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ABSTRACT

Aims. We present the first fully relativistic study of gravitational radiation from bodies in circular equatorial orbits around the massive
black hole at the Galactic center, Sgr A* and we assess the detectability of various kinds of objects by the gravitational wave detector
LISA.
Methods. Our computations are based on the theory of perturbations of the Kerr spacetime and take into account the Roche limit
induced by tidal forces in the Kerr metric. The signal-to-noise ratio in the LISA detector, as well as the time spent in LISA band, are
evaluated. We have implemented all the computational tools in an open-source SageMath package, within the Black Hole Perturbation
Toolkit framework.
Results. We find that white dwarfs, neutrons stars, stellar black holes, primordial black holes of mass larger than 10−4 M�, main-
sequence stars of mass lower than ∼2.5 M�, and brown dwarfs orbiting Sgr A* are all detectable in one year of LISA data with a
signal-to-noise ratio above 10 for at least 105 years in the slow inspiral towards either the innermost stable circular orbit (compact
objects) or the Roche limit (main-sequence stars and brown dwarfs). The longest times in-band, of the order of 106 years, are achieved
for primordial black holes of mass ∼10−3 M� down to 10−5 M�, depending on the spin of Sgr A*, as well as for brown dwarfs, just
followed by white dwarfs and low mass main-sequence stars. The long time in-band of these objects makes Sgr A* a valuable target
for LISA. We also consider bodies on close circular orbits around the massive black hole in the nucleus of the nearby galaxy M 32
and find that, among them, compact objects and brown dwarfs stay for 103–104 years in LISA band with a one-year signal-to-noise
ratio above ten.
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1. Introduction

The future space-based Laser Interferometer Space Antenna
(LISA; Amaro-Seoane et al. 2017), selected as the L3 mission
of ESA, will detect gravitational radiation from various phe-
nomena involving massive black holes (MBHs), the masses of
which range from 105 to 107 M� (see e.g. Amaro-Seoane 2018;
Babak et al. 2017, and references therein). The mass of the
MBH Sgr A* at the center of our galaxy lies within this range
(GRAVITY Collaboration 2018a,b):

MSgr A∗ = 4.10 ± 0.03 × 106 M�. (1)

More precisely, the angular velocity ω0 on a circular, equa-
torial orbit at the Boyer–Lindquist radial coordinate r0 around a
Kerr black hole (BH) is given by the formula in Bardeen et al.
(1972)

ω0 =
(GM)1/2

r3/2
0 + a(GM)1/2/c

, (2)

where G is the gravitational constant, c the speed of light, M the
BH mass, and a = J/(cM) its reduced spin. Here J is the mag-
nitude of the BH angular momentum (a has the dimension of a

length). The motion of a particle of mass µ � M on a circu-
lar orbit generates some gravitational radiation with a periodic
pattern (the dominant mode of which is m = 2) and has the fre-
quency fm=2 = 2 f0, where f0 ≡ ω0/(2π) is the orbital frequency
(details are given in Sect. 2). Combining with Eq. (2), we obtain

fm=2 =
1
π

(GM)1/2

r3/2
0 + a(GM)1/2/c

· (3)

This frequency is maximal at the (prograde) innermost stable
circular orbit (ISCO), which is located at r0 = 6GM/c2 for a = 0
(Schwarzschild BH) and at r0 = GM/c2 for a = amax ≡ GM/c2

(extreme Kerr BH). Equation (3) leads then to

f ISCO,a=0
m=2 =

c3

63/2πGM
and f ISCO,amax

m=2 =
c3

2πGM
· (4)

Substituting the mass of Sgr A* (1) for M, we obtain

f ISCO,a=0
m=2 = 1.1 mHz and f ISCO,amax

m=2 = 7.9 mHz. (5)

By convenient coincidence, f ISCO,amax
m=2 matches almost exactly

the frequency of LISA maximal sensitivity, the latter being
7.86 mHz! (see Fig. 1). The spin of Sgr A* is currently not
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Fig. 1. LISA sensitivity curve (Amaro-
Seoane et al. 2017) and various grav-
itational wave frequencies from circu-
lar orbits around Sgr A*. The wave fre-
quencies shown above are all for the
dominant m = 2 mode, except for the
dot-dashed and dotted vertical red lines,
which correspond to the m = 3 and m =
4 harmonics of the ISCO of an extreme
Kerr BH (a = M). The shaded pink area
indicates the location of the frequencies
from the ISCO when a ranges from zero
to M. The Roche limits are those dis-
cussed in Sect. 5.1.

known, but it is expected to be quite large, due to matter accre-
tion since the birth of the MBH. Actually, the tentative mea-
sures of MBH spins in nuclei of other galaxies generally lead
to large values of a. See for example Table 3 of the recent
review by Nampalliwar & Bambi (2018), where most entries
have a > 0.9 GM/c2.

The adequacy of LISA bandwidth to orbital motions around
Sgr A* was first stressed by Freitag (2003a,b), who estimated
the gravitational radiation from orbiting stars at the (Newto-
nian) quadrupole order. By taking into account the tidal forces
exerted by the MBH, he showed that, besides compact objects,
low-mass main-sequence stars (mass µ . 0.1 M�) can approach
the central MBH sufficiently close to emit gravitational waves
in LISA bandwidth. Via some numerical simulations of the
dynamics of the Galactic center stellar cluster, he estimated that
there could exist a few such stars detectable by LISA, whereas
the probability of observing a compact object was found to be
quite low (Freitag 2003b). This study was refined by Barack
& Cutler (2004), who estimated that the signal-to-noise ratio
(S/N) of a µ = 0.06 M� main-sequence star observed 106 yr
before plunge is of the order eleven in two years of LISA obser-
vations. Moreover, they have shown that the detection of such
an event could lead to the spin measurement of Sgr A* with
an accuracy of ∼0.5%. Berry & Gair (2013a) investigated the
phenomenon of extreme-mass-ratio burst, which occurs at the
periastron passage of a stellar-mass compact object (mass µ)
on a highly eccentric orbit around Sgr A*. These authors have
shown that LISA can detect such an event with µ = 10 M�,
provided that the periastron distance is lower than 65 GM/c2.
The event rate of such bursts could be of the order of 1 per year
(Berry & Gair 2013b; see Sect. 7.6 of Amaro-Seoane 2018 for
some discussion). Linial & Sari (2017) have computed at the
quadrupole order the gravitational wave emission from orbiting
main-sequence stars undergoing Roche lobe overflow, treated at
the Newtonian level. These authors stressed the detectability by
LISA and have showed the possibility of a reverse chirp signal,
the reaction of the accreting system to the angular momentum
loss by gravitational radiation being a widening of the orbit (out-
spiral) (Dai & Blandford 2013). Recently, Kuhnel et al. (2018)
have computed, still at the quadrupole level, the gravitational

wave emission from an ensemble of macroscopic dark matter
candidates orbiting Sgr A*, such as primordial BHs, with masses
in the range 10−13−103 M�.

All the studies mentioned above are based on the quadrupole
formula for Newtonian orbits, except that of Berry & Gair
(2013a), which is based on the so-called “kludge approxima-
tion”. Now, for orbits close to the ISCO, relativistic effects are
expected to be important. In this article, we present the first
study of gravitational waves from stellar objects in close orbits
around Sgr A* in a fully relativistic framework: Sgr A* is mod-
eled as a Kerr BH, gravitational waves are computed via the
theory of perturbations of the Kerr metric (Teukolsky 1973;
Detweiler 1978; Shibata 1994; Kennefick 1998; Hughes 2000;
Finn & Thorne 2000; Glampedakis & Kennefick 2002) and tidal
effects are evaluated via the theory of Roche potential in the
Kerr metric developed by Dai & Blandford (2013). Moreover,
from the obtained waveforms, we carefully evaluate the signal-
to-noise ratio in the LISA detector, taking into account the latest
LISA sensitivity curve (Robson et al. 2019). There is another
MBH with a mass within the LISA range in the Local Group
of galaxies: the 2.5 × 106 M� MBH in the center of the galaxy
M 32 (Nguyen et al. 2018). By applying the same techniques, we
study the detectability by LISA of bodies in close circular orbit
around it.

The plan of the article is as follows. The method employed
to compute the gravitational radiation from a point mass in cir-
cular orbit around a Kerr BH is presented in Sect. 2, the open-
source code implementing it being described in Appendix A.
The computation of the S/N of the obtained waveforms in
the LISA detector is performed in Sect. 3, from which we
can estimate the minimal detectable mass of the orbiting
source in terms of the orbital radius. Section 4 investigates
the secular evolution of a circular orbit under the reaction
to gravitational radiation and provides the frequency change
per year and the inspiral time between two orbits. The poten-
tial astrophysical sources are discussed in Sect. 5, taking into
account Roche limits for noncompact objects and estimating
the total time spent in LISA band. The case of M 32 is treated
in Appendix C. Finally, the main conclusions are drawn in
Sect. 6.
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2. Gravitational waves from an orbiting point mass

In this section and the remainder of this article, we use
geometrized units, for which G = 1 and c = 1. In addition
we systematically use Boyer–Lindquist coordinates (t, r, θ, ϕ) to
describe the Kerr geometry of a rotating BH of mass M and spin
parameter a, with 0 6 a < M. We consider a particle of mass
µ � M on a (stable) prograde circular equatorial orbit of con-
stant coordinate r = r0. Hereafter, we call r0 the orbital radius.
The orbital angular velocity ω0 is given by formula (2). In prac-
tice this “particle” can be any object whose extension is negli-
gible with respect to the orbital radius. In particular, for Sgr A*,
it can be an object as large as a solar-type star. Indeed, Sgr A*
mass (1) corresponds to a length scale M = 6.05×106 km ∼ 9R�,
where R� is the Sun’s radius. Moreover, main-sequence stars
are centrally condensed objects, so that their “effective” size as
gravitational wave generator is smaller that their actual radius.
In addition, as we shall see in Sect. 5.1, their orbital radius
must obey r0 > 34 M to avoid tidal disruption (Roche limit), so
that R�/r0 < 3 × 10−3. Hence, regarding Sgr A*, we may safely
describe orbiting stars as point particles.

The gravitational wave emission from a point mass orbiting
a Kerr BH has been computed by many groups, starting from
the seminal work of Detweiler (1978), which is based on the
theory of linear perturbations of the Kerr metric initiated by
Teukolsky (1973). The computations have been extended to
eccentric orbits by a number of authors (see e.g. Glampedakis
& Kennefick 2002). However, in the present study, we limit our-
selves to circular orbits, mostly for simplicity, but also because
some of the scenarii discussed in Sect. 5 lead naturally to low
eccentricity orbits; this involves inspiralling compact objects that
result from the tidal disruption of a binary, stars formed in an
accretion disk, black holes resulting from the most massive of
such stars and a significant proportion (∼1/4) of the population
of brown dwarfs that might be in LISA band.

In Sect. 2.1, we recall the gravitational waveform obtained
from perturbation analysis of the Kerr metric. It requires the
numerical computation of many mode amplitudes. This is quite
technical and we describe the technique we use to perform the
computation in Sect. 2.2. We discuss the limiting case of dis-
tant orbits in Sect. 2.3 and evaluate the Fourier spectrum of
the waveform in Sect. 2.4, where we present some specific
waveforms.

2.1. Gravitational waveform

The gravitational waves generated by the orbital motion of
the particle are conveniently encoded in the linear combi-
nation h+ − ih× of the two polarization states h+ and h×.
A standard result from the theory of linear perturbations
of the Kerr BH (Teukolsky 1973; Detweiler 1978; Shibata
1994; Kennefick 1998; Hughes 2000; Finn & Thorne 2000;
Glampedakis & Kennefick 2002) yielded the asymptotic wave-
form as

h+ − ih× =
2µ
r

+∞∑
`=2

∑̀
m=−`
m,0

Z∞`m(r0)
(mω0)2 −2S amω0

`m (θ, ϕ) e−im(ω0(t−r∗)+ϕ0), (6)

where (h+, h×) are evaluated at the spacetime event of Boyer–
Lindquist coordinates (t, r, θ, ϕ) and r∗ is the so-called “tortoise
coordinate”, defined as

r∗ ≡ r +
2Mr+

r+ − r−
ln

( r − r+

2M

)
−

2Mr−
r+ − r−

ln
( r − r−

2M

)
, (7)

where r± ≡ M ±
√

M2 − a2 denote the coordinate locations of
the outer (+) and inner (−) event horizons. The phase ϕ0 in
Eq. (6) can always be absorbed into a shift of the origin of t.
The spin-weighted spheroidal harmonics −2S amω0

`m (θ, ϕ) encode
the dependency of the waveform with respect to the polar angles
(θ, ϕ) of the observer. For each harmonic (`,m), they depend on
the (dimensionless) product aω0 of the Kerr spin parameter and
the orbital angular velocity, and they reduce to the more famil-
iar spin-weighted spherical harmonics −2Y`m(θ, ϕ) when a = 0.
The coefficients Z∞`m(r0) encode the amplitude and phase of each
mode. They depend on M and a and are computed by solving the
radial component of the Teukolsky equation (Teukolsky 1973);
they satisfy Z∞`,−m = (−1)`Z∞∗`m , where the star denotes the com-
plex conjugation.

Given the distance r = 8.12± 0.03 kpc to Sgr A*
(GRAVITY Collaboration 2018a), the prefactor µ/r in
formula (6) takes the following numerical value:

µ

r
= 5.89 × 10−18

(
µ

1 M�

) (
8.12 kpc

r

)
· (8)

2.2. Mode amplitudes

The factor |Z∞`m(r0)|/(mω0)2 sets the amplitude of the mode
(`,m) of h+ and h× according to Eq. (6). The complex ampli-
tudes, Z∞`m, are computed by solving the Teukolsky equation
(Teukolsky 1973), where, typically, the secondary is modeled
as a structureless point mass. Generally, the Teukolsky equa-
tion is solved in either the time or frequency domain. Time
domain calculations are computationally expensive but well
suited to modeling a source moving along an arbitrary trajectory.
Frequency domain calculations have the advantage that the
Teukolsky equation is completely separable in this domain and
this reduces the problem from solving partial to ordinary differ-
ential equations. This leads to very efficient calculations so long
as the Fourier spectrum of the source is sufficiently narrow. Over
short timescales1 the trajectory of a small body with µ � M
orbiting a MBH is well approximated by a bound geodesic of
the background spacetime. Motion along a bound geodesic is
periodic (or bi-periodic Schmidt 2002) and so the spectrum of
the source is discrete. This allows the Teukolsky equation to be
solved efficiently in the frequency domain, at least for orbits with
up to a moderate eccentricity (for large eccentricities the Fourier
spectrum broadens to a point where time domain calculations
can be more efficient Barton et al. 2008). Frequency domain cal-
culations have been carried out for circular (Detweiler 1978),
spherical (Hughes 2000), eccentric equatorial (Glampedakis &
Kennefick 2002) and generic orbits (Drasco & Hughes 2006;
Fujita et al. 2009; van de Meent 2018) and we follow this
approach in this work.

In the frequency domain the Teukolsky equation separates
into spin-weighted spheroidal harmonics and frequency modes.
The former can be computed via eigenvalue (Hughes 2000) or
continuous fraction methods (Leaver 1985). The main task is
then finding solutions to the Teukolsky radial equation. Typ-
ically, this is a two step process whereby one first finds the

1 As discussed further in Sect. 4, an orbiting body’s true worldline spi-
rals inwards due to gravitational radiation reaction. A geodesic that is
tangent to the worldline at an instance will dephase from the inspiral-
ing worldline on a timescale ∼Mε−1/2 where ε ≡ µ/M is the mass ratio.
By approximating the radiation reaction force at each instance by that
computed along a tangent geodesic one can compute a worldline that
dephases from the true inspiral over the radiation reaction timescale of
∼Mε−1 (Hinderer & Flanagan 2008).
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Fig. 2. Amplitude factor |Z∞`m(r0)|/(mω0)2 for the harmonic (`,m) of the gravitational wave emitted by an orbiting point mass (cf. Eq. (6)), in
terms of the orbital radius r0. Each panel corresponds to a given value of the MBH spin: a = 0 (Schwarzschild BH), a = 0.5 M, a = 0.9 M and
a = 0.98 M. A given color corresponds to a fixed value of ` and the line style indicates the value of m: solid: m = `, dashed: m = `− 1, dot-dashed:
m = ` − 2, dotted: 0 < m 6 ` − 3.

homogeneous solutions and then computes the inhomogeneous
solutions via the method of variation of parameters. Finding the
homogeneous solutions is usually done by either numerical inte-
gration or via an expansion of the solution in a series of special
functions (Sasaki & Tagoshi 2003). In this work we make use
of both methods as a cross check. Direct numerical integration
of the Teukolsky equation is numerically unstable but this can
be overcome by transforming the equation to a different form
(Sasaki & Nakamura 1982a,b). Our implementation is based off
the code developed for Gralla et al. (2015). For the series method
our code is based off of codes used in Kavanagh et al. (2016),
Buss & Casals (2018). Both of these codes, as well as code to
compute spin-weighted spheroidal harmonics, are now publicly
available as part of the Black Hole Perturbation Toolkit2.

The final step is to compute the inhomogeneous radial solu-
tions. In this work we consider circular, equatorial orbits. With
a point particle source, this reduces the application of varia-
tion of parameters to junction conditions at the particle’s radius
(Detweiler 1978). The asymptotic complex amplitudes, Z∞`m, can
then be computed by evaluating the radial solution in the limit
r → ∞.

The mode amplitudes are plotted in Fig. 2 as functions of the
orbital radius r0 for 2 6 ` 6 5, 1 6 m 6 ` and some selected val-
ues of the MBH spin parameter a. Each curve starts at the value
of r0 corresponding to the prograde ISCO for the considered a.

2 http://bhptoolkit.org/

2.3. Waveform for distant orbits (r0 � M)

When the orbital radius obeys r0 � M, we see from Fig. 2
that the modes (`,m) = (2,±2) dominate the waveform (cf. the
solid red curves in the four panels of Fig. 2). Moreover, for
r0 � M, the effects of the MBH spin become negligible. This
is also apparent on Fig. 2: the value of |Z∞`m(r0)|/(mω0)2 for
(`,m) = (2, 2) and r0 = 50 M appears to be independent of a,
being equal to roughly 7 × 10−2 in all the four panels. The value
of Z∞2,±2(r0) at the lowest order in M/r0 is given by e.g. Eq. (5.6)
of Poisson (1993a), and reads3

Z∞2,±2(r0) = 16
√
π

5
M2

r4
0

[
1 + O

(
M
r0

)]
· (9)

The dependency with respect to a would appear only at the rel-
ative order (M/r0)3/2 (see Eq. (24) of Poisson 1993b) and can
safely be ignored, as already guessed from Fig. 2. Besides, for
r0 � M, Eq. (2) reduces to the standard Newtonian expression:

ω0 '

√
M
r3

0

· (10)

3 Our values of Z∞`m(r0) have a sign opposite to those of Poisson (1993a)
due to a different choice of metric signature, namely (+,−,−,−) in
Poisson (1993a) vs. (−,+,+,+) here, and hence a different sign of
(h+, h×).
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Combining with Eq. (9), we see that the amplitude factor in the
waveform (6) is

Z∞2,±2(r0)

(2ω0)2 ' 4
√
π

5
M
r0
· (11)

Besides, when r0 � M, Eq. (2) leads to Mω0 � 1 and therefore
to aω0 � 1 since |a| 6 M. Accordingly the spheroidal harmonics
−2S amω0

`m (θ, ϕ) in Eq. (6) can be approximated by the spherical
harmonics −2Y`m(θ, ϕ). For (`,m) = (2,±2), the latter are

−2Y2,±2(θ, ϕ) =
1
8

√
5
π

(1 ± cos θ)2 e±2iϕ. (12)

Keeping only the terms (`,m) = (2,±2) in the summa-
tions involved in Eq. (6) and substituting expression (11) for
the amplitude factor and expression (12) for −2S 2aω0

2,±2 (θ, ϕ) '
−2Y2,±2(θ, ϕ), we get

h+ − ih× =
µ

r
M
r0

[
(1 − cos θ)2e2iψ + (1 + cos θ)2e−2iψ

]
, (13)

where

ψ ≡ ω0(t − r∗) + ϕ0 − ϕ. (14)

Expanding (13) leads immediately to

h+(t, r, θ, ϕ) = 2
µ

r
M
r0

(1 + cos2 θ) cos
[
2ω0(t − r∗) + 2(ϕ0 − ϕ)

]
,

(15a)

h×(t, r, θ, ϕ) = 4
µ

r
M
r0

cos θ sin
[
2ω0(t − r∗) + 2(ϕ0 − ϕ)

]
. (15b)

As expected for r0 � M, we recognize the waveform obtained
from the standard quadrupole formula applied to a point mass µ
on a Newtonian circular orbit around a mass M � µ (compare
with e.g. Eqs. (3.13) and (3.14) of Blanchet 2001).

2.4. Fourier series expansion

Observed at a fixed location (r, θ, ϕ), the waveform (h+, h×) as
given by Eq. (6) is a periodic function of t, or equivalently of
the retarded time u ≡ t − r∗, the period being nothing but the
orbital period of the particle: T0 = 2π/ω0. It can therefore be
expanded in Fourier series. Noticing that the ϕ-dependency of
the spheroidal harmonic −2S amω0

`m (θ, ϕ) is simply eimϕ, we may
rewrite Eq. (6) as an explicit Fourier series expansion4:

h+,× =
µ

r

+∞∑
m=1

[
A+,×

m (θ) cos(mψ) + B+,×
m (θ) sin(mψ)

]
, (16)

where ψ is given by Eq. (14) and A+
m(θ), A×m(θ), B+

m(θ) and B×m(θ)
are real-valued functions of θ, involving M, a and r0:

A+
m(θ) =

2
(mω0)2

+∞∑
`=2

Re
(
Z∞`m(r0)

)
×

[
(−1)` −2S −amω0

`,−m (θ, 0) + −2S amω0
`m (θ, 0)

]
, (17a)

B+
m(θ) =

2
(mω0)2

+∞∑
`=2

Im
(
Z∞`m(r0)

)
×

[
(−1)` −2S −amω0

`,−m (θ, 0) + −2S amω0
`m (θ, 0)

]
, (17b)

4 The notation h+,× stands for either h+ or h×.

A×m(θ) =
2

(mω0)2

+∞∑
`=2

Im
(
Z∞`m(r0)

)
×

[
(−1)` −2S −amω0

`,−m (θ, 0) − −2S amω0
`m (θ, 0)

]
, (17c)

B×m(θ) =
2

(mω0)2

+∞∑
`=2

Re
(
Z∞`m(r0)

)
×

[
(−1)`+1

−2S −amω0
`,−m (θ, 0) + −2S amω0

`m (θ, 0)
]
. (17d)

We then define the spectrum of the gravitational wave at a fixed
value of θ as the two series (one per polarization mode):

H+,×
m (θ) ≡

√(
A+,×

m (θ)
)2

+
(
B+,×

m (θ)
)2
, 1 6 m < +∞. (18)

We have developed an open-source SageMath package,
kerrgeodesic_gw (cf. Appendix A), implementing the above
formulas, and more generally all the computations presented in
this article, like the S/N and Roche limit ones to be discussed
below. The spectrum, as well as the corresponding waveform,
computed via kerrgeodesic_gw, are depicted in Figs. 3 and 4
for a = 0 and a = 0.98 M respectively. In each figure, ϕ = ϕ0
and three values of θ are selected: θ = 0 (orbit seen face-on), π/4
and π/2 (orbit seen edge-on).

We notice that for θ = 0, only the Fourier mode m = 2 is
present and that h+ and h× have identical amplitudes and are in
quadrature. This behavior is identical to that given by the large
radius (quadrupole-formula) approximation (15). For θ > 0, all
modes with m > 1 are populated, whereas the approximation
(15) contains only m = 2. For θ = π/2, h× vanishes identically
and the relative amplitude of the modes m , 2 with respect to
the mode m = 2 is the largest one, reaching ∼75% for m = 3 and
∼50% for m = 4 when a = 0.98 M.

Some tests of our computations, in particular comparisons
with previous results by Poisson (1993a; a = 0) and Detweiler
(1978; a = 0.5 M and a = 0.9 M) are presented in Appendix A.

3. Signal-to-noise ratio in the LISA detector

The results in Sect. 2 are valid for any BH. We now specialize
them to Sgr A* and evaluate the S/N in the LISA detector, as a
function of the mass µ of the orbiting object, the orbital radius r0
and the spin parameter a of Sgr A*.

3.1. Computation

Assuming that its noise is stationary and Gaussian, a given detec-
tor is characterized by its one-sided noise power spectral den-
sity (PSD) S n( f ). For a gravitational wave search based on the
matched filtering technique, the S/N ρ is given by the follow-
ing formula (see e.g. Jaranowski & Królak 2012; Moore et al.
2015):

ρ2 = 4
∫ +∞

0

|h̃( f )|2

S n( f )
d f , (19)

where h̃( f ) is the Fourier transform of the imprint h(t) of the
gravitational wave on the detector,

h̃( f ) =

∫ +∞

−∞

h(t) e−2πi f t dt, (20)

h(t) being a linear combination of the two polarization modes h+

and h× at the detector location:

h(t) = F+(Θ,Φ,Ψ) h+(t, r, θ, ϕ) + F×(Θ,Φ,Ψ) h×(t, r, θ, ϕ). (21)
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Fig. 3. Waveform (left column) and Fourier spectrum (right column) of gravitational radiation from a point mass orbiting on the ISCO of a
Schwarzschild BH (a = 0). All amplitudes are rescaled by r/µ, where r is the Boyer–Lindquist radial coordinate of the observer and µ the mass of
the orbiting point. Three values of the colatitude θ of the observer are considered: θ = 0 (first row), θ = π/4 (second row) and θ = π/2 (third row).

In the above expression, (t, r, θ, ϕ) are the Boyer–Lindquist coor-
dinates of the detector (“Sgr A* frame”), while F+ and F×
are the detector beam-pattern coefficients (or response func-
tions), which depend on the direction (Θ,Φ) of the source with
respect to the detector’s frame and on the polarization angle
Ψ, the latter being the angle between the direction of constant
azimuth Φ and the principal direction “+” in the wavefront plane
(i.e. the axis of the h+ mode or equivalently the direction of the
semi-major axis of the orbit viewed as an ellipse in the detec-
tor’s sky) (Apostolatos et al. 1994). For a detector like LISA,
where, for high enough frequencies, the gravitational wavelength

can be comparable or smaller than the arm length (2.5 Gm), the
response functions F+ and F× depend a priori on the gravita-
tional wave frequency f , in addition to (Θ,Φ,Ψ) (Robson et al.
2019). However for the gravitational waves considered here, a
reasonable upper bound of the frequency is that of the harmonic
m = 4 (say) of waves from the prograde ISCO of an extreme
Kerr BH (see Fig. 4). From the value given by Eq. (5), this is
fmax = 2 × 7.9 ' 15.8 mHz, the multiplication by 2 taking into
account the transition from m = 2 to m = 4. This value being
lower than LISA’s transfer frequency f∗ = 19.1 mHz (Robson
et al. 2019), we may consider that F+ and F× do not depend on
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Fig. 4. Same as Fig. 3 but for a point mass orbiting on the prograde ISCO of a Kerr BH with a = 0.98 M.

f (see Fig. 2 in Robson et al. 2019). They are given in terms
of (Θ,Φ,Ψ) by Eq. (3.12) of Cutler (1998) (with the prefactor
√

3/2 appearing in Eq. (3.11) included in them).
Generally, the function S n( f ) considered in the LISA liter-

ature, and in particular to present the LISA sensitivity curve, is
not the true noise PSD of the instrument, Pn( f ) say, but rather
Pn( f )/R( f ), where R( f ) is the average over the sky (angles
(Θ,Φ)) and over the polarization (angle Ψ) of the square of
the response functions F+ and F×, so that Eq. (19) yields
directly the sky and polarization average S/N by substituting
|h̃+( f )|2 + |h̃×( f )|2 for |h̃( f )|2 (see Robson et al. 2019 for details).
With Sgr A* as a target, the direction angles (Θ,Φ) are of course
known and, for a short observation time (1 day say), they are

approximately constant. However, on longer observation times,
theses angles varies due to the motion of LISA spacecrafts on
their orbits around the Sun. Moreover, the polarization angle
Ψ is not known at all, since it depends on the orientation of
the orbital plane around the MBH, which is assumed to be the
equatorial plane, the latter being currently unknown. For these
reasons, we consider the standard sky and polarization aver-
age sensitivity of LISA, S n( f ) = Pn( f )/R( f ), as given e.g. by
Eq. (13) of Robson et al. (2019), and define the effective (S/N)
ρ by

ρ2 = 4
∫ +∞

0

|h̃+( f )|2 + |h̃×( f )|2

S n( f )
d f , (22)
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Fig. 5. Effective (direction and polariza-
tion averaged) S/N in LISA for a 1-day
observation of an object of mass µ orbit-
ing Sgr A*, as a function of the orbital
radius r0 and for selected values of the
Sgr A*’s spin parameter a and well as
selected values of the inclination angle
θ. Each curve starts at the ISCO radius
of the corresponding value of a.

where h̃+( f ) and h̃×( f ) are the Fourier transforms of the two
gravitational wave signals h+(t) and h×(t), as given by Eq. (6)
or Eq. (16), over some observation time T :

h̃+,×( f ) =

∫ T/2

−T/2
h+,×(t) e−2πi f t dt. (23)

As shown in Appendix B, plugging the expressions (16) for h+(t)
and h×(t) into Eqs. (22) and (23) leads to the following S/N
value:

ρ =
µ

r

√
T

 +∞∑
m=1

(
H+

m(θ)
)2

+
(
H×m(θ)

)2

S n(m f0)

1/2

for f0T � 1, (24)

where the coefficients H+
m(θ) and H×m(θ) are defined by Eq. (18)

and f0 = ω0/(2π) is the orbital frequency, ω0 being the function
of M, a and r0 given by Eq. (2).

The effective S/N resulting from Eq. (24) is shown in
Figs. 5 and 6. We use the value (8) for µ/r and the analytic model
of Robson et al. (2019; their Eq. (13)) for LISA sky and polariza-
tion average sensitivity S n( f ). We notice that for a given value
of the orbital radius r0 and a given MBH spin a, the S/N is maxi-
mum for the inclination angle θ = 0 and minimal for θ = π/2, the
ratio between the two values varying from ∼2 for a = 0 to ∼3 for
a = 0.98 M. This behavior was already present in the waveform
amplitudes displayed in Figs. 3 and 4.

Another feature apparent from Figs. 5 and 6 is that at fixed
orbital radius r0, the S/N is a decaying function of a. This results
from the fact that the orbital frequency f0 is a decaying func-
tion of a (cf. Eq. (2)), which both reduces the gravitational wave
amplitude and displaces the wave frequency to less favorable
parts of LISA’s sensitivity curve.

At the ISCO, the S/N for θ = 0 is

ρISCO = α105
(

µ

1 M�

) ( T
1 d

)1/2

, (25)

with the coefficient α given in Table 1. It should be noted that
if the observation time is one year, then the factor (T/1 d)1/2 is
√

365.25 ' 19.1.

3.2. Minimal detectable mass

As clear from Eq. (24), the S/N ρ is proportional to the mass
µ of the orbiting body and to the square root of the observing
time T . It is then easy to evaluate the minimal mass µmin that
can be detected by analyzing one year of LISA data, setting the
detection threshold to

S/N1 yr = 10, (26)

where S/N1 yr stands for the value of ρ for T = 1 yr. The result
is shown in Fig. 7. If one does not take into account any Roche
limit, it is worth noticing that the minimal detectable mass is
quite small: µmin ' 3 × 10−5 M� at the ISCO of a Schwarzschild
BH (a = 0), down to µmin ' 2 × 10−6 M� (the Earth mass) at the
ISCO of a rapidly rotating Kerr BH (a > 0.90 M).

4. Radiated energy and orbital decay

In the above sections, we have assumed that the orbits are exactly
circular, i.e. we have neglected the reaction to gravitational radi-
ation. We now take it into account and discuss the resulting sec-
ular evolution of the orbits.

4.1. Total radiated power

The total power (luminosity) emitted via gravitational radiation
is given by (Detweiler 1978):

L = lim
r→+∞

r2

16π

∮
Sr

∣∣∣ḣ+ − iḣ×
∣∣∣2 sin θ dθ dϕ, (27)

where Sr is the sphere of constant value of r and an overdot
stands for the partial derivative with respect to the time coordi-
nate t, i.e. ḣ+,× ≡ ∂h+,×/∂t. Substituting the waveform (6) into
this expression leads to

L = lim
r→+∞

µ2

4π

∮
Sr

∣∣∣∣∣∣ +∞∑
`=2

∑̀
m=−`
m,0

Z∞`m(r0)
mω0

−2S amω0
`m (θ, ϕ) e−im(ω0(t−r∗)+ϕ0)

∣∣∣∣∣∣2
× sin θ dθ dϕ. (28)
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Fig. 6. Same as Fig. 5, except for r0
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the MBH spin plays a negligible role at
large distance.

Table 1. Coefficient α in formula (25) for the S/N from the ISCO.

a/M 0 0.50 0.90 0.98

α 0.149 0.490 1.87 2.09

Thanks to the orthonormality property of the spin-weighted
spheroidal harmonics,∮
S2
−2S amω0

`m (θ, ϕ)−2S am′ω0
`′m′ (θ, ϕ)∗ sin θ dθ dϕ = δ``′δmm′ , (29)

the above expression simplifies to

L =

(
µ

M

)2
L̃
( r0

M

)
with L̃

( r0

M

)
≡

M2

4π

∞∑
`=2

∑̀
m=−`
m,0

∣∣∣Z∞`m(r0)
∣∣∣2

(mω0)2 · (30)

It should be noted that L̃ is a dimensionless function of x ≡ r0/M,
the dimension of Z∞`m being an inverse squared length (see e.g.
Eq. (9)) and ω0 being the function of r0/M given by Eq. (2).
Moreover, the function L̃(x) depends only on the parameter a/M
of the MBH.

As a check of Eq. (30), let us consider the limit of large
orbital radius: r0 � M. As discussed in Sect. 2.3, only the terms
(`,m) = (2,±2) are pertinent in this case, with Z∞2,±2(r0) given by
Eq. (9) and ω0 related to r0 by Eq. (10). Equation (30) reduces
then to

L '
32
5

(
µ

M

)2
(

M
r0

)5

(r0 � M) ⇐⇒ L̃(x) '
32
5x5 (x � 1). (31)

We recognize the standard result from the quadrupole formula at
Newtonian order (Landau & Lifshitz 1971; see also the lowest
order of formula (314) in the review by Blanchet 2014).

The total emitted power L (actually the function L̃(r0/M)) is
depicted in Fig. 8. A test of our computations is provided by the
comparison with Figs. 6 and 7 of Detweiler (1978)’s study. At
the naked eye, the agreement is quite good, in particular for the
values of L at the ISCO’s. Moreover, for large values of r0 all
curves converge towards the curve of the quadrupole formula

(31) (dotted curve), as they should. However, as the inset of
Fig. 8 reveals, the relative deviation from the quadrupole for-
mula is still ∼5% for orbital radii as large as r0 ∼ 50 M. This is
not negligibly small and justifies the fully relativistic approach
that we have adopted.

4.2. Secular evolution of the orbit

For a particle moving along any geodesic in Kerr spacetime, in
particular along a circular orbit, the conserved energy is E ≡
−paξ

a, where pa is the particle’s 4-momentum 1-form and ξa

the Killing vector associated with the pseudo-stationarity of Kerr
spacetime (ξ = ∂/∂t in Boyer–Lindquist coordinates). Far from
the MBH, E coincides with the particle’s energy as an inertial
observer at rest with respect to the MBH would measure. For a
circular orbit of radius r0 in the equatorial plane of a Kerr BH of
mass M and spin parameter a, the expression of E is (Bardeen
et al. 1972)

E = µ
1 − 2M/r0 + aM1/2/r3/2

0(
1 − 3M/r0 + 2aM1/2/r3/2

0

)1/2 , (32)

where µ ≡ (−pa pa)1/2 is the particle’s rest mass.
Due to the reaction to gravitational radiation, the particle’s

worldline is actually not a true timelike geodesic of Kerr space-
time, but is slowly inspiralling towards the central MBH. In par-
ticular, E is not truly constant. Its secular evolution is governed
by the balance law (Finn & Thorne 2000; Barack & Pound 2019;
Isoyama et al. 2019)

Ė = −L − LH, (33)

where Ė ≡ dE/dt, L is the gravitational wave luminosity evalu-
ated in Sect. 4.1 and LH is the power radiated down to the event
horizon of the MBH. It turns out that in practice, LH is quite
small compared to L. From Table VII of Finn & Thorne (2000),
we notice that for a = 0, one has always |LH/Ė| < 4 × 10−3 and
for a = 0.99M, one has |LH/Ė| < 9.5× 10−2, with |LH/Ė| < 10−2

as soon as r0 > 7.3 M. In the following, we will neglect the term
LH in our numerical evaluations of Ė.
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curves are shown, the MBH spin play-
ing a negligible role at large distance.
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Fig. 8. Gravitational wave luminosity L
for an object of mass µ in circular equa-
torial orbit around a Kerr BH of mass M
and spin parameter a, as a function of the
orbital radius r0. Each curve starts at the
prograde ISCO radius of the correspond-
ing value of a. The dotted curve corre-
sponds to the quadrupole approximation
as given by Eq. (31). The inset shows
the relative difference with respect to
the quadrupole formula (31) up to r0 =
50 M.

From Eq. (32), we have

Ė =
µM
2r2

0

1 − 6M/r0 + 8aM1/2/r3/2
0 − 3a2/r2

0(
1 − 3M/r0 + 2aM1/2/r3/2

0

)3/2 ṙ0. (34)

In view of Eq. (2), the secular evolution of the orbital frequency
f0 = ω0/(2π) is related to ṙ0 by

ḟ0
f0

= −
3
2

1

1 + aM1/2/r3/2
0

ṙ0

r0
· (35)

By combining successively Eqs. (34), (33) and (30), we get

ḟ0
f0

= 3
µ

M2

[
L̃
( r0

M

)
+ L̃H

( r0

M

)] r0/M

1 + aM1/2/r3/2
0

×

(
1 − 3M/r0 + 2aM1/2/r3/2

0

)3/2

1 − 6M/r0 + 8aM1/2/r3/2
0 − 3a2/r2

0

, (36)

where we have introduced the rescaled horizon flux function L̃H,
such that

LH =

(
µ

M

)2
L̃H

( r0

M

)
· (37)

A92, page 10 of 23

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201935406&pdf_id=7
https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201935406&pdf_id=8


E. Gourgoulhon et al.: Gravitational waves from bodies orbiting the Galactic center black hole and their detectability by LISA

2 4 6 8 10 12 14
r0/M

10-4

10-3

10-2

10-1

100

ḟ
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Fig. 9. Relative change in orbital fre-
quency ḟ0/ f0 induced by the reaction
to gravitational radiation for an object
of mass µ in circular equatorial orbit
around Kerr BH of mass M equal to
that of Sgr A* as a function of the
orbital radius r0 (Eq. (36)). Each curve
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quadrupole approximation and quasi-
Newtonian orbits. The inset shows the
curves extended upto r0 = 50 M.
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Fig. 10. Adiabaticity parameter ḟ0/ f 2
0

as a function of the orbital radius r0.
The dotted curve corresponds to the
quadrupole approximation and quasi-
Newtonian orbits.

This relative change in orbital frequency is depicted in Fig. 9,
with a y-axis scaled to the mass (1) of Sgr A* for M and to µ =
1 M�. One can note that ḟ0 diverges at the ISCO. This is due to
the fact that E is minimal at the ISCO, so that dE/dr0 = 0 there.
At this point, a loss of energy cannot be compensated by a slight
decrease of the orbit.

Another representation of the orbital frequency evolution,
via the adiabaticity parameter ε ≡ ḟ0/ f 2

0 , is shown in Fig. 10.
The adiabaticity parameter ε is a dimensionless quantity, the
smallness of which guarantees the validity of approximating the
inspiral trajectory by a succession of circular orbits of slowly
shrinking radii. As we can see on Fig. 10, ε < 10−4 except very
near the ISCO, where ḟ0 diverges.

4.3. Inspiral time

By combining Eqs. (34), (33), (37) and (30), we get an expres-
sion for ṙ−1

0 = dt/dr0 as a function of r0. Once integrated, this

leads to the time required for the orbit to shrink from an initial
radius r0 to a given radius r1 < r0:

Tins(r0, r1) =
M2

2µ

∫ r0/M

r1/M

1 − 6/x + 8ā/x3/2 − 3ā2/x2(
1 − 3/x + 2ā/x3/2)3/2

×
dx

x2(L̃(x) + L̃H(x))
, (38)

where ā ≡ a/M = J/M2 is the dimensionless Kerr parameter.
We shall call Tins(r0, r1) the inspiral time from r0 to r1. For an
object whose evolution is only driven by the reaction to gravi-
tation radiation (e.g. a compact object, cf. Sect. 5.3), we define
then the life time from the orbit r0 as

Tlife(r0) ≡ Tins(r0, rISCO). (39)

Indeed, once the ISCO is reached, the plunge into the MBH is
very fast, so that Tlife(r0) is very close to the actual life time
outside the MBH, starting from the orbit of radius r0.
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Fig. 11. Life time of a (compact) object of
mass µ in circular equatorial orbit around
a Kerr BH with a mass M equal to that of
Sgr A* as a function of the orbital radius
r0 (Eq. (39)). The inset shows the curves
extended up to r0 = 50 M.
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Fig. 12. Relative difference between the life
time given by Eq. (39) and the value given
the quadrupole formula, Eq. (40), as a func-
tion of the orbital radius r0.

The life time is depicted in Fig. 11, which is drawn for
M = MSgr A∗ . It appears from Fig. 11 that the life time near the
ISCO is pretty short; for instance, for a = 0 and a solar-mass
object, it is only 34 days at r0 = 6.1 M. Far from the ISCO, it
is much larger and reaches ∼3 × 105 yr at r0 = 50 M (still for
µ = 1 M�). The dotted curve in Fig. 11 corresponds to the value
obtained for Newtonian orbits and the quadrupole formula (31):
Tlife = 5/256 (M2/µ)(r0/M)4 (Peters 1964), a value which can
be recovered by taking the limit x → +∞ in Eqs. (38) and (39)
and using expression (31) for L̃(x), as well as L̃H(x) = 0. For
M = MSgr A∗ , the quadrupole formula becomes

T quad
life ' 4.2 × 104

(
1 M�
µ

) ( r0

30 M

)4
yr. (40)

The relative difference between the exact formula (39) and the
quadrupole approximation (40) is plotted in Fig. 12. Not sur-
prisingly, the difference is very large in the strong field region,

reaching 100% close to the ISCO. For r0 = 20 M, it is still ∼10%.
Even for r0 = 50 M, it is as large as 3 to 5% for a > 0.5 M and
0.1% for a = 0.

5. Potential sources

Having established the signal properties and detectability by
LISA, let us now discuss astrophysical candidates for the
orbiting object. A preliminary required for the discussion is the
evaluation of the tidal effects exerted by Sgr A* on the orbit-
ing body, since this can make the innermost orbit to be signif-
icantly larger than the ISCO. We thus start by investigating the
tidal limits in Sect. 5.1. Then, in Sect. 5.2, we review the sce-
narios which might lead to the presence of stellar objects in cir-
cular orbits close to Sgr A*. The various categories of sources
are then discussed in the remaining subsections: compact objects
(Sect. 5.3), main-sequence stars (5.4), brown dwarfs (Sect. 5.5),
accretion flow (5.6), dark matter (Sect. 5.7) and artificial sources
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(Sect. 5.8). As it will appear in the discussion, not all these
sources are on the same footing regarding the probability of
detection by LISA.

5.1. Tidal radius and Roche radius

In Sects. 2–4, we have considered an idealized point mass. When
the orbiting object has some extension, a natural question is
whether the object integrity can be maintained in presence of
the tidal forces exerted by the central MBH. This leads to the
concept of tidal radius rT, defined as the minimal orbital radius
for which the tidal forces cannot disrupt the orbiting body. In
other words, the considered object cannot move on an orbit with
r0 < rT. The tidal radius is given by the formula

rT = α

(
M
ρ

)1/3

, (41)

where M is the mass of the MBH, ρ the mean density of the
orbiting object and α is a coefficient of order 1, the value of
which depends on the object internal structure and rotational
state. From the naive argument of equating the self-gravity and
the tidal force at the surface of a spherical Newtonian body, one
gets α = (3/(2π))1/3 = 0.78. If one further assumes that the
object is corotating, i.e. is in synchronous rotation with respect
to the orbital motion, then one gets α = (9/(4π))1/3 = 0.89.
Hills (1975) uses α = (6/π)1/3 = 1.24, while Rees (1988) uses
α = (3/(4π))1/3 = 0.62. For a Newtonian incompressible fluid
ellipsoid in synchronous rotation, α = 1.51 (Chandrasekhar
1969). This result has been generalized by Fishbone (1973) to
incompressible fluid ellipsoids in the Kerr metric: α increases
then from 1.51 for r � M to 1.60 (resp. 1.56) for r = 10 M
and a = 0 (resp. a = 0.99M) (cf. Fig. 5 of Fishbone 1973,
which displays 1/(πα3)). Taking into account the compressibil-
ity decreases α: α = 1.34 for a polytrope of index n = 1.5 (Ishii
et al. 2005).

For a stellar type object on a circular orbit, a more relevant
quantity is the Roche radius, which marks the onset of tidal strip-
ping near the surface of the star, leading to some steady accretion
to the MBH (Roche lobe overflow) without the total disruption
of the star (Dai et al. 2013; Dai & Blandford 2013). For centrally
condensed bodies, like main-sequence stars, the Roche radius is
given by the condition that the stellar material fills the Roche
lobe. In the Kerr metric, the volume VR of the Roche lobe gen-
erated by a mass µ on a circular orbit of radius r0 has been eval-
uated by Dai & Blandford (2013), yielding to the approximate
formula5 VR ' µM2VR, with

VR ≡

( r0

M

)3

 0.683
1 +

χ
2.78

+

0.456
1+

χ
4.09
− 0.683

1+
χ

2.78√
r0

rISCO
+ F(a, χ)

(
r0

rISCO(a) − 1
)
 , (42)

where rISCO is the radius of the prograde ISCO, χ ≡ Ω/ω0 is the
ratio between the angular velocity Ω of the star (assumed to be
a rigid rotator) with respect to some inertial frame to the orbital
angular velocity ω0 and F(a, χ) is the function defined by

F(a, χ) ≡ − 23.3 +
13.9

2.8 + χ
+

(
23.8 −

14.8
2.8 + χ

)
(1 − a)0.02

+

(
0.9 −

0.4
2.6 + χ

)
(1 − a)−0.16. (43)

5 See Eqs. (10), (26) and (27) of Dai & Blandford (2013).

It should be noted that χ = 1 for a corotating star. The Roche
limit is reached when the actual volume of the star equals the
volume of the Roche lobe. If ρ stands for the mean mass den-
sity of the star, this corresponds to the condition µ = ρVR, or
equivalently

ρM2VR − 1 = 0. (44)

Solving this equation for r0 leads to the orbital radius rR at the
Roche limit, i.e. the Roche radius. The mass µ has disappeared
from Eq. (44), so that rR depends only on the mean density ρ
and the rotational parameter χ. For r0 � rISCO, we can neglect
the second term in the square brackets in Eq. (42) and obtain an
explicit expression:

rR ' 1.14
(
1 +

χ

2.78

)1/3
(

M
ρ

)1/3

for rR � M. (45)

This equation has the same shape as the tidal radius formula
(41). Using Sgr A* value (1) for M, we may rewrite the above
formula as

rR

M
' 33.8

(
1 +

χ

2.78

)1/3
(
ρ�
ρ

)1/3

for rR � M, (46)

where ρ� ≡ 1.41 × 103 kg ·m−3 is the mean density of the Sun.
The numerical resolution of Eq. (44) for rR has been imple-

mented in the kerrgeodesic_gw package (cf. Appendix A) and
the results are shown in Fig. 13 and Table 2. The straight line
behavior in the left part of Fig. 13 corresponds to the power law
rR ∝ ρ

−1/3 in the asymptotic formula (46). In Table 2, the char-
acteristics of the red dwarf star are taken from Fig. 1 of Chabrier
et al. (2007) – it corresponds to a main-sequence star of spectral
type M4V. The brown dwarf model of Table 2 is the model of
minimal radius along the 5 Gyr isochrone in Fig. 1 of Chabrier
et al. (2009). This brown dwarf is close to the hydrogen burning
limit and to the maximum mean mass density ρ among brown
dwarfs and main-sequence stars. We note from Table 2 that it
has a Roche radius very close to the Schwarzschild ISCO. We
note as well that rR < M for a white dwarf. This means that such
a star is never tidally disrupted above Sgr A*’s event horizon. A
fortiori, neutron stars share the same property.

5.2. Presence of stellar objects in the vicinity of Sgr A*

The Galactic center is undoubtably a very crowded region. For
instance, it is estimated that there are ∼2 × 104 stellar BHs in the
central parsec, a tenth of which are located within 0.1 pc of Sgr A*
(Freitag et al. 2006). The recent detection of a dozen of X-ray
binaries in the central parsec (Hailey et al. 2018) supports these
theoretical predictions. The two-body relaxation in the central
cluster causes some mass segregation: massive stars lose energy
to lighter ones and drift to the center (Hopman & Alexander 2005;
Freitag et al. 2006). Accordingly BHs are expected to dominate
the mass density within 0.2 pc. However, they do not dominate
the number density, main-sequence stars being more numerous
than BHs (Freitag et al. 2006; Amaro-Seoane 2018). The num-
ber of stars or stellar BHs very close to Sgr A* (i.e. located at r <
100 M) is expected to be quite small though. Indeed the central
parsec region is very extended in terms of Sgr A*’s length scale:
1 pc = 5.1 × 106 M, where M is Sgr A*’s mass. At the moment,
the closest known stellar object orbiting Sgr A* is the star S2,
the periastron of which is located at rp = 120 au ' 3 × 103 M
(GRAVITY Collaboration 2018a).
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Fig. 13. Roche radius rR as a function
of the mean density ρ of the star (in solar
units), for two values of the MBH spin a
and two rotational states of the star: irro-
tational (χ = 0) and corotating (χ = 1).
The blue (resp. red) dotted horizontal line
marks the ISCO radius for a = 0 (resp.
a = 0.98 M).

Table 2. Roche radius rR for different types of objects orbiting Sgr A*.

Jupiter Sun Earth Red dwarf Brown dwarf White dwarf

µ/M� 9.55 × 10−4 1 3.0 × 10−6 0.20 0.062 0.80
R/R� 0.10 1 9.17 × 10−3 0.22 0.078 5.58 × 10−3

ρ/ρ� 0.94 1 3.91 18.8 131. 1.10 × 106

rR/M (a = 0, χ = 0) 34.9 34.2 21.9 13.3 7.31 0.28
rR/M (a = 0, χ = 1) 38.5 37.7 24.1 14.5 7.86 0.32
rR/M (a = 0.98M, χ = 0) 34.8 34.1 21.8 13.0 6.93 0.52
rR/M (a = 0.98M, χ = 1) 38.4 37.6 24.0 14.3 7.57 0.52

Notes. The first three lines give the mass µ, the mean radius R and the mean mass density ρ, all in solar units. χ = 0 stands for an irrotational body
and χ = 1 for a corotating one. See the text for the chosen characteristics of the red dwarf and the brown dwarf.

The most discussed process for populating the vicinity of
the central MBH is the extreme mass ratio inspiral (EMRI)
of a (compact) star or stellar BH (Amaro-Seoane et al.
2007; Amaro-Seoane 2018). In the standard scenario (see e.g.
Amaro-Seoane 2018 for a review), the inspiralling object origi-
nates from the two-body scattering by other stars in the Galactic
center cluster. It keeps a very high eccentricity until the final
plunge in the MBH, despite the circularization effect of gravi-
tational radiation (Hopman & Alexander 2005). Such an EMRI
is thus not an eligible source for the process considered in the
present article, which is limited to circular orbits.

Another kind of EMRI results from the tidal separation of a
binary by the MBH (Miller et al. 2005). In such a process, a mem-
ber of the binary is ejected at high speed while the other one is
captured by the MBH and inspirals towards it, on an initially low
eccentricity orbit. Gravitational radiation is then efficient in cir-
cularizing the orbit, making it almost circular when it enters LISA
band. Such an EMRI is thus fully relevant to the study presented
here. The rate of formation of these zero-eccentricity EMRIs
is very low, being comparable to those of high-eccentricities
EMRIs (Miller et al. 2005), which is probably below 10−6 yr−1

(Amaro-Seoane 2018; Hopman & Alexander 2005). However, as
discussed in Sect. 5.3, due to their long life time (>105 yr) in the
LISA band, the probability of detection of these EMRIs is not neg-
ligibly small.

Another process discussed in the literature and leading to
objects on almost circular orbits is the formation of stars in an
accretion disk surrounding the MBH (see e.g. Collin & Zahn
1999, 2008; Nayakshin et al. 2007, and references therein).
Actually, it was particularly surprising to find in the inner par-
sec of the Galaxy a population of massive (few 10 M�) young
stars, that were formed ≈6 Myr ago (Genzel et al. 2010). Indeed,
forming stars in the extreme environment of a MBH is not obvi-
ous because of the strong tidal forces that would break typical
molecular clouds. A few scenarios were proposed to account for
this young stellar population; see Mapelli & Gualandris (2016)
for a recent dedicated review. Among these, in situ formation
might take place in a geometrically thin Keplerian (circularly
orbiting) accretion disk surrounding the MBH (Collin & Zahn
1999, 2008; Nayakshin et al. 2007). Such an accretion disk is
not presently detected, and would have existed in past periods of
AGN activity at the Galactic center (Ponti et al. 2013, 2014).

Stellar formation in a disk is supported by the fact that the
massive young stellar population proper motion was found to
be consistent with rotational motion in a disk (Paumard et al.
2006). It is interesting to note that the on-sky orientation of this
stellar disk is similar to the orientation of the orbital plane of
a recently detected flare of Sgr A* (GRAVITY Collaboration
2018b). However, such a scenario suffers from the fact that the
young stars observed have a median eccentricity of 0.36 ± 0.06
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Fig. 14. Maximum orbital radius r0,max
for a S/N = 10 detection by LISA in one
year of data, as a function of the mass µ
of the object orbiting around Sgr A*.

(Bartko et al. 2009), while formation in a Keplerian disk leads
to circular orbits. On the other side, the recently detected X-ray
binaries (Hailey et al. 2018) mentioned above are most probably
quiescent BH binaries. These BHs are likely to have formed in
situ in a disk (Generozov et al. 2018), giving more support to the
scenario discussed here.

A population of stellar-mass BHs will form after the death of
the most massive stars born in the accretion disk. These would
be good candidates for the scenario discussed here, provided the
initially circular orbit is maintained after supernova explosion.
The recent study of Bortolas et al. (2017) shows that BHs formed
from the supernova explosion of one of the members of a mas-
sive binary keep their initial orbit without noticeable kink from
the supernova explosion. Given that a large fraction (tens of per-
cent) of the Galactic center massive young stars are likely to
be binaries (Sana et al. 2011), this shows that circular-orbiting
BHs are likely to exist within the framework of the Keplerian in-
situ star formation model. This scenario was already advocated
by Levin (2007), which considers the fragmentation of a self-
gravitating thin accretion disk that forms massive stars, leading
to the formation of BHs that inspiral in towards Sgr A*, follow-
ing quasi-circular orbits, in a typical time of ≈10 Myr.

5.3. Compact objects

As discussed in Sect. 5.1, compact objects – BHs, neutron stars
and white dwarfs – do not suffer any tidal disruption above the
event horizon of Sgr A*. Their evolution around Sgr A* is thus
entirely given by the reaction to gravitational radiation with the
timescale shown by Fig. 11.

Let us define the entry in LISA band as the moment in the
slow inspiral when S/N1 yr reaches 10, which is the threshold we
adopt for a positive detection (Eq. (26)). The orbital radius at
the entry in LISA band in plotted in Fig. 14 as a function of the
mass µ of the inspiralling object. It is denoted by r0,max since it
is the maximum radius at which the detection is possible. Some
selected values are displayed in Table 3. The mass of the pri-
mordial BH has been chosen arbitrarily to be the mass of Jupiter
(10−3 M�), as a representative of a low mass compact object.

For a compact object, the time Tin-band spent in LISA band is
nothing but the inspiral time from r0,max to the ISCO:

Tin-band ≡ Tins(r0,max, rISCO) = Tlife(r0,max), (47)

where Tins is given by Eq. (38) and Tlife by Eq. (39). The time
in LISA band is depicted in Fig. 15 and some selected values
are given in Table 3. The trends in Fig. 15 can be understood by
noticing that, at fixed initial radius, the inspiral time is a decreas-
ing function of µ (as µ−1, cf. Eq. (38)), while it is an increasing
function of the initial radius (as r4

0 at large distance, cf. Eq. (40)),
the latter being larger for larger values of µ, since r0 marks the
point where S/N1 yr = 10, the S/N being an increasing function
of µ (cf. Eq. (24)). The behavior of the Tin-band curves in Fig. 15
results from the balance between these two competing effects.
The maximum is reached for masses around 10−3 M� for a = 0
(max Tin-band ∼ 9 × 105 yr) and around 10−5M� for a = 0.98 M
(max Tin-band ∼ 2 × 106 yr), which correspond to hypothetical
primordial BHs.

The key feature of Fig. 15 and Table 3 is that the values of
Tin-band are very large, of the order of 105 yr, except for very
small values of µ (below 10−4 M�). This contrasts with the time
in LISA band for extragalactic EMRIs, which is only 1–102 yr.
This is of course due to the much larger S/N resulting from the
proximity of the Galactic center. This large time scale counter-
balances the low event rate for the capture of a compact object
by Sgr A* via the processes discussed in Sect. 5.2: even if only
a single compact object is driven to the close vicinity of Sgr A*
every 106 yr, the fact that it remains there in the LISA band for
∼105 yr makes the probability of detection of order 0.1. Given
the large uncertainty on the capture event rate, one can be rea-
sonably optimistic.

One may stress as well that white dwarfs, which are gen-
erally not considered as extragalactic EMRI sources for LISA
because of their low mass, have a larger value of Tin-band than
BHs (cf. Table 3). Given that they are probably more numer-
ous than BHs in the Galactic center, despite mass segregation
(cf. the discussion in Sect. 5.2 and Freitag 2003b), they appear
to be good candidates for a detection by LISA.
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Table 3. Orbital radius r0,max at the entry in LISA band (S/N1 yr > 10), the corresponding gravitational wave frequency fm=2(r0,max) and the time
spent in LISA band until the ISCO, Tin-band, for various compact objects orbiting Sgr A*.

Primordial White Neutron 10 M� 30 M�
BH dwarf star BH BH

µ/M� 10−3 0.5 1.4 10 30
r0,max/M (θ = 0) 12.6 (12.3) 41.5 (41.3) 50.3 (50.3) 72.0 (72.0) 88.0 (88.0)
r0,max/M (θ = π/2) 10.7 (10.4) 35.3 (35.1) 42.4 (42.3) 59.6 (59.6) 72.8 (72.8)
fm=2(r0,max) (θ = 0) [mHz] 0.351 (0.355) 0.059 (0.059) 0.044 (0.044) 0.026 (0.026) 0.019 (0.019)
fm=2(r0,max) (θ = π/2) [mHz] 0.449 (0.458) 0.075 (0.075) 0.057 (0.057) 0.034 (0.034) 0.025 (0.025)
Tin-band (θ = 0) [105 yr] 8.61 (14.51) 3.00 (3.18) 2.35 (2.35) 1.38 (1.38) 1.02 (1.02)
Tin-band (θ = π/2) [105 yr] 3.61 (7.52) 1.55 (1.67) 1.18 (1.24) 0.648 (0.648) 0.481 (0.481)

Notes. The numbers outside (resp. inside) parentheses are for Sgr A* spin parameter a = 0 (resp. a = 0.98 M).
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Fig. 15. Time elapsed between the entry
in LISA band (S/N1 yr reaching 10) and
the ISCO for a compact object inspi-
ralling around Sgr A*, as a function of
the object’s mass µ.

5.4. Main-sequence stars

As discussed in Sect. 5.1 (see Table 2), main-sequence stars
orbiting Sgr A* have a Roche limit above the ISCO. Away from
the Roche limit, the evolution of a star on a quasi-circular orbit
is driven by the loss of energy and angular angular momentum
via gravitational radiation, as for the compact objects discussed
above. The orbit thus shrinks until the Roche limit is reached.
At this point, the star starts to loose mass through the Lagrange
point L1 (Hameury et al. 1994; Dai & Blandford 2013; standard
accretion onto the MBH by Roche lobe overflow) and possibly
through the outer Lagrange point L2 as well for stars of mass
µ & 1 M� (Linial & Sari 2017). In any case, the mass loss is
stable and proceeds on a secular time scale (with respect to the
orbital period). The net effect on the orbit is an increase of its
radius (Hameury et al. 1994; Dai & Blandford 2013; Linial &
Sari 2017), at least for masses µ < 5.6 M� (Linial & Sari 2017).
Accordingly, instead of an EMRI, one may speak about an
extreme mass ratio outspiral (EMRO; Dai & Blandford 2013),
or a reverse chirp gravitational wave signal (Linial & Sari 2017;
Jaranowski & Krolak 1992) when describing the evolution of
such systems after they have reached the Roche limit.

For stars, let us denote by T ins
in-band the inspiral time from the

entry in LISA band (r0 = r0,max, cf. Fig. 14) to the Roche limit
(r0 = rR, cf. Table 2). T ins

in-band is a lower bound for the total time

spent in LISA band, the latter being T ins
in-band augmented by the

mass-loss time at the Roche limit, which can be quite large, of
the order of 105 yr (Dai & Blandford 2013). The values of T ins

in-band
are given in Table 4 for three typical main-sequence stars: a Sun-
like one, a red dwarf (µ = 0.2 M�, same as in Table 2) and a
main-sequence star of mass µ = 2.4 M�, which corresponds to
a spectral type A0V. Let us mention that current observational
data cannot rule out the presence of such a rather luminous star
in the vicinity of Sgr A*: GRAVITY observations (GRAVITY
Collaboration 2017) have set the upper luminosity threshold to a
B8V star, which is a main-sequence star of mass µ = 3.8 M�.

T ins
in-band appears to be very large, of the order of 105 yr, except

for the 2.4 M�-star for the inclination angle θ = π/2, which has
rR > r0,max, i.e. it is not detectable by LISA. As already argued
for compact objects, this large value of the time spent in LISA
enhances the detection probability.

Regarding main-sequence stars, we note that the recently
claimed detection of a 149 min periodicity in the X-ray flares
from Sgr A* (Leibowitz 2018) has been interpreted as being
caused by a µ = 0.18 M� star orbiting at r0 = 13.2 M, where
it is filling its Roche lobe (Leibowitz 2018). If such a star exists,
we can read from Fig. 6 that LISA can detect it with a S/N
equal to 76 (resp. 35) for θ = 0 (resp. θ = π/2) in a single day
of data.
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Table 4. Inspiral time to the Roche limit in LISA band for a µ = 0.062 M� brown dwarf and different types of main-sequence stars.

Brown dwarf Red dwarf Sun 2.4 M�-star

µ/M� 0.062 0.20 1 2.40
ρ/ρ� 131. 18.8 1 0.367
r0,max/M (θ = 0) 28.2 (28.0) 35.0 (34.9) 47.1 (47.0) 55.6 (55.6)
r0,max/M (θ = π/2) 24.1 (23.9) 29.9 (29.7) 40.0 (39.8) 46.8 (46.6)
fm=2(r0,max) (θ = 0) [mHz] 0.105 (0.106) 0.076 (0.076) 0.049 (0.049) 0.038 (0.038)
fm=2(r0,max) (θ = π/2) [mHz] 0.133 (0.134) 0.097 (0.097) 0.062 (0.063) 0.049 (0.049)
rR/M (χ = 0) 7.31 (6.93) 13.3 (13.0) 34.2 (34.1) 47.6 (47.5)
rR/M (χ = 1) 7.86 (7.56) 14.5 (14.3) 37.7 (37.6) 52.5 (52.5)
T ins

in-band (θ = 0, χ = 0) [105 yr] 4.98 (5.55) 3.72 (3.99) 1.83 (1.89) 0.938 (0.945)
T ins

in-band (θ = 0, χ = 1) [105 yr] 4.98 (5.54) 3.67 (3.96) 1.49 (1.54) 0.409 (0.418)
T ins

in-band (θ = π/2, χ = 0) [105 yr] 2.59 (2.98) 1.91 (2.08) 0.603 (0.623) 0 (0)
T ins

in-band (θ = π/2, χ = 1) [105 yr] 2.59 (2.97) 1.88 (2.04) 0.269 (0.272) 0 (0)

Notes. The numbers outside (resp. inside) parentheses are for Sgr A* spin parameter a = 0 (resp. a = 0.98 M).

5.5. Brown dwarfs

Brown dwarfs are less massive than main-sequence stars, their
mass range being ∼10−2 to ∼0.08 M� (Chabrier & Baraffe 2000;
Chabrier et al. 2009). Accordingly, they enter later (i.e. at smaller
orbital radii) in the LISA band. However, they are more dense
than main-sequence stars, so that their Roche limit is closer to
the MBH, as already noticed in Sect. 5.1: the µ = 0.062 M�
brown dwarf of Table 2 has a Roche radius of order 7M, i.e.
quite close to the Schwarzschild ISCO. In this region the S/N
is quite high, despite the low value of µ: for µ = 0.062 M� and
θ = 0, S/N1 yr = 7.4 × 103 (resp. S/N1 yr = 5.4 × 103) at the
Roche limit with χ = 0 (resp. χ = 1). For θ = π/2, these num-
bers become S/N1 yr = 3.7× 103 (χ = 0) and S/N1 yr = 2.6× 103

(χ = 1). Moreover, brown dwarfs stay longer in this region than
compact objets since the inspiral time is inversely proportional
to the mass µ of the orbiting object (cf. Eq. (38)). As we can
see from the values in Table 4, the inspiral time in LISA band
of brown dwarfs is even larger than that of main-sequence stars:
T ins

in-band ∼ 5×105 yr for θ = 0 and T ins
in-band ∼ 3×105 yr for θ = π/2.

These large values tends to make brown dwarfs good candidates
for detection by LISA. To conclude, one should know the cap-
ture rate of brown dwarfs by Sgr A*. It is highly uncertain but
estimates have been provided very recently by Amaro-Seoane
(2019), which lead to a detection probability of one, with ∼20
brown dwarfs in LISA band at any moment, among which ∼5
have almost circular orbits.

5.6. Inner accretion flow

Sgr A*’s accretion flow is known for generating particularly
low-luminosity radiation, orders of magnitude below the Edding-
ton limit, and orders of magnitude below what could be available
from the gas supply at a Bondi radius (Falcke & Markoff 2013).
This means that accretion models should be very inefficient in
converting viscously dissipated energy into radiation. This energy
will rather be stored in the disk as heat, so that Sgr A* accre-
tion flow must be part of the hot accretion flow family (Yuan &
Narayan 2014). Such systems are made of a geometrically thick,
optically thin, hot (i.e. close to the virial temperature) accretion
flow, probably accompanied by outflows. A plethora of studies
have been devoted to modeling the hot flow of Sgr A*, see Falcke
& Markoff (2000), Vincent et al. (2015), Broderick et al. (2016),
Ressler et al. (2017), Davelaar et al. (2018), among many others,
and references therein.

There is reasonable agreement between these different
authors regarding the typical number density and geometry of
the geometrically thick hot flow in the close vicinity of Sgr A*.
The electron maximum number density is of order 108 cm−3

(to within one order of magnitude), and the density maximum is
located at a Boyer–Lindquist radius of around 10 M (to within
a factor of a few). It is thus straightforward to give a very
rough estimate of the mass of the flow, which is of the order of
≈ 5×10−11 M� (where we consider a constant-density torus with
circular cross section of radius 4 M, such that its inner radius is
at the Schwarzschild ISCO). This extremely small total mass of
Sgr A*’s accretion flow makes it impossible to detect gravita-
tional waves from orbiting inhomogeneities. Figure 6 shows that
the LISA S/N would be vanishingly small, assuming for instance
an inhomogeneity of 10% of the total mass.

5.7. Dark matter

The dark matter (DM) density profile in the inner regions of
galaxies is subject to debate. There is a controversy between
observations and cold-dark-matter simulations regarding the
value of the DM density power-law slope in the inner kpc,
observations advocating a cored profile ρ(r) ∝ r0, while sim-
ulations predict ρ(r) ∝ r−1 (de Blok 2010). The parsec-scale
profile is even less well known. Gondolo & Silk (1999) have
proposed a model of the interaction of the central MBH with the
surrounding DM distribution for the Milky Way. According to
these authors, the presence of the MBH should lead to an even
more spiky inner profile, with a scaling of ρ(r) ∝ r−2.3. Such a
dark matter spike can be constrained by high-angular resolution
observation at the Galactic center (Lacroix 2018).

Figure 1 of Lacroix (2018) shows the enclosed DM mass
at the Galactic center as a function of radius, for various DM
models: either nonannihilating DM, or selfannihilating DM
(with particle mass equal to 1 TeV) for various cross sections.
Weakly-interacting DM (〈σv〉 < 10−30 cm3 s−1) leads to an
enclosed mass higher than 10−4 M� in the inner 10 M. Figure 6
shows that this leads to S/N1 yr > 0.2, assuming that 10% inho-
mogeneities would appear in the DM distribution and orbit cir-
cularly around the MBH around 10 M. For nonannihilating DM,
the S/N values can be as high as S/N1 yr ∼ 104. This makes a
DM spike an interesting candidate for a potential gravitational
wave source at the Galactic center, to be studied in details in a
forthcoming article (Le Tiec et al., in prep.).
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5.8. Artificial sources

The MBH Sgr A* is indubitably a unique object in our Galaxy.
If6 an advanced civilization exists, or has existed, in the Galaxy,
it would seem unlikely that it has not shown any interest in
Sgr A*. On the contrary, it would seem natural that such a civ-
ilization has put some material in close orbit around Sgr A*,
for instance to extract energy from it via the Penrose process.
Whatever the reason for which the advanced civilization acted so
(it could be for purposes that we humans simply cannot imag-
ine), the orbital motion of this material necessarily emits gravi-
tational waves and if the mass is large enough, these waves could
be detected by LISA. Given the S/N values obtained in Sect. 3
and assuming that Sgr A* is a fast rotator, an object of mass as
low7 as the Earth mass orbiting close to the ISCO is detectable
by LISA. This scenario is discussed further by Abramowicz et al.
(2019), who consider a long lasting Jupiter-mass orbiter, left as
a “messenger” by an advanced civilization, which possibly dis-
appeared billions of years ago.

6. Discussion and conclusions

We have conducted a fully relativistic study of gravitational radi-
ation from bodies on circular orbits in the equatorial plane of the
4.1 × 106 M� MBH at the Galactic center, Sgr A*. We have per-
formed detailed computations of the S/N in the LISA detector,
taking into account all the harmonics in the signal, whereas pre-
vious studies (Freitag 2003b; Dai & Blandford 2013; Linial &
Sari 2017; Kuhnel et al. 2018) were limited to the Newtonian
quadrupole approximation, which yields only the m = 2 har-
monic for circular orbits. The Roche limits have been evaluated
in a relativistic framework as well, being based on the computa-
tion of the Roche volume in the Kerr metric (Dai & Blandford
2013). This is specially important for brown dwarfs, since their
Roche limit occurs in the strong field region.

Setting the detection threshold to S/N1 yr = 10, we have
found that LISA has the capability to detect orbiting masses
close to Sgr A*’s ISCO as small as ten Earth masses or even
one Earth mass if Sgr A* is a fast rotator (a & 0.9 M). Given
the strong tidal forces at the ISCO, these small bodies have to
be compact objects, i.e. small BHs. Planets and main-sequence
stars have a Roche limit quite far from the ISCO: rR ∼ 34 M
for a solar-type star (or Jupiter-type planet) and rR ∼ 13 M for
a 0.2 M� star. However, even at these distances, main-sequence
stars are still detectable by LISA, the entry in LISA band
(defined by S/N1 yr = 10) being achieved for r0,max ∼ 47 M for a
solar-type star and at r0,max ∼ 35 M for a 0.2 M� main-sequence
star, assuming an inclination angle θ = 0. Because they are more
dense, brown dwarfs have a Roche limit pretty close to the ISCO,
the minimal Roche radius being rR ∼ 7 M, which is achieved for
a 0.062 M� brown dwarf. For such an object, the entry in LISA
band occurs at r0,max ∼ 28 M.

Beside the S/N at a given orbit, a key parameter is the total
time spent in LISA band, i.e. the time Tin-band during which the
source has S/N1 yr > 10. We have found that, once they have
entered LISA band from the low frequency side, all the con-
sidered objects, be they compact objects, main-sequence stars
or brown dwarfs, spend more than 105 yr in LISA band8. The
minimal time in-band occurs for high-mass BHs (µ ∼ 30 M�),

6 This is a very hypothetical “if”.
7 Low is with respect to an advanced civilization criterion.
8 For high inclination angle θ ∼ π/2, BHs and solar-type stars spend
only one half of this value.

for which Tin-band ∼ 1 × 105 yr (assuming θ = 0) and the max-
imal one, of the order of one million years, is achieved for a
Jupiter-mass BH (µ ∼ 10−3 M�) if Sgr A* is a slow rotator
(a/M � 1): Tin-band ∼ 9 × 105 yr, or for a µ ∼ 10−5 M� BH if
Sgr A* is a rapid rotator (a/M & 0.9): Tin-band ∼ 2×106 yr. These
small BH masses regard primordial BHs. Among stars and stel-
lar BHs, the maximum time spent in LISA band is achieved for
brown dwarfs: Tin-band > 5 × 105 yr, just followed by low-mass
main-sequence stars (red dwarfs) and white dwarfs, for which
Tin-band > 3 × 105 yr. These large values of Tin-band contrast with
those for extragalactic EMRIs, which are typically of the order
of 1–102 yr. This is of course due to the much larger S/N result-
ing from the proximity of Sgr A*, which allows one to catch
compact objects at much larger orbital radii, where the orbital
decay is not too fast, and to catch main-sequence stars above
their Roche limit.

To predict some LISA detection rate from Tin-band, one shall
know the rate at which the considered objects are brought to
close circular orbits around Sgr A* (“capture” rate). While we
have briefly described some scenarios proposed in the litera-
ture in Sect. 5.2, it is not the purpose of this work to make pre-
cise estimates. Having those is probably very difficult, given the
involved uncertainties, both on the observational ground (strong
absorption in the direction of the Galactic center) and the theo-
retical one (dynamics of the tens of thousands of stars and BHs
in the central parsec). Some optimistic scenarios mentioned in
Sect. 5.2 predict a capture rate of the order of 10−6 yr−1 for BHs.
For Tin-band ∼ 105 yr, this would result in a detection probabil-
ity of 0.1 by LISA. For white dwarfs, low mass main-sequence
stars and brown dwarfs, the capture rate could possibly be higher
(Freitag 2003b), leading to a significant detection probability by
LISA, especially for brown dwarfs. Instead of making any con-
crete prediction, we prefer an “agnostic” approach, stating that
Sgr A* is definitely a target worth of attention for LISA, which
may reveal various bodies orbiting around it.

Let us point out that Amaro-Seoane (2019) has recently per-
formed a study of gravitational radiation from main-sequence
stars and brown dwarfs orbiting Sgr A*. He finds results similar
to ours regarding the S/N in LISA. Also, he derives the event rate
for the Galactic center taking into account the relativistic loss-
cone and eccentric orbits, which are more typical in an astro-
physical context. The high event rate that he has obtained makes
brown dwarfs promising candidates for LISA.

In Appendix C, we have considered bodies in close circular
orbit around the 2.5 × 106 M� MBH in the center of the nearby
galaxy M 32. We find that main-sequence stars with µ > 0.2 M�
are not detectable by LISA in this case, while compact objects
and brown dwarfs are still detectable, with a lower probability:
the time they are spending in LISA band with S/N1 yr > 10 is
103 to 104 years, that is two orders of magnitude lower than for
Sgr A*.

A natural extension of the work presented here is towards
noncircular orbits. Gravitational waves from a compact body on
eccentric, equatorial (Glampedakis & Kennefick 2002), spheri-
cal (Hughes 2000), and generic bound (Drasco & Hughes 2006)
geodesics have been studied before. The application of these
results to Sgr A* including the calculation of the orbital decay
for generic orbits, exploration of the inspiral parameter space,
and the analysis of the tidal and Roche radii remains to be com-
pleted. Another extension would be to study the gravitational
emission from a (stochastic) ensemble of small masses, such as
brown dwarfs, in the case they are numerous around Sgr A*, or
from dark matter clumps as mentioned in Sect. 5.7 (Le Tiec et al.,
in prep.).
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Appendix A: The kerrgeodesic_gw package

We have developed the open-source package
kerrgeodesic_gw for the Python-based free mathematics
software system SageMath9. This package implements all
the computations presented in this article. The installation of
kerrgeodesic_gw is very easy, since it relies on the standard
pip mechanism for Python packages. One only needs to run

sage -pip install kerrgeodesic_gw

to download and install the package in any working SageMath
environment. The sources of the package are available at the fol-
lowing git repository, as part of the Black Hole Perturbation
Toolkit10:
https://github.com/BlackHolePerturbationToolkit/
kerrgeodesic_gw

The reference manual of kerrgeodesic_gw includes many
examples and is online at
https://cocalc.com/share/2b3f8da9-6d53-4261-b5a5-
ff27b5450abb/kerrgeodesic_gw/docs/build/html/
index.html

Various Jupyter notebooks making use of
kerrgeodesic_gw are publicly available on the cloud
platform CoCalc, including those used to generate all the figures
presented in the current article:
https://cocalc.com/share/2b3f8da9-6d53-4261-b5a5-
ff27b5450abb/PaperI/Notebooks?viewer=share/
Other notebooks regard tests of the package, like the comparison
with the 1.5 PN waveforms obtained by Poisson (1993a) for a =
0 and with the fully relativistic waveforms obtained by Detweiler
(1978) for a = 0.5 M and a = 0.9 M:
https://cocalc.com/share/2b3f8da9-6d53-4261-b5a5-
ff27b5450abb/gw_single_particle.ipynb?viewer=
share

Appendix B: Computation of the S/N integral

In order to evaluate the S/N integral (22), we need to compute the
Fourier transforms h̃+( f ) and h̃×( f ) over the observation time T
via Eq. (23). Let us focus first on h+(t) and rewrite its Fourier
series (16) as

h+(t) =
µ

r

+∞∑
m=1

H+
m(θ) cos (2πm f0t + χm) , (B.1)

where the amplitude H+
m(θ) is defined by Eq. (18) and the phase

angle χm is defined by (cf. Eqs. (16) and (14))

χm = m(ϕ0 − ϕ − 2π f0r∗) + Φm, (B.2)

with

cos Φm =
A+

m(θ)
H+

m(θ)
and sin Φm = −

B+
m(θ)

H+
m(θ)

. (B.3)

The Fourier transform (23) is then

h̃+( f ) =
µ

r

+∞∑
m=1

H+
m(θ)

∫ T/2

−T/2
cos (2πm f0t + χm) e−2πi f t dt

=
µ

2r

+∞∑
m=1

H+
m(θ)

∫ T/2

−T/2

[
e2πim f0t+iχm−2πi f t

9 http://www.sagemath.org/
10 http://bhptoolkit.org/

+ e−2πim f0t−iχm−2πi f t
]

dt

=
µ

2r

+∞∑
m=1

H+
m(θ)

[
eiχm

∫ T/2

−T/2
e2πi(m f0− f )t dt

+ e−iχm

∫ T/2

−T/2
e−2πi(m f0+ f )t dt

]
=
µ

2r

+∞∑
m=1

H+
m(θ)

[
eiχm

2i sin(π(m f0 − f )T )
2πi(m f0 − f )

+ e−iχm
−2i sin(π(m f0 + f )T )
−2πi(m f0 + f )

]
=
µ

2r
T

+∞∑
m=1

H+
m(θ)

[
eiχm sinc (π( f − m f0)T )

+ e−iχm sinc (π( f + m f0)T )
]
, (B.4)

where sinc stands for the cardinal sine function: sinc(x) ≡
sin x/x. The square of the modulus of h̃+( f ), which appears in
the S/N formula (22), is then

|h̃+( f )|2 = h̃+( f )h̃+( f )∗

=

(
µ

2r
T
)2

 +∞∑
m=1

H+
m(θ)

[
eiχm sinc (π( f − m f0)T )

+ e−iχm sinc (π( f + m f0)T )
])

×

 +∞∑
n=1

H+
n (θ)

[
e−iχn sinc (π( f − n f0)T )

+ eiχn sinc (π( f + n f0)T )
])

=

(
µ

r

)2 T
4

+∞∑
m=1

+∞∑
n=1

H+
m(θ)H+

n (θ)

×
[
ei(χm−χn) T sinc (π( f − m f0)T ) sinc (π( f − n f0)T )

+ ei(χm+χn) T sinc (π( f − m f0)T ) sinc (π( f + n f0)T )

+ e−i(χm+χn) T sinc (π( f + m f0)T ) sinc (π( f − n f0)T )

+ ei(χn−χm) T sinc (π( f + m f0)T ) sinc (π( f + n f0)T )
]

=

(
µ

r

)2 T
4

+∞∑
m=1

+∞∑
n=1

H+
m(θ)H+

n (θ)

×
[
ei(χm−χn) ∆T,m f0 ( f )sinc (π( f − n f0)T )

+ ei(χm+χn) ∆T,m f0 ( f )sinc (π( f + n f0)T )

+ e−i(χm+χn) ∆T,−m f0 ( f )sinc (π( f − n f0)T )

+ ei(χn−χm) ∆T,−m f0 ( f )sinc (π( f + n f0)T )
]
, (B.5)

where the functions ∆T, f∗ ( f ) are defined for any pair of real
parameters (T, f∗) by

∆T, f∗ ( f ) ≡ T sinc (π( f − f∗)T ) . (B.6)

For each value of f∗, the ∆T, f∗ constitute a family of nascent delta
functions, i.e. they obey11

11 Equation (B.7a) immediately follows from the well known identity∫ ∞
−∞

sinc(πx) dx = 1.
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∫ +∞

−∞

∆T, f∗ ( f ) d f = 1 (B.7a)

∀ δ f > 0, lim
T→+∞

∫
R\( f∗−δ f , f∗+δ f )

∆T, f∗ ( f ) d f = 0. (B.7b)

These two properties imply that, for any integrable function F,

lim
T→+∞

∫ ∞

−∞

F( f ) ∆T, f∗ ( f ) d f = F( f∗). (B.8)

In other words, when T → +∞, ∆T, f∗ tends to the Dirac delta dis-
tribution centered on f∗. Considering successively the four terms
that appear in Eq. (B.5) and gathering them two by two by means
of ±, we have then∫ +∞

0

∆T,m f0 ( f )sinc (π( f ± n f0)T )
S n( f )

d f '
sinc (π(m ± n) f0T )

S n(m f0)
when T → +∞,

(B.9a)∫ +∞

0

∆T,−m f0 ( f )sinc (π( f ± n f0)T )
S n( f )

d f → 0 when T → +∞.

(B.9b)

It should be noted that (B.9b) readily follows from prop-
erty (B.7b) since −m f0 < 0. Regarding Eq. (B.9a), we note
that

lim
T→+∞

sinc (π(m − n) f0T ) =

{
1 if n = m
0 if n , m

and lim
T→+∞

sinc (π(m + n) f0T ) = 0, (B.10)

the last property resulting from m + n , 0 for m > 1 and n > 1.
In view of Eqs. (B.5) and (B.9a)–(B.10), we see that, when T →
+∞, the only contribution to the S/N integral (22) arises from
the first term in Eq. (B.5) with moreover n = m, which implies
ei(χm−χn) = 1. Hence we have∫ +∞

0

|h̃+( f )|2

S n( f )
d f '

(
µ

r

)2 T
4

+∞∑
m=1

H+
m(θ)2

S n(m f0)
for T → +∞.

(B.11)

The limit T → +∞, which arises from Eqs. (B.9a) and (B.10),
can be translated by m f0T � 1 for all m, i.e. by f0T � 1. Obvi-
ously, we get a similar formula for the contribution of |h̃×( f )|2 to
the S/N, so that Eq. (22) becomes

ρ2 = 4
∫ +∞

0

|h̃+( f )|2 + |h̃×( f )|2

S n( f )
d f

'

(
µ

r

)2
T

+∞∑
m=1

H+
m(θ)2 + H×m(θ)2

S n(m f0)
for f0T � 1, (B.12)

hence the S/N value (24).

Appendix C: Case of M 32

Apart from Sgr A*, the only MBH in the Local Group of galaxies
whose mass fits LISA band is the one in the center of M 32 –
the compact elliptical galaxy satellite of the Andromeda Galaxy
M3112. Its mass is M = 2.5+0.6

−1.0 × 106 M� (Nguyen et al. 2018).
The distance to the Earth is r ' 790 kpc (Nguyen et al. 2018),
i.e. roughly a hundred time farther than Sgr A*.

The LISA S/N for objects on circular equatorial orbits
around M 32 MBH is depicted as a function of the orbital radius
in Fig. C.1. The minimal mass µmin detectable with S/N1 yr > 10
at a given orbital radius is shown in Fig. C.2. We note that the
minimal detectable mass is ∼2 × 10−3 M� (close to the ISCO) if
M 32 MBH is a slow rotator, down to ∼2×10−4 M� in the case of
a fast rotator. The Roche limits for the various kinds of stars con-
sidered in Sect. 5.1, reevaluated to take into account M 32 MBH
mass M, have been drawn in Fig. C.2. It appears then clearly that
a solar-type star in circular orbit around M 32 MBH cannot be
detected by LISA and that a 0.2 M� red dwarf can be marginally
detected, while there is no issue in detecting a brown dwarf at its
Roche limit.

Regarding the detection probability, the important parame-
ter is the time Tin-band spent in LISA band, i.e. the time elapsed
between the orbit at which the object starts to be detectable by
LISA (cf. Fig. C.3) and either the ISCO (for a compact object,
cf. Fig. C.4 and Table C.1) or the Roche limit (brown dwarfs
and red dwarfs, cf. Table C.2). From Fig. C.4, the largest values
of Tin-band are Tin-band ∼ 1.×104 yr (resp. Tin-band ∼ 2×104 yr) for
a = 0 (resp. a = 0.98 M) and are achieved for µ ∼ 0.1 M� (resp.
µ ∼ 10−3 M�), which corresponds to hypothetical primordial
BHs. We note that for a 0.5 M� white dwarf, Tin-band ∼ 1×104 yr.
For stellar mass BHs, Tin-band is of the order of a few 103 yr.

For the 0.2 M� red dwarf, we conclude from Table C.2 that it
can be detected by LISA only if the inclination angle θ is small
and if it is not corotating (|χ| � 1). One has then Tin-band >
T ins

in-band ∼ 2 × 103 yr.
Regarding the 0.062 M� brown dwarf, we read in Table C.2

that Tin-band > T ins
in-band ∼ 1 × 104 yr for low inclinations and ∼3 ×

103 yr for large inclinations.

12 Andromeda Galaxy itself harbors a MBH in its nucleus, but it has
M ∼ 108 M� (Bender et al. 2005), which is too massive for LISA band.
Beyond the Local Group, nearby galaxies with a MBH in the LISA
range have been considered by Berry & Gair (2013c) in their study of
extreme mass ratio burts (cf. Sect. 1).
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Fig. C.1. Effective (direction and
polarization averaged) signal-to-noise in
LISA for a T = 1 yr observation of
an object of mass µ = 1 M� orbiting
M 32 MBH, as a function of the orbital
radius r0 (in units of M, the mass of
M 32 MBH), and for selected values of
the MBH spin parameter a as well as
selected values of the inclination angle θ.
Each curve starts at the ISCO radius of
the corresponding value of a. It should
be noted that this figure is scaled for
T = 1 yr, while the equivalent figure for
Sgr A* (Fig. 6) is scaled for T = 1 d.
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Roche limit for brown dwarf Fig. C.2. Minimal detectable mass with

S/N1 yr > 10 in LISA observations of
M 32 center, as a function of the orbital
radius r0. The various Roche limits are
those considered in Sect. 5.1.

Table C.1. Orbital radius r0,max at the entry in LISA band (S/N1 yr reaching 10), the corresponding gravitational wave frequency fm=2(r0,max) and
the time spent in LISA band until the ISCO, Tin-band, for various compact objects orbiting M 32 MBH.

Primordial White Neutron 10 M� 30 M�
BH dwarf star BH BH

µ/M� 10−2 0.5 1.4 10 30
r0,max/M (θ = 0) 9.84 (9.50) 22.9 (22.7) 28.0 (27.8) 40.6 (40.4) 49.8 (49.6)
r0,max/M (θ = π/2) 8.16 (7.73) 19.3 (19.1) 23.7 (23.5) 34.3 (34.2) 42.0 (41.9)
fm=2(r0,max) (θ = 0) [mHz] 0.838 (0.855) 0.236 (0.237) 0.174 (0.175) 0.100 (0.100) 0.074 (0.074)
fm=2(r0,max) (θ = π/2) [mHz] 1.109 (1.150) 0.305 (0.307) 0.224 (0.225) 0.128 (0.129) 0.095 (0.095)
Tin-band (θ = 0) [103 yr] 8.01 (20.06) 9.63 (11.33) 7.98 (8.94) 5.11 (5.43) 3.88 (4.05)
Tin-band (θ = π/2) [103 yr] 2.09 (9.36) 4.59 (5.71) 3.94 (4.59) 2.59 (2.80) 1.96 (2.08)

Notes. The numbers outside (resp. inside) parentheses are for a MBH spin parameter a = 0 (resp. a = 0.98 M). With respect to the equivalent table
for Sgr A* (Table 3), note that the primodial BH mass is chosen to be µ = 10−2 M� and that the scale of Tin-band is 103 yr.
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Fig. C.3. Maximum orbital radius r0,max for
a S/N1 yr = 10 detection by LISA, as a func-
tion of the mass µ of the object orbiting
around M 32 MBH.
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Fig. C.4. Time elapsed between the entry
in LISA band (S/N1 yr > 10) and the ISCO
for a compact object inspiralling around
M 32 MBH, as a function of the object’s
mass µ.

Table C.2. Inspiral time to the Roche limit in LISA band (S/N1 yr > 10) for the brown dwarf and red dwarf models considered in Sect. 5.1, when
orbiting M 32 MBH.

Brown dwarf Red dwarf

µ/M� 0.062 0.20
ρ/ρ� 131. 18.8
r0,max/M (θ = 0) 14.9 (14.6) 19.0 (18.8)
r0,max/M (θ = π/2) 12.4 (12.1) 15.9 (15.7)
fm=2(r0,max) (θ = 0) [mHz] 0.451 (0.455) 0.311 (0.313)
fm=2(r0,max) (θ = π/2) [mHz] 0.594 (0.603) 0.406 (0.410)
rR/M (χ = 0) 9.85 (9.55) 18.2 (18.0)
rR/M (χ = 1) 10.7 (10.5) 19.9 (19.8)
T ins

in-band (θ = 0, χ = 0) [103 yr] 10.16 (13.27) 2.00 (2.17)
T ins

in-band (θ = 0, χ = 1) [103 yr] 9.34 (11.92) 0 (0)
T ins

in-band (θ = π/2, χ = 0) [103 yr] 3.37 (4.65) 0 (0)
T ins

in-band (θ = π/2, χ = 1) [103 yr] 2.55 (3.29) 0 (0)

Notes. The numbers outside (resp. inside) parentheses are for M 32 MBH spin parameter a = 0 (resp. a = 0.98 M).
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