfield.py

The first step in the addition of two vector fields is to search in the restrictions of both vector fields
for common domains: this is performed in line 16, via the method _common_subdomains. Then
the addition is performed at the level of the restrictions, in line 17. The rest of the code is simply
the set up of the vector field object containing the result. Recursively, the addition performed in
line 17 will reach a level at which the domains are parallelizable. Then a different method _add_(),
will be involved, as we can check on vU:

In [76]: vU._add_??

1 def _add_(self , other):
2 """
3 Tensor addition.
4

5 INPUT:
6

7 - ‘‘other ‘‘ -- a tensor , of the same type as ‘‘self ‘‘
8

9 OUTPUT:
10

11 - the tensor resulting from the addition of ‘‘self ‘‘ and ‘‘other ‘‘
12 ...
13 """
14 # No need for consistency check since self and other are guaranted
15 # to belong to the same tensor module
16 basis = self.common_basis(other)
17 if basis is None:

I–40



Course no I— Symbolic tensor calculus on manifolds: a SageMath implementation

18 raise ValueError("no␣common␣basis␣for␣the␣addition")
19 comp_result = self._components[basis] + other._components[basis]
20 result = self._fmodule.tensor_from_comp(self._tensor_type , comp_result)
21 if self._name is not None and other._name is not None:
22 result._name = self._name + ’+’ + other._name
23 if self._latex_name is not None and other._latex_name is not None:
24 result._latex_name = self._latex_name + ’+’ + other._latex_name
25 return result
26 File: .../site -packages/sage/tensor/modules/free_module_tensor.py

From line 26, we see that this method _add_() is implemented at the level of tensors on free
modules, i.e. in the class FreeModuleTensor,23 from which VectorFieldParal inherits (cf. the
diagram in Fig. 3.3). Here the free module is clearly X(U). The addition amounts to adding the
components in a basis of the free module in which both operands have known components. Such a
basis is returned by the method common_basis invoked in line 16. If necessary, this method can
use change-of-basis formulas to compute the components of self or other in a common basis.
The addition of the components in the found basis is performed in line 19. It involves the method
__add__() of class Components; we can examine the corresponding code via the object vUc since
the latter has been defined above as vUc = vU._components[eU], i.e. vUc represents the set of
components of the vector field v|U in the basis eU = (∂/∂x, ∂/∂y) of X(U):

In [77]: vUc.__add__??

1 def __add__(self , other):
2 """
3 Component addition.
4

5 INPUT:
6

7 - ‘‘other ‘‘ -- components of the same number of indices and defined
8 on the same frame as ‘‘self ‘‘
9

10 OUTPUT:
11

12 - components resulting from the addition of ‘‘self ‘‘ and ‘‘other ‘‘
13 ...
14 """
15 ...
16 result = self.copy()
17 nproc = Parallelism ().get(’tensor ’)
18 if nproc != 1 :
19 # Parallel computation
20 ...
21 else:
22 # Sequential computation
23 for ind , val in other._comp.items ():
24 result [[ind]] += val
25 return result
26 File: .../site -packages/sage/tensor/modules/comp.py

First of all, we note from line 26 that this is not the method __add__() of class Element, as it
was for VectorField and VectorFieldParal, but instead the method __add__() implemented in
class Components. This is because Components is a technical class, as opposed to the mathematical
classes VectorField and DiffScalarField; therefore it does not inherits from Element, but only
from the base class SageObject, which does not implement any addition. We note from lines 17-19
that the computation of the components can be done in parallel on more that one CPU core if
user has turned on parallelization.24 Focusing on the sequential code (lines 23-24), we see that the

23http://doc.sagemath.org/html/en/reference/tensor_free_modules/sage/tensor/modules/free_module_tensor.html
24This is done with the command Parallelism().set(nproc=8) (for 8 threads); many examples of parallelized

computations are presented at https://sagemanifolds.obspm.fr/examples.html.

I–41

http://doc.sagemath.org/html/en/reference/tensor_free_modules/sage/tensor/modules/free_module_tensor.html
https://sagemanifolds.obspm.fr/examples.html


Éric Gourgoulhon and Marco Mancini

addition is performed component by component. Note that this addition is that of scalar fields, as
discussed in Sec. 3.3, since each component being an element of C∞(U), the base ring of X(U).

3.6. Action of vector fields on scalar fields. The action of v on f is defined pointwise by
considering v at each point p ∈ M as a derivation (the very definition of a tangent vector, cf.
Sec. 2.1); the result is then a scalar field v(f) on M :

In [78]: vf = v(f)
vf

Out[78]: v (f)

In [79]: vf.display()

Out[79]:

v (f) : M −→ R

on U : (x, y) 7−→ 2 (2 y3+2 (x2+1)y−x)
x6+y6+3 (x2+1)y4+3 x4+3 (x4+2 x2+1)y2+3 x2+1

on V : (x′, y′) 7−→ − 2 (x′5+2 x′3y′2+x′y′4−2 y′5−2 (2 x′2+1)y′3−2 (x′4+x′2)y′)
x′6+y′6+3 (x′2+1)y′4+3 x′4+3 (x′4+2 x′2+1)y′2+3 x′2+1

I–42



Course no I— Symbolic tensor calculus on manifolds: a SageMath implementation

CHAPTER 4

Tensor fields

Contents

1. Introduction 43
2. Differential forms 43
3. More general tensor fields 45
4. Riemannian metric 46

1. Introduction

Having presented vector fields in Chap. 3, we move now to more general tensor fields. We keep
the same example manifold, M = S2, as in Chap. 2 and 3.

2. Differential forms

Let us continue with the same example notebook as that considered in Chap. 3. There, we had
introduced f as a scalar field on the 2-dimensional manifold M = S2 (cf. Sec. 2.2). The differential
of f is a 1-form on M :

In [80]: df = f.differential()
df

Out[80]: df

In [81]: print(df)

1-form df on the 2-dimensional differentiable manifold M

A 1-form is actually a tensor field of type (0, 1):

In [82]: df.tensor_type()

Out[82]: (0, 1)

while a vector field is a tensor field of type (1, 0):

In [83]: v.tensor_type()

Out[83]: (1, 0)

Specific 1-forms are those forming the dual basis (coframe) of a given vector frame: for instance for
the vector frame eU = (∂/∂x, ∂/∂y) on U , considered as a basis of the free C∞(U)-module X(U),
we have:
In [84]: eU.dual_basis()

Out[84]: (U, (dx, dy))

In [85]: print(eU.dual_basis()[0])

1-form dx on the Open subset U of the 2-dimensional differentiable manifold M

I–43



Éric Gourgoulhon and Marco Mancini

Since eU is the default frame on M , the default display of df is performed in terms of eU’s coframe:

In [86]: df.display()

Out[86]: df =
(
− 2x
x4 + y4 + 2 (x2 + 1)y2 + 2x2 + 1

)
dx+

(
− 2 y
x4 + y4 + 2 (x2 + 1)y2 + 2x2 + 1

)
dy

We may check that in this basis, the components of df |U are nothing but the partial deriva-
tives of the coordinate expression of f with respect to coordinates (x, y):

In [87]: df[0] == diff(f.expr(), x)

Out[87]: True

In [88]: df[1] == diff(f.expr(), y)

Out[88]: True

In the coframe associated with eV = (∂/∂x′, ∂/∂y′):

In [89]: df.display(eV)

Out[89]: df =
(

2x′

x′4 + y′4 + 2
(
x′2 + 1

)
y′2 + 2x′2 + 1

)
dx′

+
(

2 y′

x′4 + y′4 + 2
(
x′2 + 1

)
y′2 + 2x′2 + 1

)
dy′

Since eV is not the default vector frame on M and XV = (V, (x′, y′)) is not the default chart
on M , we get the individual components by specifying both eV and XV, in addition to the index, in
the square-bracket operator:

In [90]: df[eV,0,XV]

Out[90]:
2x′

x′4 + y′4 + 2
(
x′2 + 1

)
y′2 + 2x′2 + 1

We may then check that the components in the frame eV are the partial derivatives with re-
spect to the coordinates xp = x′ and yp = y′ of the chart XV:

In [91]: df[eV,0,XV] == diff(f.expr(XV), xp)

Out[91]: True

In [92]: df[eV,1,XV] == diff(f.expr(XV), yp)

Out[92]: True

The parent of df is the set Ω1(M) of all 1-forms on M , considered as a C∞(M)-module:

In [93]: print(df.parent())
df.parent()

Module Omega^1(M) of 1-forms on the 2-dimensional differentiable manifold M

I–44



Course no I— Symbolic tensor calculus on manifolds: a SageMath implementation

Out[93]: Ω1 (M)

In [94]: df.parent().base_ring()

Out[94]: C∞ (M)

This module is actually the dual of the vector-field module X(M), which is represented by the
Python object YM (cf. Sec. 3.3):

In [95]: YM.dual()

Out[95]: Ω1 (M)

Consequently, a 1-form acts on vector fields, yielding an element of C∞(M), i.e. a scalar field:

In [96]: print(df(v))

Scalar field df(v) on the 2-dimensional differentiable manifold M

This scalar field is nothing but the result of the action of v on f discussed in Sec. 3.6:

In [97]: df(v) == v(f)

Out[97]: True

3. More general tensor fields

We construct a tensor of type (1, 1) by taking the tensor product v ⊗ df :

In [98]: t = v * df
t

Out[98]: Tensor field of type (1,1) on the 2-dimensional differentiable manifold M

In [99]: t.display()

Out[99]: v ⊗ df =
(
− 2x
x6 + y6 + 3 (x2 + 1)y4 + 3x4 + 3 (x4 + 2x2 + 1)y2 + 3x2 + 1

)
∂

∂x
⊗ dx

+
(
− 2 y
x6 + y6 + 3 (x2 + 1)y4 + 3x4 + 3 (x4 + 2x2 + 1)y2 + 3x2 + 1

)
∂

∂x
⊗ dy

+
(

4x
x4 + y4 + 2 (x2 + 1)y2 + 2x2 + 1

)
∂

∂y
⊗ dx

+
(

4 y
x4 + y4 + 2 (x2 + 1)y2 + 2x2 + 1

)
∂

∂y
⊗ dy

In [100]: t.display(eV)

Out[100]: v ⊗ df =

− 2
(
x′

5 − 4x′2y′3 − x′y′4 − 4
(
x′

4 + x′
2
)
y′
)

x′6 + y′6 + 3
(
x′2 + 1

)
y′4 + 3x′4 + 3

(
x′4 + 2x′2 + 1

)
y′2 + 3x′2 + 1

 ∂

∂x′
⊗ dx′

+

− 2
(
x′

4
y′ − 4x′y′4 − y′5 − 4

(
x′

3 + x′
)
y′

2
)

x′6 + y′6 + 3
(
x′2 + 1

)
y′4 + 3x′4 + 3

(
x′4 + 2x′2 + 1

)
y′2 + 3x′2 + 1

 ∂

∂x′
⊗ dy′

I–45



Éric Gourgoulhon and Marco Mancini

+

− 4
(
x′

5 + x′
4
y′ + x′

2
y′

3 − x′y′4 + x′
3 − x′y′2

)
x′6 + y′6 + 3

(
x′2 + 1

)
y′4 + 3x′4 + 3

(
x′4 + 2x′2 + 1

)
y′2 + 3x′2 + 1

 ∂

∂y′
⊗ dx′

+

− 4
(
x′

3
y′

2 + x′y′
4 − y′5 − y′3 +

(
x′

4 + x′
2
)
y′
)

x′6 + y′6 + 3
(
x′2 + 1

)
y′4 + 3x′4 + 3

(
x′4 + 2x′2 + 1

)
y′2 + 3x′2 + 1

 ∂

∂y′
⊗ dy′

We can use the method display_comp() for a display component by component:

In [101]: t.display_comp()

Out[101]:

v ⊗ df xx = − 2 x
x6+y6+3 (x2+1)y4+3 x4+3 (x4+2 x2+1)y2+3 x2+1

v ⊗ df xy = − 2 y
x6+y6+3 (x2+1)y4+3 x4+3 (x4+2 x2+1)y2+3 x2+1

v ⊗ df yx = 4 x
x4+y4+2 (x2+1)y2+2 x2+1

v ⊗ df yy = 4 y
x4+y4+2 (x2+1)y2+2 x2+1

The parent of t is the set T (1,1)(M) of all type-(1, 1) tensor fields on M , considered as a C∞(M)-
module:

In [102]: print(t.parent())
t.parent()

Module T^(1,1)(M) of type-(1,1) tensors fields on the 2-dimensional
differentiable manifold M

Out[102]: T (1,1) (M)

In [103]: t.parent().base_ring()

Out[103]: C∞ (M)

As for vector fields, since M is not parallelizable, the C∞(M)-module T (1,1)(M) is not free and
the tensor fields are described by their restrictions to parallelizable subdomains:

In [104]: t._restrictions

Out[104]: {V : v ⊗ df, U : v ⊗ df}

These restrictions form free modules:

In [105]: print(t._restrictions[U].parent())

Free module T^(1,1)(U) of type-(1,1) tensors fields on the Open subset U of
the 2-dimensional differentiable manifold M

In [106]: t._restrictions[U].parent().base_ring()

Out[106]: C∞ (U)

4. Riemannian metric

4.1. Defining a metric. The standard metric on M = S2 is that induced by the Euclidean metric
of R3. Let us start by defining the latter:

I–46



Course no I— Symbolic tensor calculus on manifolds: a SageMath implementation

In [107]: h = R3.metric(’h’)
h[0,0], h[1,1], h[2, 2] = 1, 1, 1
h.display()

Out[107]: h = dX ⊗ dX + dY ⊗ dY + dZ ⊗ dZ

The metric g on M is the pullback of h associated with the embedding Φ introduced in Sec. 2.2:

In [108]: g = M.metric(’g’)
g.set( Phi.pullback(h) )
print(g)

Riemannian metric g on the 2-dimensional differentiable manifold M

Note that we could have defined g intrinsically, i.e. by providing its components in the two vector
frames eU and eV, as we did for the metric h on R3. Instead, we have chosen to get it as the
pullback by Φ of h, as an example of pullback associated with some differential map.

The metric is a symmetric tensor field of type (0,2):

In [109]: g.tensor_type()

Out[109]: (0, 2)

The expression of the metric in terms of the default frame on M (eU):

In [110]: g.display()

Out[110]: g =
(

4
x4 + y4 + 2 (x2 + 1)y2 + 2x2 + 1

)
dx⊗ dx

+
(

4
x4 + y4 + 2 (x2 + 1)y2 + 2x2 + 1

)
dy ⊗ dy

We may factorize the metric components to get a better display:

In [111]: g[0,0].factor(); g[1,1].factor()

Out[111]:
4

(x2 + y2 + 1)2

In [112]: g.display()

Out[112]: g = 4
(x2 + y2 + 1)2 dx⊗ dx+ 4

(x2 + y2 + 1)2 dy ⊗ dy

A matrix view of the components of g in the manifold’s default frame:

In [113]: g[:]

Out[113]:

 4
(x2+y2+1)2 0

0 4
(x2+y2+1)2


Display in terms of the vector frame (V, (∂x′ , ∂y′)):

In [114]: g.display(eV)

Out[114]: g =
(

4
x′4 + y′4 + 2

(
x′2 + 1

)
y′2 + 2x′2 + 1

)
dx′ ⊗ dx′

+
(

4
x′4 + y′4 + 2

(
x′2 + 1

)
y′2 + 2x′2 + 1

)
dy′ ⊗ dy′

The metric acts on vector field pairs, resulting in a scalar field:

I–47



Éric Gourgoulhon and Marco Mancini

In [115]: print(g(v,v))

Scalar field g(v,v) on the 2-dimensional differentiable manifold M

In [116]: g(v,v).parent()

Out[116]: C∞ (M)

In [117]: g(v,v).display()

Out[117]:

g (v, v) : M −→ R

on U : (x, y) 7−→ 4 (4 x4+4 y4+8 (x2+1)y2+8 x2+5)
x8+y8+4 (x2+1)y6+4 x6+6 (x4+2 x2+1)y4+6 x4+4 (x6+3 x4+3 x2+1)y2+4 x2+1

on V : (x′, y′) 7−→ 4 (5 x′8+5 y′8+4 (5 x′2+2)y′6+8 x′6+2 (15 x′4+12 x′2+2)y′4+4 x′4+4 (5 x′6+6 x′4+2 x′2)y′2)
x′8+y′8+4 (x′2+1)y′6+4 x′6+6 (x′4+2 x′2+1)y′4+6 x′4+4 (x′6+3 x′4+3 x′2+1)y′2+4 x′2+1

4.2. Levi-Civita connection. The Levi-Civita connection associated with the metric g is

In [118]: nab = g.connection()
print(nab)
nab

Levi-Civita connection nabla_g associated with the Riemannian metric g on
the 2-dimensional differentiable manifold M

Out[118]: ∇g

The nonzero Christoffel symbols of g (skipping those that can be deduced by symmetry on
the last two indices) w.r.t. the chart XU:

In [119]: g.christoffel_symbols_display(chart=XU)

Out[119]:

Γ x
x x = − 2 x

x2+y2+1

Γ x
x y = − 2 y

x2+y2+1

Γ x
y y = 2 x

x2+y2+1

Γ y
x x = 2 y

x2+y2+1

Γ y
x y = − 2 x

x2+y2+1

Γ y
y y = − 2 y

x2+y2+1

∇g acting on the vector field v:

In [120]: Dv = nab(v)
print(Dv)

Tensor field nabla_g(v) of type (1,1) on the 2-dimensional differentiable
manifold M

In [121]: Dv.display()

I–48



Course no I— Symbolic tensor calculus on manifolds: a SageMath implementation

Out[121]: ∇gv =
(

4
(
y3 +

(
x2 + 1

)
y − x

)
x4 + y4 + 2 (x2 + 1)y2 + 2x2 + 1

)
∂

∂x
⊗ dx

+
(
−

4
(
x3 + xy2 + x+ y

)
x4 + y4 + 2 (x2 + 1)y2 + 2x2 + 1

)
∂

∂x
⊗ dy

+
(

2
(
2x3 + 2xy2 + 2x+ y

)
x4 + y4 + 2 (x2 + 1)y2 + 2x2 + 1

)
∂

∂y
⊗ dx

+
(

2
(
2 y3 + 2

(
x2 + 1

)
y − x

)
x4 + y4 + 2 (x2 + 1)y2 + 2x2 + 1

)
∂

∂y
⊗ dy

4.3. Curvature. The Riemann curvature tensor of the metric g is

In [122]: Riem = g.riemann()
print(Riem)
Riem.display()

Tensor field Riem(g) of type (1,3) on the 2-dimensional differentiable
manifold M

Out[122]: Riem (g) =
(

4
x4 + y4 + 2 (x2 + 1)y2 + 2x2 + 1

)
∂

∂x
⊗ dy ⊗ dx⊗ dy

+
(
− 4
x4 + y4 + 2 (x2 + 1)y2 + 2x2 + 1

)
∂

∂x
⊗ dy ⊗ dy ⊗ dx

+
(
− 4
x4 + y4 + 2 (x2 + 1)y2 + 2x2 + 1

)
∂

∂y
⊗ dx⊗ dx⊗ dy

+
(

4
x4 + y4 + 2 (x2 + 1)y2 + 2x2 + 1

)
∂

∂y
⊗ dx⊗ dy ⊗ dx

The components of the Riemann tensor in the default frame on M are

In [123]: Riem.display_comp()

Out[123]:

Riem (g) x y x y = 4
x4+y4+2 (x2+1)y2+2 x2+1

Riem (g) x y y x = − 4
x4+y4+2 (x2+1)y2+2 x2+1

Riem (g) y x x y = − 4
x4+y4+2 (x2+1)y2+2 x2+1

Riem (g) y x y x = 4
x4+y4+2 (x2+1)y2+2 x2+1

The parent of the Riemann tensor is the C∞(M)-module of type-(1,3) tensor fields on M :

In [124]: print(Riem.parent())

Module T^(1,3)(M) of type-(1,3) tensors fields on the 2-dimensional
differentiable manifold M

The Riemann tensor is antisymmetric on its two last indices (i.e. the indices at position 2 and 3,
the first index being at position 0):

In [125]: Riem.symmetries()

Out[125]: no symmetry; antisymmetry: (2, 3)

The Riemann tensor of the Euclidean metric h on R3 is identically zero, i.e. h is a flat met-
ric:

In [126]: h.riemann().display()

I–49



Éric Gourgoulhon and Marco Mancini

Out[126]: Riem (h) = 0

The Ricci tensor is
In [127]: Ric = g.ricci()

Ric.display()

Out[127]: Ric (g) =
(

4
x4 + y4 + 2 (x2 + 1)y2 + 2x2 + 1

)
dx⊗ dx

+
(

4
x4 + y4 + 2 (x2 + 1)y2 + 2x2 + 1

)
dy ⊗ dy

while the Ricci scalar is
In [128]: R = g.ricci_scalar()

R.display()

Out[128]:

r (g) : M −→ R

on U : (x, y) 7−→ 2
on V : (x′, y′) 7−→ 2

We recover the fact that (S2, g) is a Riemannian manifold of constant positive curvature.
In dimension 2, the Riemann curvature tensor is entirely determined by the Ricci scalar R

according to

(4.1) Ri jlk = R

2
(
δi kgjl − δi lgjk

)
Let us check this formula here, under the form Ri jlk = −Rgj[kδi l]:

In [129]: delta = M.tangent_identity_field()
Riem == - R*(g*delta).antisymmetrize(2,3)

Out[129]: True

Similarly the relation Ric = (R/2) g must hold:

In [130]: Ric == (R/2)*g

Out[130]: True

4.4. Volume form. The volume form (or Levi-Civita tensor) associated with the metric g
and for which the vector frame (∂x, ∂y) is right-handed is the following 2-form:

In [131]: eps = g.volume_form()
print(eps)
eps.display()

Out[131]: εg =
(

4
x4 + y4 + 2 (x2 + 1)y2 + 2x2 + 1

)
dx ∧ dy

The exterior derivative of εg is a 3-form:

In [132]: print(eps.exterior_derivative())

3-form deps_g on the 2-dimensional differentiable manifold M

Of course, since the dimension of M is 2, all 3-forms vanish identically:

In [133]: eps.exterior_derivative().display()

Out[133]: dεg = 0

I–50



Course no I— Symbolic tensor calculus on manifolds: a SageMath implementation

CHAPTER 5

Conclusion and perspectives

We have presented some aspects of symbolic tensor calculus as implemented in SageMath. The
implementation is independent of the symbolic backend (i.e. the tool used to performed symbolic
calculus on coordinate representations of scalar fields), the latter being involved only in the last
stage of the diagram shown in Fig. 3.4.

The implementation has been performed via the SageManifolds project, the home page of which
we refer to for details and material complementary to what has been shown here (in particular
many more examples):

https://sagemanifolds.obspm.fr/
This project resulted in approximately 85, 000 lines of Python code (including comments and
doctests), which have been submitted to SageMath community as a sequence of ∼ 50 tickets25 at
the time of this writing (October 2018), the first ticket having been accepted in March 2015. These
tickets have been written and reviewed by a dozen of contributors.26 As a result, all code is fully
included in SageMath 8.4 and does not require any separate installation. The following features
have been already implemented:

• differentiable manifolds: tangent spaces, vector frames, tensor fields, curves, pullback and
pushforward operators;

• standard tensor calculus (tensor product, contraction, symmetrization, etc.), even on
non-parallelizable manifolds;

• all monoterm tensor symmetries taken into account;
• Lie derivatives of tensor fields;
• differential forms: exterior and interior products, exterior derivative, Hodge duality;
• multivector fields: exterior and interior products, Schouten-Nijenhuis bracket;
• affine connections (curvature, torsion);
• pseudo-Riemannian metrics;
• computation of geodesics (numerical integration via SageMath/GSL);
• some plotting capabilities (charts, points, curves, vector fields);
• extrinsic geometry of pseudo-Riemannian submanifolds;
• parallelization (on tensor components) of CPU demanding computations, via the Python
library multiprocessing;

• the possibility to use SymPy as the symbolic backend, instead of SageMath’s default, which
is Pynac (with Maxima for simplifications).

Only a subset of the above functionalities have been presented in these lectures. In particular,
the exterior calculus on differential forms and multivector fields has not been touched, nor the
computation of geodesics.

The SageManifolds project is still ongoing and future prospects include
• adding more symbolic backends (Giac, FriCAS, ...);
• computing integrals on submanifolds;
• adding more plotting capabilities;
• introducing new functionalities: symplectic forms, fibre bundles, spinors, variational calculus,
etc.;

• connecting with numerical relativity: using SageMath to explore numerically-generated
spacetimes; this will be done by introducing numerical backends, instead of symbolic ones,
in the last stage of the Fig. 3.4 diagram.

25Cf. the meta-ticket https://trac.sagemath.org/ticket/18528.
26Cf. the list at https://sagemanifolds.obspm.fr/authors.html.

I–51

https://sagemanifolds.obspm.fr/
https://trac.sagemath.org/ticket/18528
https://sagemanifolds.obspm.fr/authors.html


Éric Gourgoulhon and Marco Mancini

In the spirit of open-source software, anybody interested is very welcome to join the project. Please
visit

https://sagemanifolds.obspm.fr/contact.html

I–52

https://sagemanifolds.obspm.fr/contact.html


Course no I— Symbolic tensor calculus on manifolds: a SageMath implementation

References

[1] I.M. Anderson and C.G. Torre: New symbolic tools for differential geometry, gravitation, and field theory, J.
Math. Phys. 53, 013511 (2012);
http://digitalcommons.usu.edu/dg/

[2] http://digi-area.com/Maple/atlas/
[3] G.V. Bard Sage for Undergraduates, Americ. Math. Soc. (2015); preprint freely downloadable from http:

//www.gregorybard.com/
[4] T. Birkandan, C. Güzelgün, E. Şirin and M. Can Uslu: Symbolic and Numerical Analysis in General Relativity

with Open Source Computer Algebra Systems, arXiv:1703.09738v2 (2018).
[5] D.A. Bolotin and S.V. Poslavsky: Introduction to Redberry: the computer algebra system designed for tensor

manipulation, arXiv:1302.1219 (2013);
http://redberry.cc/

[6] M. Culler, N. M. Dunfield, M. Goerner, and J. R. Weeks: SnapPy, a computer program for studying the
geometry and topology of 3-manifolds;
http://snappy.computop.org

[7] J.G. Fletcher, R. Clemens, R. Matzner, K.S. Thorne and B.A. Zimmerman: Computer Programs for Calculating
General-Relativistic Curvature Tensors, Astrophys. J. 148, L91 (1967).

[8] https://github.com/grtensor/grtensor
[9] D. Joyner and W. Stein: Sage Tutorial, CreateSpace (2014).
[10] A.V. Korol’kova, D.S. Kulyabov and L.A. Sevast’yanov: Tensor computations in computer algebra systems,

Prog. Comput. Soft. 39, 135 (2013).
[11] J. M. Lee : Riemannian Manifolds: An Introduction to Curvature, Springer, New-York (1997).
[12] J. M. Lee : Introduction to Smooth Manifolds, 2nd edition, Springer, New-York (2013).
[13] M.A.H. MacCallum: Computer Algebra in General Relativity, Int. J. Mod. Phys. A 17, 2707 (2002).
[14] M.A.H. MacCallum: Computer algebra in gravity research, Liv. Rev. Relat. 21, 6 (2018);

https://doi.org/10.1007/s41114-018-0015-6
[15] J.-M. Martin-Garcia: xPerm: fast index canonicalization for tensor computer algebra, Comput. Phys. Commun.

179, 597 (2008);
http://www.xact.es

[16] J. W. Milnor : On manifolds homeomorphic to the 7-sphere, Ann. Math. 64, 399 (1956).
[17] B. O’Neill : Semi-Riemannian Geometry, with Applications to Relativity, Academic Press, New York (1983).
[18] https://opendreamkit.org
[19] K. Peeters: Symbolic field theory with Cadabra, Comput. Phys. Commun. 15, 550 (2007);

https://cadabra.science/
[20] http://www.math.washington.edu/~lee/Ricci/
[21] https://sagemanifolds.obspm.fr
[22] J.E.F. Skea: Applications of SHEEP (1994), lecture notes available at http://www.computeralgebra.nl/

systemsoverview/special/tensoranalysis/sheep/
[23] N. Steenrod: The Topology of Fibre Bundles, Princeton Univ. Press (Princeton) (1951)
[24] W. Stein and D. Joyner: SAGE: System for Algebra and Geometry Experimentation, Commun. Comput.

Algebra, 39, 61 (2005).
[25] C. H. Taubes : Gauge theory on asymptotically periodic 4-manifolds, J. Differential Geom. 25, 363 (1987).
[26] V. Toth: Tensor manipulation in GPL Maxima, arXiv:cs/0503073 (2005).
[27] P. Zimmermann et al.: Calcul mathématique avec Sage, CreateSpace (2013); freely downloadable from

http://sagebook.gforge.inria.fr/
[28] P. Zimmermann et al.: Computational Mathematics with SageMath (2018); freely downloadable from http:

//sagebook.gforge.inria.fr/english.html

I–53

http://digitalcommons.usu.edu/dg/
http://digi-area.com/Maple/atlas/
http://www.gregorybard.com/
http://www.gregorybard.com/
http://redberry.cc/
http://snappy.computop.org
https://github.com/grtensor/grtensor
https://doi.org/10.1007/s41114-018-0015-6
http://www.xact.es
https://opendreamkit.org
https://cadabra.science/
http://www.math.washington.edu/~lee/Ricci/
https://sagemanifolds.obspm.fr
http://www.computeralgebra.nl/systemsoverview/special/tensoranalysis/sheep/
http://www.computeralgebra.nl/systemsoverview/special/tensoranalysis/sheep/
http://sagebook.gforge.inria.fr/
http://sagebook.gforge.inria.fr/english.html
http://sagebook.gforge.inria.fr/english.html


Éric Gourgoulhon and Marco Mancini

Laboratoire Univers et Théories, CNRS, Observatoire de Paris, Université Paris Diderot, Université Paris Sciences
et Lettres, 92190 Meudon, France • eric.gourgoulhon@obspm.fr • marco.mancini@obspm.fr

I–54

mailto:eric.gourgoulhon@obspm.fr
mailto:marco.mancini@obspm.fr

	Preface
	Chapter 1. Introduction
	1. What is tensor calculus on manifolds?
	2. A few words of history
	3. Software for differential geometry
	4. A brief overview of SageMath
	5. The purpose of this lecture

	Chapter 2. Differentiable manifolds
	1. Introduction
	2. Differentiable manifolds
	2.1. Topological manifolds
	2.2. Coordinate charts
	2.3. Smooth manifolds
	2.4. Smooth maps

	3. Scalar fields and their algebra
	3.1. Definition and implementation
	3.2. Scalar field algebra
	3.3. Implementation of algebra operations


	Chapter 3. Vector fields
	1. Introduction
	2. Tangent vectors
	2.1. Definitions
	2.2. SageMath implementation

	3. Vector fields
	3.1. Definition
	3.2. Module of vector fields
	3.3. SageMath implementation
	3.4. Construction and manipulation of vector fields
	3.5. Implementation details regarding vector fields
	3.6. Action of vector fields on scalar fields


	Chapter 4. Tensor fields
	1. Introduction
	2. Differential forms
	3. More general tensor fields
	4. Riemannian metric
	4.1. Defining a metric
	4.2. Levi-Civita connection
	4.3. Curvature
	4.4. Volume form


	Chapter 5. Conclusion and perspectives
	References

