
Construction of initial data for 3+1 numerical

relativity

Eric Gourgoulhon
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Abstract. This lecture is devoted to the problem of computing initial data for
the Cauchy problem of 3+1 general relativity. The main task is to solve the
constraint equations. The conformal technique, introduced by Lichnerowicz and
enhanced by York, is presented. Two standard methods, the conformal transverse-
traceless one and the conformal thin sandwich, are discussed and illustrated by
some simple examples. Finally a short review regarding initial data for binary
systems (black holes and neutron stars) is given.

1. Introduction

The 3+1 formalism is the basis of most modern numerical relativity and has lead,
along with alternative approaches [82], to the recent successes in the binary black hole
merger problem [6, 7, 99, 25, 26, 27, 28] (see [24, 69, 86] for a review). Thanks to
the 3+1 formalism, the resolution of Einstein equation amounts to solving a Cauchy
problem, namely to evolve “forward in time” some initial data. However this is a
Cauchy problem with constraints. This makes the set up of initial data a non trivial
task, because these data must fulfill the constraints. In this lecture, we present the
most wide spread methods to deal with this problem. Notice that we do not discuss
the numerical techniques employed to solve the constraints (see e.g. Choptuik’s lecture
for finite differences [32] and Grandclément and Novak’s review for spectral methods
[58]).

Standard reviews about the initial data problem are the articles by York [106] and
Choquet-Bruhat and York [36]. Recent reviews are the articles by Cook [37], Pfeiffer
[79] and Bartnik and Isenberg [10].

2. The initial data problem

2.1. 3+1 decomposition of Einstein equation

In this lecture, we consider a spacetime (M, g), where M is a four-dimensional
smooth manifold and g a Lorentzian metric on M. We assume that (M, g) is globally
hyperbolic, i.e. that M can be foliated by a family (Σt)t∈R of spacelike hypersurfaces.
We denote by γ the (Riemannian) metric induced by g on each hypersurface Σt and
K the extrinsic curvature of Σt, with the same sign convention as that used in the
numerical relativity community, i.e. for any pair of vector fields (u, v) tangent to Σt,
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g(u, ∇vn) = −K(u, v), where n is the future directed unit normal to Σt and ∇ is
the Levi-Civita connection associated with g.

The 3+1 decomposition of Einstein equation with respect to the foliation (Σt)t∈R

leads to three sets of equations: (i) the evolution equations of the Cauchy problem
(full projection of Einstein equation onto Σt), (ii) the Hamiltonian constraint (full
projection of Einstein equation along the normal n), (iii) the momentum constraint
(mixed projection: once onto Σt, once along n). The latter two sets of equations do
not contain any second derivative of the metric with respect to t. They are written‡

R + K2 − KijK
ij = 16πE (Hamiltonian constraint), (1)

DjKij − DiK = 8πpi (momentum constraint), (2)

where R is the Ricci scalar (also called scalar curvature) associated with the 3-metric
γ, K is the trace of K with respect to γ: K = γijKij , D stands for the Levi-Civita
connection associated with the 3-metric γ, and E and pi are respectively the energy
density and linear momentum of matter, both measured by the observer of 4-velocity
n (Eulerian observer). In terms of the matter energy-momentum tensor T they are
expressed as

E = Tµνnµnν and pi = −Tµνnµγν
i. (3)

Notice that Eqs. (1)-(2) involve a single hypersurface Σ0, not a foliation (Σt)t∈R
. In

particular, neither the lapse function nor the shift vector appear in these equations.

2.2. Constructing initial data

In order to get valid initial data for the Cauchy problem, one must find solutions to
the constraints (1) and (2). Actually one may distinguish two problems:

• The mathematical problem: given some hypersurface Σ0, find a Riemannian
metric γ, a symmetric bilinear form K and some matter distribution (E, p) on Σ0

such that the Hamiltonian constraint (1) and the momentum constraint (2) are
satisfied. In addition, the matter distribution (E, p) may have some constraints
from its own. We shall not discuss them here.

• The astrophysical problem: make sure that the solution to the constraint equations
has something to do with the physical system that one wish to study.

Facing the constraint equations (1) and (2), a naive way to proceed would be to
choose freely the metric γ, thereby fixing the connection D and the scalar curvature
R, and to solve Eqs. (1)-(2) for K. Indeed, for fixed γ, E, and p, Eqs. (1)-(2) form
a quasi-linear system of first order for the components Kij . However, as discussed
by Choquet-Bruhat [45], this approach is not satisfactory because we have only four
equations for six unknowns Kij and there is no natural prescription for choosing
arbitrarily two among the six components Kij .

In 1944, Lichnerowicz [70] has shown that a much more satisfactory split of
the initial data (γ, K) between freely choosable parts and parts obtained by solving
Eqs. (1)-(2) is provided by a conformal decomposition of the metric γ. Lichnerowicz
method has been extended by Choquet-Bruhat (1956, 1971) [45, 33], by York and
Ó Murchadha (1972, 1974, 1979) [103, 104, 76, 106] and more recently by York and
Pfeiffer (1999, 2003) [107, 80]. Actually, conformal decompositions are by far the most

‡ we are using the standard convention for indices, namely Greek indices run in {0, 1, 2, 3}, whereas
Latin ones run in {1, 2, 3}
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widely spread techniques to get initial data for the 3+1 Cauchy problem. Alternative
methods exist, such as the quasi-spherical ansatz introduced by Bartnik in 1993 [8] or
a procedure developed by Corvino (2000) [39] and by Isenberg, Mazzeo and Pollack
(2002) [63] for gluing together known solutions of the constraints, thereby producing
new ones. Here we shall limit ourselves to the conformal methods.

2.3. Conformal decomposition of the constraints

In the conformal approach initiated by Lichnerowicz [70], one introduces a conformal
metric γ̃ and a conformal factor Ψ such that the (physical) metric γ induced by the
spacetime metric on the hypersurface Σt is

γij = Ψ4γ̃ij . (4)

We could fix some degree of freedom by demanding that det γ̃ij = 1. This would
imply Ψ = (det γij)

1/12. However, in this case γ̃ and Ψ would be tensor densities.
Moreover the condition det γ̃ij = 1 has a meaning only for Cartesian-like coordinates.
In order to deal with tensor fields and to allow for any type of coordinates, we proceed
differently and introduce a background Riemannian metric f on Σt. If the topology of
Σt allows it, we shall demand that f is flat. Then we replace the condition det γ̃ij = 1
by det γ̃ij = det fij . This fixes

Ψ =

(

det γij

det fij

)1/12

. (5)

Ψ is then a genuine scalar field on Σt (as a quotient of two determinants). Consequently
γ̃ is a tensor field and not a tensor density.

Associated with the above conformal transformation, there are two decomposi-
tions of the traceless part Aij of the extrinsic curvature, the latter being defined by

Kij =: Aij +
1

3
Kγij . (6)

These two decompositions are

Aij =: Ψ−10Âij , (7)

Aij =: Ψ−4Ãij . (8)

The choice −10 for the exponent of Ψ in Eq. (7) is motivated by the following identity,
valid for any symmetric and traceless tensor field,

DjA
ij = Ψ−10D̃j

(

Ψ10Aij
)

, (9)

where D̃j denotes the covariant derivative associated with the conformal metric γ̃.
This choice is well adapted to the momentum constraint, because the latter involves
the divergence of K. The alternative choice, i.e. Eq. (8), is motivated by time
evolution considerations, as we shall discuss below. For the time being, we limit
ourselves to the decomposition (7), having in mind to simplify the writing of the
momentum constraint.

By means of the decompositions (4), (6) and (7), the Hamiltonian constraint (1)
and the momentum constraint (2) are rewritten as (see Ref. [51] for details)

D̃iD̃
iΨ − 1

8
R̃Ψ +

1

8
ÂijÂ

ij Ψ−7 + 2πẼΨ−3 − 1

12
K2Ψ5 = 0, (10)

D̃jÂ
ij − 2

3
Ψ6D̃iK = 8πp̃i, (11)
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where R̃ is the Ricci scalar associated with the conformal metric γ̃ and we have
introduced the rescaled matter quantities

Ẽ := Ψ8E and p̃i := Ψ10pi. (12)

Equation (10) is known as Lichnerowicz equation, or sometimes Lichnerowicz-York
equation. The definition of p̃i is such that there is no Ψ factor in the right-hand side
of Eq. (11). On the contrary the power 8 in the definition of Ẽ is not the only possible
choice. As we shall see in § 3.4, it is chosen (i) to guarantee a negative power of Ψ in
the Ẽ term in Eq. (10), resulting in some uniqueness property of the solution and (ii)
to allow for an easy implementation of the dominant energy condition.

3. Conformal transverse-traceless method

3.1. Longitudinal/transverse decomposition of Âij

In order to solve the system (10)-(11), York (1973,1979) [104, 105, 106] has decomposed
Âij into a longitudinal part and a transverse one, setting

Âij = (L̃X)ij + Âij
TT, (13)

where Âij
TT is both traceless and transverse (i.e. divergence-free) with respect to the

metric γ̃:

γ̃ijÂ
ij
TT = 0 and D̃jÂ

ij
TT = 0, (14)

and (L̃X)ij is the conformal Killing operator associated with the metric γ̃ and acting
on the vector field X:

(L̃X)ij := D̃iXj + D̃jX i − 2

3
D̃kXk γ̃ij . (15)

(L̃X)ij is by construction traceless:

γ̃ij(L̃X)ij = 0 (16)

(it must be so because in Eq. (13) both Âij and Âij
TT are traceless). The kernel of

L̃ is made of the conformal Killing vectors of the metric γ̃, i.e. the generators of
the conformal isometries (see e.g. Ref. [51] for more details). The symmetric tensor
(L̃X)ij is called the longitudinal part of Âij , whereas Âij

TT is called the transverse part.

Given Âij , the vector X is determined by taking the divergence of Eq. (13):
taking into account property (14), we get

D̃j(L̃X)ij = D̃jÂ
ij . (17)

The second order operator D̃j(L̃X)ij acting on the vector X is the conformal vector

Laplacian ∆̃L:

∆̃L X i := D̃j(L̃X)ij = D̃jD̃
jX i +

1

3
D̃iD̃jX

j + R̃i
jX

j , (18)

where the second equality follows from the Ricci identity applied to the connection D̃,
R̃ij being the associated Ricci tensor. The operator ∆̃L is elliptic and its kernel is, in
practice, reduced to the conformal Killing vectors of γ̃, if any. We rewrite Eq. (17) as

∆̃L X i = D̃jÂ
ij . (19)

The existence and uniqueness of the longitudinal/transverse decomposition (13)
depend on the existence and uniqueness of solutions X to Eq. (19). We shall consider
two cases:
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• Σ0 is a closed manifold, i.e. is compact without boundary;

• (Σ0, γ) is an asymptotically flat manifold, i.e. is such that the background metric
f is flat (except possibly on a compact sub-domain B of Σt) and there exists a
coordinate system (xi) = (x, y, z) on Σt such that outside B, the components
of f are fij = diag(1, 1, 1) (“Cartesian-type coordinates”) and the variable

r :=
√

x2 + y2 + z2 can take arbitrarily large values on Σt; then when r → +∞,
the components of γ and K with respect to the coordinates (xi) satisfy

γij = fij + O(r−1) and
∂γij

∂xk
= O(r−2), (20)

Kij = O(r−2) and
∂Kij

∂xk
= O(r−3). (21)

In the case of a closed manifold, one can show (see Appendix B of Ref. [51] for details)
that solutions to Eq. (19) exist provided that the source D̃jÂ

ij is orthogonal to all
conformal Killing vectors of γ̃, in the sense that

∀C ∈ ker L̃,

∫

Σ

γ̃ijC
iD̃kÂjk

√

γ̃ d3x = 0. (22)

But the above property is easy to verify: using the fact that the source is a pure
divergence and that Σ0 is closed, we may integrate the left-hand side by parts and
get, for any vector field C,

∫

Σ0

γ̃ijC
i D̃kÂjk

√

γ̃ d3x = −1

2

∫

Σ0

γ̃ij γ̃kl(L̃C)ikÂjl
√

γ̃ d3x. (23)

Then, obviously, when C is a conformal Killing vector, the right-hand side of the
above equation vanishes. So there exists a solution to Eq. (19) and this solution is
unique up to the addition of a conformal Killing vector. However, given a solution
X, for any conformal Killing vector C, the solution X + C yields to the same value
of L̃X, since C is by definition in the kernel of L̃. Therefore we conclude that the
decomposition (13) of Âij is unique, although the vector X may not be if (Σ0, γ̃)
admits some conformal isometries.

In the case of an asymptotically flat manifold, the existence and uniqueness is
guaranteed by a theorem proved by Cantor in 1979 [30] (see also Appendix B of
Ref. [87] as well as Refs. [35, 51]). This theorem requires the decay condition

∂2γ̃ij

∂xk∂xl
= O(r−3) (24)

in addition to the asymptotic flatness conditions (20). This guarantees that

R̃ij = O(r−3). (25)

Then all conditions are fulfilled to conclude that Eq. (19) admits a unique solution X

which vanishes at infinity.
To summarize, for all considered cases (asymptotic flatness and closed manifold),

any symmetric and traceless tensor Âij (decaying as O(r−2) in the asymptotically flat
case) admits a unique longitudinal/transverse decomposition of the form (13).
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3.2. Conformal transverse-traceless form of the constraints

Inserting the longitudinal/transverse decomposition (13) into the constraint equations
(10) and (11) and making use of Eq. (19) yields to the system

D̃iD̃
iΨ − 1

8
R̃Ψ +

1

8

[

(L̃X)ij + ÂTT
ij

] [

(L̃X)ij + Âij
TT

]

Ψ−7

+ 2πẼΨ−3 − 1

12
K2Ψ5 = 0, (26)

∆̃L X i − 2

3
Ψ6D̃iK = 8πp̃i, (27)

where

(L̃X)ij := γ̃ikγ̃jl(L̃X)kl and ÂTT
ij := γ̃ikγ̃jlÂ

kl
TT. (28)

With the constraint equations written as (26) and (27), we see clearly which part
of the initial data on Σ0 can be freely chosen and which part is “constrained”:

• free data:

– conformal metric γ̃;
– symmetric traceless and transverse tensor Âij

TT (traceless and transverse are

meant with respect to γ̃: γ̃ijÂ
ij
TT = 0 and D̃jÂ

ij
TT = 0);

– scalar field K;
– conformal matter variables: (Ẽ, p̃i);

• constrained data (or “determined data”):

– conformal factor Ψ, obeying the non-linear elliptic equation (26)
(Lichnerowicz equation)

– vector X, obeying the linear elliptic equation (27) .

Accordingly the general strategy to get valid initial data for the Cauchy problem is
to choose (γ̃ij , Â

ij
TT, K, Ẽ, p̃i) on Σ0 and solve the system (26)-(27) to get Ψ and X i.

Then one constructs

γij = Ψ4γ̃ij (29)

Kij = Ψ−10
(

(L̃X)ij + Âij
TT

)

+
1

3
Ψ−4Kγ̃ij (30)

E = Ψ−8Ẽ (31)

pi = Ψ−10p̃i (32)

and obtains a set (γ, K, E, p) which satisfies the constraint equations (1)-(2). This
method has been proposed by York (1979) [106] and is naturally called the conformal
transverse traceless (CTT ) method.

3.3. Decoupling on hypersurfaces of constant mean curvature

Equations (26) and (27) are coupled, but we notice that if, among the free data, we
choose K to be a constant field on Σ0,

K = const, (33)

then they decouple partially : condition (33) implies D̃iK = 0, so that the momentum
constraint (27) becomes independent of Ψ:

∆̃L X i = 8πp̃i (K = const). (34)
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The condition (33) on the extrinsic curvature of Σ0 defines what is called a constant
mean curvature (CMC ) hypersurface. Indeed let us recall that K is nothing but
(minus three times) the mean curvature of (Σ0, γ) embedded in (M, g). A maximal
hypersurface, having K = 0, is of course a special case of a CMC hypersurface. On a
CMC hypersurface, the task of obtaining initial data is greatly simplified: one has first
to solve the linear elliptic equation (34) to get X and plug the solution into Eq. (26)
to form an equation for Ψ. Equation (34) is the conformal vector Poisson equation
discussed above (Eq. (19), with D̃jÂ

ij replaced by 8πp̃i). We know then that it is
solvable for the two cases of interest mentioned in Sec. 3.1: closed or asymptotically
flat manifold. Moreover, the solutions X are such that the value of L̃X is unique.

3.4. Lichnerowicz equation

Taking into account the CMC decoupling, the difficult problem is to solve Eq. (26)
for Ψ. This equation is elliptic and highly non-linear§. It has been first studied
by Lichnerowicz [70, 71] in the case K = 0 (Σ0 maximal) and Ẽ = 0 (vacuum).
Lichnerowicz has shown that given the value of Ψ at the boundary of a bounded domain
of Σ0 (Dirichlet problem), there exists at most one solution to Eq. (26). Besides, he
showed the existence of a solution provided that ÂijÂ

ij is not too large. These early
results have been much improved since then. In particular Cantor [29] has shown that
in the asymptotically flat case, still with K = 0 and Ẽ = 0, Eq. (26) is solvable if
and only if the metric γ̃ is conformal to a metric with vanishing scalar curvature (one
says then that γ̃ belongs to the positive Yamabe class) (see also Ref. [74]). In the
case of closed manifolds, the complete analysis of the CMC case has been achieved by
Isenberg (1995) [62].

For more details and further references, we recommend the review articles by
Choquet-Bruhat and York [36] and Bartnik and Isenberg [10]. Here we shall simply
repeat the argument of York [107] to justify the rescaling (12) of E. This rescaling is
indeed related to the uniqueness of solutions to the Lichnerowicz equation. Consider
a solution Ψ0 to Eq. (26) in the case K = 0, to which we restrict ourselves. Another
solution close to Ψ0 can be written Ψ = Ψ0 + ε, with |ε| � Ψ0:

D̃iD̃
i(Ψ0 + ε) − R̃

8
(Ψ0 + ε) +

1

8
ÂijÂ

ij (Ψ0 + ε)−7 + 2πẼ(Ψ0 + ε)−3 = 0. (35)

Expanding to the first order in ε/Ψ0 leads to the following linear equation for ε:

D̃iD̃
iε − αε = 0, (36)

with

α :=
1

8
R̃ +

7

8
ÂijÂ

ijΨ−8
0 + 6πẼΨ−4

0 . (37)

Now, if α ≥ 0, one can show, by means of the maximum principle, that the solution
of (36) which vanishes at spatial infinity is necessarily ε = 0 (see Ref. [34] or § B.1 of
Ref. [35]). We therefore conclude that the solution Ψ0 to Eq. (26) is unique (at least
locally) in this case. On the contrary, if α < 0, non trivial oscillatory solutions of
Eq. (36) exist, making the solution Ψ0 not unique. The key point is that the scaling
(12) of E yields the term +6πẼΨ−4

0 in Eq. (37), which contributes to make α positive.
If we had not rescaled E, i.e. had considered the original Hamiltonian constraint, the

§ although it is quasi-linear in the technical sense, i.e. linear with respect to the highest-order
derivatives
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contribution to α would have been instead −10πEΨ4
0, i.e. would have been negative.

Actually, any rescaling Ẽ = ΨsE with s > 5 would have work to make α positive. The
choice s = 8 in Eq. (12) is motivated by the fact that if the conformal data (Ẽ, p̃i)
obey the “conformal” dominant energy condition

Ẽ ≥
√

γ̃ij p̃ip̃j, (38)

then, via the scaling (12) of pi, the reconstructed physical data (E, pi) will
automatically obey the dominant energy condition

E ≥
√

γijpipj. (39)

4. Conformally flat initial data by the CTT method

4.1. Momentarily static initial data

In this section we search for asymptotically flat initial data (Σ0, γ, K) by the CTT
method exposed above. As a purpose of illustration, we shall start by the simplest
case one may think of, namely choose the freely specifiable data (γ̃ij , Â

ij
TT, K, Ẽ, p̃i)

to be a flat metric:

γ̃ij = fij , (40)

a vanishing transverse-traceless part of the extrinsic curvature:

Âij
TT = 0, (41)

a vanishing mean curvature (maximal hypersurface)

K = 0, (42)

and a vacuum spacetime:

Ẽ = 0, p̃i = 0. (43)

Then D̃i = Di, where D denotes the Levi-Civita connection associated with f , R̃ = 0
(f is flat) and the constraint equations (26)-(27) reduce to

∆Ψ +
1

8
(LX)ij(LX)ij Ψ−7 = 0 (44)

∆LX i = 0, (45)

where ∆ and ∆L are respectively the scalar Laplacian and the conformal vector
Laplacian associated with the flat metric f :

∆ := DiDi and ∆LX i := DjDjX i +
1

3
DiDjX

j . (46)

Equations (44)-(45) must be solved with the boundary conditions

Ψ = 1 when r → ∞ (47)

X = 0 when r → ∞, (48)

which follow from the asymptotic flatness requirement. The solution depends on the
topology of Σ0, since the latter may introduce some inner boundary conditions in
addition to (47)-(48).

Let us start with the simplest case: Σ0 = R
3. Then the unique solution of Eq. (45)

subject to the boundary condition (48) is

X = 0. (49)
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Figure 1. Hypersurface Σ0 as R
3 minus a ball, displayed via an embedding

diagram based on the metric γ̃, which coincides with the Euclidean metric on
R

3. Hence Σ0 appears to be flat. The unit normal of the inner boundary S with
respect to the metric γ̃ is s̃. Notice that D̃ · s̃ > 0.

Consequently (LX)ij = 0, so that Eq. (44) reduces to Laplace equation for Ψ:

∆Ψ = 0. (50)

With the boundary condition (47), there is a unique regular solution on R
3:

Ψ = 1. (51)

The initial data reconstructed from Eqs. (29)-(30) is then

γ = f (52)

K = 0. (53)

These data correspond to a spacelike hyperplane of Minkowski spacetime.
Geometrically the condition K = 0 is that of a totally geodesic hypersurface [i.e. all
the geodesics of (Σt, γ) are geodesics of (M, g)]. Physically data with K = 0 are said
to be momentarily static or time symmetric. Indeed, if we consider a foliation with
unit lapse around Σ0 (geodesic slicing), the following relation holds: Ln g = −2K,
where Ln denotes the Lie derivative along the unit normal n. So if K = 0, Ln g = 0.
This means that, locally (i.e. on Σ0), n is a spacetime Killing vector. This vector
being timelike, the configuration is then stationary. Moreover, the Killing vector n

being orthogonal to some hypersurface (i.e. Σ0), the stationary configuration is called
static. Of course, this staticity properties holds a priori only on Σ0 since there is no
guarantee that the time development of Cauchy data with K = 0 at t = 0 maintains
K = 0 at t > 0. Hence the qualifier ‘momentarily’ in the expression ‘momentarily
static’ for data with K = 0.

4.2. Slice of Schwarzschild spacetime

To get something less trivial than a slice of Minkowski spacetime, let us consider a
slightly more complicated topology for Σ0, namely R

3 minus a ball (cf. Fig. 1). The
sphere S delimiting the ball is then the inner boundary of Σ0 and we must provide
boundary conditions for Ψ and X on S to solve Eqs. (44)-(45). For simplicity, let us
choose

X|
S

= 0. (54)

Altogether with the outer boundary condition (48), this leads to X being identically
zero as the unique solution of Eq. (45). So, again, the Hamiltonian constraint reduces
to Laplace equation

∆Ψ = 0. (55)
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Figure 2. Same hypersurface Σ0 as in Fig. 1 but displayed via an embedding
diagram based on the metric γ instead of γ̃. The unit normal of the inner
boundary S with respect to that metric is s. Notice that D · s = 0, which
means that S is a minimal surface of (Σ0, γ).

If we choose the boundary condition Ψ|
S

= 1, then the unique solution is Ψ = 1
and we are back to the previous example (slice of Minkowski spacetime). In order to
have something non trivial, i.e. to ensure that the metric γ will not be flat, let us
demand that γ admits a closed minimal surface, that we will choose to be S. This
will necessarily translate as a boundary condition for Ψ since all the information on
the metric is encoded in Ψ (let us recall that from the choice (40), γ = Ψ4f ). S is a
minimal surface of (Σ0, γ) iff its mean curvature vanishes, or equivalently if its unit
normal s is divergence-free (cf. Fig. 2):

Dis
i
∣

∣

S
= 0. (56)

This is the analog of ∇ · n = 0 for maximal hypersurfaces, the change from minimal
to maximal being due to the change of metric signature, from the Riemannian to the
Lorentzian one. Expressed in term of the connection D̃ = D (recall that in the present
case γ̃ = f), condition (56) is equivalent to

Di(Ψ
6si)

∣

∣

S
= 0. (57)

Let us rewrite this expression in terms of the unit vector s̃ normal to S with respect
to the metric γ̃ (cf. Fig. 1); we have

s̃ = Ψ−2s, (58)

since γ̃(s̃, s̃) = Ψ−4γ̃(s, s) = γ(s, s) = 1. Thus Eq. (57) becomes

Di(Ψ
4s̃i)

∣

∣

S
=

1√
f

∂

∂xi

(

√

fΨ4s̃i
)

∣

∣

∣

∣

S

= 0. (59)

Let us introduce on Σ0 a coordinate system of spherical type, (xi) = (r, θ, ϕ), such
that (i) fij = diag(1, r2, r2 sin2 θ) and (ii) S is the sphere r = a, where a is some
positive constant. Since in these coordinates

√
f = r2 sin θ and s̃i = (1, 0, 0), the

minimal surface condition (59) is written as

1

r2

∂

∂r

(

Ψ4r2
)

∣

∣

∣

∣

r=a

= 0, (60)
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Figure 3. Extended hypersurface Σ′

0
obtained by gluing a copy of Σ0 at the

minimal surface S; it defines an Einstein-Rosen bridge between two asymptotically
flat regions.

i.e.
(

∂Ψ

∂r
+

Ψ

2r

)∣

∣

∣

∣

r=a

= 0 (61)

This is a boundary condition of mixed Newmann/Dirichlet type for Ψ. The unique
solution of the Laplace equation (55) which satisfies boundary conditions (47) and
(61) is

Ψ = 1 +
a

r
. (62)

The parameter a is then easily related to the ADM mass m of the hypersurface Σ0.
Indeed for a conformally flat 3-metric (and more generally in the quasi-isotropic gauge,
cf. Chap. 7 of Ref. [51]), the ADM mass m is given by the flux of the gradient of the
conformal factor at spatial infinity:

m = − 1

2π
lim

r→∞

∮

r=const

∂Ψ

∂r
r2 sin θ dθ dϕ

= − 1

2π
lim

r→∞
4πr2 ∂

∂r

(

1 +
a

r

)

= 2a. (63)

Hence a = m/2 and we may write

Ψ = 1 +
m

2r
. (64)

Therefore, in terms of the coordinates (r, θ, ϕ), the obtained initial data (γ, K) are

γij =
(

1 +
m

2r

)4

diag(1, r2, r2 sin θ) (65)

Kij = 0. (66)

So, as above, the initial data are momentarily static. Actually, we recognize on (65)-
(66) a slice t = const of Schwarzschild spacetime in isotropic coordinates.

The isotropic coordinates (r, θ, ϕ) covering the manifold Σ0 are such that the
range of r is [m/2, +∞). But thanks to the minimal character of the inner boundary
S, we can extend (Σ0, γ) to a larger Riemannian manifold (Σ′

0, γ
′) with γ′|Σ0

= γ

and γ′ smooth at S. This is made possible by gluing a copy of Σ0 at S (cf. Fig. 3).
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Figure 4. Extended hypersurface Σ′

0
depicted in the Kruskal-Szekeres

representation of Schwarzschild spacetime. R stands for Schwarzschild radial
coordinate and r for the isotropic radial coordinate. R = 0 is the singularity and
R = 2m the event horizon. Σ′

0
is nothing but a hypersurface t = const, where

t is the Schwarzschild time coordinate. In this diagram, these hypersurfaces are
straight lines and the Einstein-Rosen bridge S is reduced to a point.

The topology of Σ′
0 is S

2×R and the range of r in Σ′
0 is (0, +∞). The extended metric

γ ′ keeps exactly the same form as (65):

γ′
ij dxi dxj =

(

1 +
m

2r

)4
(

dr2 + r2dθ2 + r2 sin2 θdϕ2
)

. (67)

By the change of variable

r 7→ r′ =
m2

4r
(68)

it is easily shown that the region r → 0 does not correspond to some “center” but is
actually a second asymptotically flat region (the lower one in Fig. 3). Moreover the
transformation (68), with θ and ϕ kept fixed, is an isometry of γ ′. It maps a point
p of Σ0 to the point located at the vertical of p in Fig. 3. The minimal sphere S is
invariant under this isometry. The region around S is called an Einstein-Rosen bridge.
(Σ′

0, γ
′) is still a slice of Schwarzschild spacetime. It connects two asymptotically flat

regions without entering below the event horizon, as shown in the Kruskal-Szekeres
diagram of Fig. 4.

4.3. Bowen-York initial data

Let us select the same simple free data as above, namely

γ̃ij = fij , Âij
TT = 0, K = 0, Ẽ = 0 and p̃i = 0. (69)

For the hypersurface Σ0, instead of R
3 minus a ball, we choose R

3 minus a point:

Σ0 = R
3\{O}. (70)

The removed point O is called a puncture [21]. The topology of Σ0 is S
2 ×R; it differs

from the topology considered in Sec. 4.1 (R3 minus a ball); actually it is the same
topology as that of the extended manifold Σ′

0 (cf. Fig. 3).

VII Mexican School on Gravitation and Mathematical Physics IOP Publishing
Journal of Physics: Conference Series 91 (2007) 012001 doi:10.1088/1742-6596/91/1/012001

12



Thanks to the choice (69), the system to be solved is still (44)-(45). If we choose
the trivial solution X = 0 for Eq. (45), we are back to the slice of Schwarzschild
spacetime considered in Sec. 4.1, except that now Σ0 is the extended manifold
previously denoted Σ′

0.
Bowen and York [20] have obtained a simple non-trivial solution to the momentum

constraint (45) (see also Ref. [15]). Given a Cartesian coordinate system (xi) =
(x, y, z) on Σ0 (i.e. a coordinate system such that fij = diag(1, 1, 1)) with respect to
which the coordinates of the puncture O are (0, 0, 0), this solution writes

X i = − 1

4r

(

7f ijPj +
Pjx

jxi

r2

)

− 1

r3
εij

kSjx
k, (71)

where r :=
√

x2 + y2 + z2, εij
k is the Levi-Civita alternating tensor associated with

the flat metric f and (Pi, Sj) = (P1, P2, P3, S1, S2, S3) are six real numbers, which
constitute the six parameters of the Bowen-York solution. Notice that since r 6= 0 on
Σ0, the Bowen-York solution is a regular and smooth solution on the entire Σ0.

The conformal traceless extrinsic curvature corresponding to the solution (71) is
deduced from formula (13), which in the present case reduces to Âij = (LX)ij ; one
gets

Âij =
3

2r3

[

xiP j + xjP i −
(

f ij − xixj

r2

)

Pkxk

]

+
3

r5

(

εik
lSkxlxj + εjk

lSkxlxi
)

, (72)

where P i := f ijPj . The tensor Âij given by Eq. (72) is called the Bowen-York extrinsic

curvature. Notice that the Pi part of Âij decays asymptotically as O(r−2), whereas
the Si part decays as O(r−3).

Remark : Actually the expression of Âij given in the original Bowen-York article
[20] contains an additional term with respect to Eq. (72), but the role of this
extra term is only to ensure that the solution is isometric through an inversion
across some sphere. We are not interested by such a property here, so we have
dropped this term. Therefore, strictly speaking, we should name expression (72)
the simplified Bowen-York extrinsic curvature.

The Bowen-York extrinsic curvature provides an analytical solution of the
momentum constraint (45) but there remains to solve the Hamiltonian constraint
(44) for Ψ, with the asymptotic flatness boundary condition Ψ = 1 when r → ∞.
Since X 6= 0, Eq. (44) is no longer a simple Laplace equation, as in Sec. 4.1, but a
non-linear elliptic equation. There is no hope to get any analytical solution and one
must solve Eq. (44) numerically to get Ψ and reconstruct the full initial data (γ, K)
via Eqs. (29)-(30).

The parameters Pi of the Bowen-York solution are nothing but the three
components of the ADM linear momentum of the hypersurface Σ0 Similarly, the
parameters Si of the Bowen-York solution are nothing but the three components of
the angular momentum of the hypersurface Σ0, the latter being defined relatively to
the quasi-isotropic gauge, in the absence of any axial symmetry (see e.g. [51]).

Remark : The Bowen-York solution with P i = 0 and Si = 0 reduces to the
momentarily static solution found in Sec. 4.1, i.e. is a slice t = const of the
Schwarzschild spacetime (t being the Schwarzschild time coordinate). However
Bowen-York initial data with P i = 0 and Si 6= 0 do not constitute a slice of Kerr
spacetime. Indeed, it has been shown [47] that there does not exist any foliation
of Kerr spacetime by hypersurfaces which (i) are axisymmetric, (ii) smoothly
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reduce in the non-rotating limit to the hypersurfaces of constant Schwarzschild
time and (iii) are conformally flat, i.e. have induced metric γ̃ = f , as the
Bowen-York hypersurfaces have. This means that a Bowen-York solution with
Si 6= 0 does represent initial data for a rotating black hole, but this black hole is
not stationary: it is “surrounded” by gravitational radiation, as demonstrated by
the time development of these initial data [22, 49].

5. Conformal thin sandwich method

5.1. The original conformal thin sandwich method

An alternative to the conformal transverse-traceless method for computing initial data
has been introduced by York in 1999 [107]. The starting point is the identity

K = − 1

2N
LNnγ = − 1

2N

(

∂

∂t
− Lβ

)

γ, (73)

where N is the lapse function and β is the shift vector associated with some 3+1
coordinates (t, xi). The traceless part of Eq. (73) leads to

Ãij =
1

2N

[(

∂

∂t
− Lβ

)

γ̃ij − 2

3
D̃kβk γ̃ij

]

, (74)

where Ãij is defined by Eq. (8). Noticing that

−Lβ γ̃ij = (L̃β)ij +
2

3
D̃kβk, (75)

and introducing the short-hand notation

˙̃γ
ij

:=
∂

∂t
γ̃ij , (76)

we can rewrite Eq. (74) as

Ãij =
1

2N

[

˙̃γ
ij

+ (L̃β)ij
]

. (77)

The relation between Ãij and Âij is [cf. Eqs. (7)-(8)]

Âij = Ψ6Ãij . (78)

Accordingly, Eq. (77) yields

Âij =
1

2Ñ

[

˙̃γ
ij

+ (L̃β)ij
]

, (79)

where we have introduced the conformal lapse

Ñ := Ψ−6N. (80)

Equation (79) constitutes a decomposition of Âij alternative to the longitudi-
nal/transverse decomposition (13). Instead of expressing Âij in terms of a vector
X and a TT tensor Âij

TT, it expresses it in terms of the shift vector β, the time

derivative of the conformal metric, ˙̃γ
ij

, and the conformal lapse Ñ .
The Hamiltonian constraint, written as the Lichnerowicz equation (10), takes the

same form as before:

D̃iD̃
iΨ − R̃

8
Ψ +

1

8
ÂijÂ

ij Ψ−7 + 2πẼΨ−3 − K2

12
Ψ5 = 0, (81)
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except that now Âij is to be understood as the combination (79) of βi, ˙̃γ
ij

and Ñ .
On the other side, the momentum constraint (11) becomes, once expression (79) is
substituted for Âij ,

D̃j

(

1

Ñ
(L̃β)ij

)

+ D̃j

(

1

Ñ
˙̃γ
ij

)

− 4

3
Ψ6D̃iK = 16πp̃i. (82)

In view of the system (81)-(82), the method to compute initial data consists in

choosing freely γ̃ij , ˙̃γ
ij

, K, Ñ , Ẽ and p̃i on Σ0 and solving (81)-(82) to get Ψ and βi.
This method is called conformal thin sandwich (CTS ), because one input is the time

derivative ˙̃γ
ij

, which can be obtained from the value of the conformal metric on two
neighbouring hypersurfaces Σt and Σt+δt (“thin sandwich” view point).

Remark : The term “thin sandwich” originates from a previous method devised in
the early sixties by Wheeler and his collaborators [4, 101]. Contrary to the
methods exposed here, the thin sandwich method was not based on a conformal
decomposition: it considered the constraint equations (1)-(2) as a system to be
solved for the lapse N and the shift vector β, given the metric γ and its time
derivative. The extrinsic curvature which appears in (1)-(2) was then considered
as the function of γ, ∂γ/∂t, N and β given by Eq. (73). However, this method
does not work in general [9]. On the contrary the conformal thin sandwich method
introduced by York [107] and exposed above was shown to work [35].

As for the conformal transverse-traceless method treated in Sec. 3, on CMC
hypersurfaces, Eq. (82) decouples from Eq. (81) and becomes an elliptic linear equation
for β.

5.2. Extended conformal thin sandwich method

An input of the above method is the conformal lapse Ñ . Considering the astrophysical
problem stated in Sec. 2.2, it is not clear how to pick a relevant value for Ñ . Instead
of choosing an arbitrary value, Pfeiffer and York [80] have suggested to compute Ñ
from the Einstein equation giving the time derivative of the trace K of the extrinsic
curvature, i.e.

(

∂

∂t
− Lβ

)

K = − Ψ−4
(

D̃iD̃
iN + 2D̃i ln Ψ D̃iN

)

+ N

[

4π(E + S) + ÃijÃ
ij +

K2

3

]

, (83)

where S is the trace of the matter stress tensor as measured by the Eulerian observer:
S = γµνTµν . This amounts to add this equation to the initial data system. More
precisely, Pfeiffer and York [80] suggested to combine Eq. (83) with the Hamiltonian
constraint to get an equation involving the quantity NΨ = ÑΨ7 and containing no
scalar products of gradients as the D̃i ln ΨD̃iN term in Eq. (83), thanks to the identity

D̃iD̃
iN + 2D̃i ln Ψ D̃iN = Ψ−1

[

D̃iD̃
i(NΨ) + ND̃iD̃

iΨ
]

. (84)

Expressing the left-hand side of the above equation in terms of Eq. (83) and
substituting D̃iD̃

iΨ in the right-hand side by its expression deduced from Eq. (81),
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we get

D̃iD̃
i(ÑΨ7) − (ÑΨ7)

[

1

8
R̃ +

5

12
K2Ψ4 +

7

8
ÂijÂ

ijΨ−8 + 2π(Ẽ + 2S̃)Ψ−4

]

+
(

K̇ − βiD̃iK
)

Ψ5 = 0, (85)

where we have used the short-hand notation

K̇ :=
∂K

∂t
(86)

and have set

S̃ := Ψ8S. (87)

Adding Eq. (85) to Eqs. (81) and (82), the initial data system becomes

D̃iD̃
iΨ − R̃

8
Ψ +

1

8
ÂijÂ

ij Ψ−7 + 2πẼΨ−3 − K2

12
Ψ5 = 0 (88)

D̃j

(

1

Ñ
(L̃β)ij

)

+ D̃j

(

1

Ñ
˙̃γ
ij

)

− 4

3
Ψ6D̃iK = 16πp̃i (89)

D̃iD̃
i(ÑΨ7) − (ÑΨ7)

[

R̃

8
+

5

12
K2Ψ4 +

7

8
ÂijÂ

ijΨ−8 + 2π(Ẽ + 2S̃)Ψ−4

]

+
(

K̇ − βiD̃iK
)

Ψ5 = 0, (90)

where Âij is the function of Ñ , βi, γ̃ij and ˙̃γ
ij

defined by Eq. (79). Equations (88)-(90)
constitute the extended conformal thin sandwich (XCTS ) system for the initial data
problem. The free data are the conformal metric γ̃, its coordinate time derivative ˙̃γ,
the extrinsic curvature trace K, its coordinate time derivative K̇, and the rescaled
matter variables Ẽ, S̃ and p̃i. The constrained data are the conformal factor Ψ, the
conformal lapse Ñ and the shift vector β.

Remark : The XCTS system (88)-(90) is a coupled system. Contrary to the CTT
system (26)-(27), the assumption of constant mean curvature, and in particular
of maximal slicing, does not allow to decouple it.

5.3. XCTS at work: static black hole example

Let us illustrate the extended conformal thin sandwich method on a simple example.
Take for the hypersurface Σ0 the punctured manifold considered in Sec. 4.3, namely

Σ0 = R
3\{O}. (91)

For the free data, let us perform the simplest choice:

γ̃ij = fij , ˙̃γ
ij

= 0, K = 0, K̇ = 0, Ẽ = 0, S̃ = 0, and p̃i = 0, (92)

i.e. we are searching for vacuum initial data on a maximal and conformally flat
hypersurface with all the freely specifiable time derivatives set to zero. Thanks to
(92), the XCTS system (88)-(90) reduces to

∆Ψ +
1

8
ÂijÂ

ij Ψ−7 = 0 (93)

Dj

(

1

Ñ
(Lβ)ij

)

= 0 (94)

∆(ÑΨ7) − 7

8
ÂijÂ

ijΨ−1Ñ = 0. (95)
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Aiming at finding the simplest solution, we notice that

β = 0 (96)

is a solution of Eq. (94). Together with ˙̃γ
ij

= 0, it leads to [cf. Eq. (79)]

Âij = 0. (97)

The system (93)-(95) reduces then further:

∆Ψ = 0 (98)

∆(ÑΨ7) = 0. (99)

Hence we have only two Laplace equations to solve. Moreover Eq. (98) decouples
from Eq. (99). For simplicity, let us assume spherical symmetry around the puncture
O. We introduce an adapted spherical coordinate system (xi) = (r, θ, ϕ) on Σ0. The
puncture O is then at r = 0. The simplest non-trivial solution of (98) which obeys
the asymptotic flatness condition Ψ → 1 as r → +∞ is

Ψ = 1 +
m

2r
, (100)

where as in Sec. 4.1, the constant m is the ADM mass of Σ0 [cf. Eq. (63)]. Notice
that since r = 0 is excluded from Σ0, Ψ is a perfectly regular solution on the entire
manifold Σ0. Let us recall that the Riemannian manifold (Σ0, γ) corresponding to
this value of Ψ via γ = Ψ4f is the Riemannian manifold denoted (Σ′

0, γ) in Sec. 4.1
and depicted in Fig. 3. In particular it has two asymptotically flat ends: r → +∞
and r → 0 (the puncture).

As for Eq. (98), the simplest solution of Eq. (99) obeying the asymptotic flatness
requirement ÑΨ7 → 1 as r → +∞ is

ÑΨ7 = 1 +
a

r
, (101)

where a is some constant. Let us determine a from the value of the lapse function at
the second asymptotically flat end r → 0. The lapse being related to Ñ via Eq. (80),
Eq. (101) is equivalent to

N =
(

1 +
a

r

)

Ψ−1 =
(

1 +
a

r

)(

1 +
m

2r

)−1

=
r + a

r + m/2
. (102)

Hence

lim
r→0

N =
2a

m
. (103)

There are two natural choices for limr→0 N . The first one is

lim
r→0

N = 1, (104)

yielding a = m/2. Then, from Eq. (102) N = 1 everywhere on Σ0. This value of N
corresponds to a geodesic slicing. The second choice is

lim
r→0

N = −1. (105)

This choice is compatible with asymptotic flatness: it simply means that the
coordinate time t is running “backward” near the asymptotic flat end r → 0. This
contradicts the assumption N > 0 in the standard definition of the lapse function.
However, we shall generalize here the definition of the lapse to allow for negative
values: whereas the unit vector n is always future-oriented, the scalar field t is allowed
to decrease towards the future. Such a situation has already been encountered for the
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part of the slices t = const located on the left side of Fig. 4. Once reported into
Eq. (103), the choice (105) yields a = −m/2, so that

N =
(

1 − m

2r

) (

1 +
m

2r

)−1

. (106)

Gathering relations (96), (100) and (106), we arrive at the following expression of the
spacetime metric components:

gµνdxµdxν = −
(

1 − m
2r

1 + m
2r

)2

dt2 +
(

1 +
m

2r

)4
[

dr2 + r2(dθ2 + sin2 θdϕ2)
]

. (107)

We recognize the line element of Schwarzschild spacetime in isotropic coordinates.
Hence we recover the same initial data as in Sec. 4.1 and depicted in Figs. 3 and 4.
The bonus is that we have the complete expression of the metric g on Σ0, and not
only the induced metric γ.

Remark : The choices (104) and (105) for the asymptotic value of the lapse both lead
to a momentarily static initial slice in Schwarzschild spacetime. The difference
is that the time development corresponding to choice (104) (geodesic slicing) will
depend on t, whereas the time development corresponding to choice (105) will
not, since in the latter case t coincides with the standard Schwarzschild time
coordinate, which makes ∂t a Killing vector.

5.4. Uniqueness of solutions

Recently, Pfeiffer and York [81] have exhibited a choice of vacuum free data

(γ̃ij , ˙̃γ
ij

, K, K̇) for which the solution (Ψ, Ñ , βi) to the XCTS system (88)-(90) is not
unique (actually two solutions are found). The conformal metric γ̃ is the flat metric
plus a linearized quadrupolar gravitational wave, as obtained by Teukolsky [92], with

a tunable amplitude. ˙̃γ
ij

corresponds to the time derivative of this wave, and both
K and K̇ are chosen to zero. On the contrary, for the same free data, with K̇ = 0
substituted by Ñ = 1, Pfeiffer and York have shown that the original conformal thin
sandwich method as described in Sec. 5.1 leads to a unique solution (or no solution at
all if the amplitude of the wave is two large).

Baumgarte, Ó Murchadha and Pfeiffer [14] have argued that the lack of uniqueness
for the XCTS system may be due to the term

−(ÑΨ7)
7

8
ÂijÂ

ijΨ−8 = − 7

32
Ψ6γ̃ikγ̃jl

[

˙̃γ
ij

+ (L̃β)ij
] [

˙̃γ
kl

+ (L̃β)kl
]

(ÑΨ7)−1 (108)

in Eq. (90). Indeed, if we proceed as for the analysis of Lichnerowicz equation in
Sec. 3.4, we notice that this term, with the minus sign and the negative power of
(ÑΨ7)−1, makes the linearization of Eq. (90) of the type D̃iD̃

iε+αε = σ, with α > 0.
This “wrong” sign of α prevents the application of the maximum principle to guarantee
the uniqueness of the solution.

The non-uniqueness of solution of the XCTS system for certain choice of free data
has been confirmed by Walsh [100] by means of bifurcation theory.

5.5. Comparing CTT, CTS and XCTS

The conformal transverse traceless (CTT) method exposed in Sec. 3 and the
(extended) conformal thin sandwich (XCTS) method considered here differ by the
choice of free data: whereas both methods use the conformal metric γ̃ and the trace
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of the extrinsic curvature K as free data, CTT employs in addition Âij
TT, whereas

for CTS (resp. XCTS) the additional free data is ˙̃γ
ij

, as well as Ñ (resp. K̇).
Since Âij

TT is directly related to the extrinsic curvature and the latter is linked to
the canonical momentum of the gravitational field in the Hamiltonian formulation of
general relativity, the CTT method can be considered as the approach to the initial

data problem in the Hamiltonian representation. On the other side, ˙̃γ
ij

being the
“velocity” of γ̃ij , the (X)CTS method constitutes the approach in the Lagrangian
representation [108].

Remark : The (X)CTS method assumes that the conformal metric is unimodular:
det(γ̃ij) = f (since Eq. (79) follows from this assumption), whereas the CTT
method can be applied with any conformal metric.

The advantage of CTT is that its mathematical theory is well developed, yielding
existence and uniqueness theorems, at least for constant mean curvature (CMC) slices.
The mathematical theory of CTS is very close to CTT. In particular, the momentum
constraint decouples from the Hamiltonian constraint on CMC slices. On the contrary,
XCTS has a much more involved mathematical structure. In particular the CMC
condition does not yield to any decoupling. The advantage of XCTS is then to be

better suited to the description of quasi-stationary spacetimes, since ˙̃γ
ij

= 0 and
K̇ = 0 are necessary conditions for ∂t to be a Killing vector. This makes XCTS
the method to be used in order to prepare initial data in quasi-equilibrium. For
instance, it has been shown [57, 43] that XCTS yields orbiting binary black hole
configurations in much better agreement with post-Newtonian computations than the
CTT treatment based on a superposition of two Bowen-York solutions. Indeed, except
when they are very close and about to merge, the orbits of binary black holes evolve
very slowly, so that it is a very good approximation to consider that the system is in
quasi-equilibrium. XCTS takes this fully into account, while CTT relies on a technical
simplification (Bowen-York analytical solution of the momentum constraint), with no
direct relation to the quasi-equilibrium state.

A detailed comparison of CTT and XCTS for a single spinning or boosted black
hole has been performed by Laguna [68].

6. Initial data for binary systems

A major topic of contemporary numerical relativity is the computation of the merger
of a binary system of black holes [24] or neutron stars [84], for such systems are
among the most promising sources of gravitational radiation for the interferometric
detectors either groundbased (LIGO, VIRGO, GEO600, TAMA) or in space (LISA).
The problem of preparing initial data for these systems has therefore received a lot of
attention in the past decade.

6.1. Helical symmetry

Due to the gravitational-radiation reaction, a relativistic binary system has an inspiral
motion, leading to the merger of the two components. However, when the two bodies
are sufficiently far apart, one may approximate the spiraling orbits by closed ones.
Moreover, it is well known that gravitational radiation circularizes the orbits very
efficiently, at least for comparable mass systems [18]. We may then consider that the
motion is described by a sequence of closed circular orbits.
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Figure 5. Action of the helical symmetry group, with Killing vector `. χτ (P )
is the displacement of the point P by the member of the symmetry group of
parameter τ . N and β are respectively the lapse function and the shift vector
associated with coordinates adapted to the symmetry, i.e. coordinates (t, xi) such
that ∂t = `.

The geometrical translation of this physical assumption is that the spacetime
(M, g) is endowed with some symmetry, called helical symmetry. Indeed exactly
circular orbits imply the existence of a one-parameter symmetry group such that the
associated Killing vector ` obeys the following properties [46]: (i) ` is timelike near
the system, (ii) far from it, ` is spacelike but there exists a smaller number T > 0 such
that the separation between any point P and its image χT (P ) under the symmetry
group is timelike (cf. Fig. 5). ` is called a helical Killing vector, its field lines in a
spacetime diagram being helices (cf. Fig. 5).

Helical symmetry is exact in theories of gravity where gravitational radiation does
not exist, namely:

• in Newtonian gravity,

• in post-Newtonian gravity, up to the second order,

• in the Isenberg-Wilson-Mathews (IWM) approximation to general relativity,
based on the assumptions γ̃ = f and K = 0 [61, 102].

Moreover helical symmetry can be exact in full general relativity for a non-
axisymmetric system (such as a binary) with standing gravitational waves [44]. But
notice that a spacetime with helical symmetry and standing gravitational waves cannot
be asymptotically flat [48].

To treat helically symmetric spacetimes, it is natural to choose coordinates (t, xi)
that are adapted to the symmetry, i.e. such that

∂t = `. (109)

Then all the fields are independent of the coordinate t. In particular,

˙̃γ
ij

= 0 and K̇ = 0. (110)
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If we employ the XCTS formalism to compute initial data, we therefore get some

definite prescription for the free data ˙̃γ
ij

and K̇. On the contrary, the requirements
(110) do not have any immediate translation in the CTT formalism.

Remark : Helical symmetry can also be useful to treat binary black holes outside the
scope of the 3+1 formalism, as shown by Klein [67], who developed a quotient
space formalism to reduce the problem to a three dimensional SL(2, R)/SO(1, 1)
sigma model.

Taking into account (110) and choosing maximal slicing (K = 0), the XCTS
system (88)-(90) becomes

D̃iD̃
iΨ − R̃

8
Ψ +

1

8
ÂijÂ

ij Ψ−7 + 2πẼΨ−3 = 0 (111)

D̃j

(

1

Ñ
(L̃β)ij

)

− 16πp̃i = 0 (112)

D̃iD̃
i(ÑΨ7) − (ÑΨ7)

[

R̃

8
+

7

8
ÂijÂ

ijΨ−8 + 2π(Ẽ + 2S̃)Ψ−4

]

= 0, (113)

where [cf. Eq. (79)]

Âij =
1

2Ñ
(L̃β)ij . (114)

6.2. Helical symmetry and IWM approximation

If we choose, as part of the free data, the conformal metric to be flat,

γ̃ij = fij , (115)

then the helically symmetric XCTS system (111)-(113) reduces to

∆Ψ +
1

8
ÂijÂ

ij Ψ−7 + 2πẼΨ−3 = 0 (116)

∆βi +
1

3
DiDjβ

j − (Lβ)ijDj ln Ñ = 16πÑp̃i (117)

∆(ÑΨ7) − (ÑΨ7)

[

7

8
ÂijÂ

ijΨ−8 + 2π(Ẽ + 2S̃)Ψ−4

]

= 0, (118)

where

Âij =
1

2Ñ
(Lβ)ij (119)

and D is the connection associated with the flat metric f , ∆ := DiDi is the flat
Laplacian [Eq. (46)], and (Lβ)ij := Diβj +Djβi− 2

3Dkβk f ij [Eq. (15) with D̃i = Di].
We remark that the system (116)-(118) is identical to the system defining

the Isenberg-Wilson-Mathews approximation to general relativity [61, 102] (see e.g.
Sec. 6.6 of Ref. [51]). This means that, within helical symmetry, the XCTS system
with the choice K = 0 and γ̃ = f is equivalent to the IWM system.

Remark : Contrary to IWM, XCTS is not some approximation to general relativity:
it provides exact initial data. The only thing that may be questioned is the
astrophysical relevance of the XCTS data with γ̃ = f .
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6.3. Initial data for orbiting binary black holes

The concept of helical symmetry for generating orbiting binary black hole initial data
has been introduced in 2002 by Gourgoulhon, Grandclément and Bonazzola [52, 57].
The system of equations that these authors have derived is equivalent to the XCTS
system with γ̃ = f , their work being previous to the formulation of the XCTS method
by Pfeiffer and York (2003) [80]. Since then other groups have combined XCTS with
helical symmetry to compute binary black hole initial data [38, 1, 2, 31]. Since all
these studies are using a flat conformal metric [choice (115)], the PDE system to be
solved is (116)-(118), with the additional simplification Ẽ = 0 and p̃i = 0 (vacuum).
The initial data manifold Σ0 is chosen to be R

3 minus two balls:

Σ0 = R
3\(B1 ∪ B2). (120)

In addition to the asymptotic flatness conditions, some boundary conditions must be
provided on the surfaces S1 and S2 of B1 and B2. One choose boundary conditions
corresponding to a non-expanding horizon, since this concept characterizes black holes
in equilibrium. We shall not detail these boundary conditions here; they can be found
in Refs. [38, 40, 41, 54, 65]. The condition of non-expanding horizon provides 3
among the 5 required boundary conditions [for the 5 components (Ψ, Ñ , βi)]. The two
remaining boundary conditions are given by (i) the choice of the foliation (choice of
the value of N at S1 and S2) and (ii) the choice of the rotation state of each black
hole (“individual spin”), as explained in Ref. [31].

Numerical codes for solving the above system have been constructed by

• Grandclément, Gourgoulhon and Bonazzola (2002) [57] for corotating binary
black holes;

• Cook, Pfeiffer, Caudill and Grigsby (2004, 2006) [38, 31] for corotating and
irrotational binary black holes;

• Ansorg (2005, 2007) [1, 2] for corotating binary black holes.

Detailed comparisons with post-Newtonian initial data (either from the standard post-
Newtonian formalism [17] or from the Effective One-Body approach [23, 42]) have
revealed a very good agreement, as shown in Refs. [43, 31].

An alternative to (120) for the initial data manifold would be to consider the
twice-punctured R

3:

Σ0 = R
3\{O1, O2}, (121)

where O1 and O2 are two points of R
3. This would constitute some extension to the

two bodies case of the punctured initial data discussed in Sec. 5.3. However, as shown
by Hannam, Evans, Cook and Baumgarte in 2003 [60], it is not possible to find a
solution of the helically symmetric XCTS system with a regular lapse in this case‖.
For this reason, initial data based on the puncture manifold (121) are computed within
the CTT framework discussed in Sec. 3. As already mentioned, there is no natural
way to implement helical symmetry in this framework. One instead selects the free
data Âij

TT to vanish identically, as in the single black hole case treated in Secs. 4.1 and
4.3. Then

Âij = (L̃X)ij . (122)

‖ see however Ref. [59] for some attempt to circumvent this
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The vector X must obey Eq. (45), which arises from the momentum constraint. Since
this equation is linear, one may choose for X a linear superposition of two Bowen-York
solutions (Sec. 4.3):

X = X(P (1),S(1)) + X(P (2),S(2)), (123)

where X(P (a),S(a)) (a = 1, 2) is the Bowen-York solution (71) centered on Oa. This
method has been first implemented by Baumgarte in 2000 [11]. It has been since then
used by Baker, Campanelli, Lousto and Takashi (2002) [5] and Ansorg, Brügmann and
Tichy (2004) [3]. The initial data hence obtained are closed from helically symmetric
XCTS initial data at large separation but deviate significantly from them, as well
as from post-Newtonian initial data, when the two black holes are very close. This
means that the Bowen-York extrinsic curvature is bad for close binary systems in
quasi-equilibrium (see discussion in Ref. [43]).

Remark : Despite of this, CTT Bowen-York configurations have been used as initial
data for the recent binary black hole inspiral and merger computations by Baker
et al. [6, 7, 99] and Campanelli et al. [25, 26, 27, 28]. Fortunately, these initial
data had a relative large separation, so that they differed only slightly from the
helically symmetric XCTS ones.

Instead of choosing somewhat arbitrarily the free data of the CTT and XCTS
methods, notably setting γ̃ = f , one may deduce them from post-Newtonian results.
This has been done for the binary black hole problem by Tichy, Brügmann, Campanelli
and Diener (2003) [94], who have used the CTT method with the free data (γ̃ij , Â

ij
TT)

given by the second order post-Newtonian (2PN) metric. This work has been improved
recently by Kelly, Tichy, Campanelli and Whiting (2007) [66]. In the same spirit,
Nissanke (2006) [75] has provided 2PN free data for both the CTT and XCTS methods.

6.4. Initial data for orbiting binary neutron stars

For computing initial data corresponding to orbiting binary neutron stars, one must
solve equations for the fluid motion in addition to the Einstein constraints. Basically
this amounts to solving ∇νT µν = 0 in the context of helical symmetry. One can then
show that a first integral of motion exists in two cases: (i) the stars are corotating,
i.e. the fluid 4-velocity is colinear to the helical Killing vector (rigid motion), (ii) the
stars are irrotational, i.e. the fluid vorticity vanishes. The most straightforward way
to get the first integral of motion is by means of the Carter-Lichnerowicz formulation
of relativistic hydrodynamics, as shown in Sec. 7 of Ref. [50]. Other derivations have
been obtained in 1998 by Teukolsky [93] and Shibata [83].

From the astrophysical point of view, the irrotational motion is much more
interesting than the corotating one, because the viscosity of neutron star matter is
far too low to ensure the synchronization of the stellar spins with the orbital motion.
On the other side, the irrotational state is a very good approximation for neutron
stars that are not millisecond rotators. Indeed, for these stars the spin frequency is
much lower than the orbital frequency at the late stages of the inspiral and thus can
be neglected.

The first initial data for binary neutron stars on circular orbits have been
computed by Baumgarte, Cook, Scheel, Shapiro and Teukolsky in 1997 [12, 13] in
the corotating case, and by Bonazzola, Gourgoulhon and Marck in 1999 [19] in the
irrotational case. These results were based on a polytropic equation of state. Since
then configurations in the irrotational regime have been obtained
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• for a polytropic equation of state [73, 96, 97, 53, 90, 91] (the configurations
obtained in Ref. [91] have been used as initial data by Shibata [84] to compute
the merger of binary neutron stars);

• for nuclear matter equations of state issued from recent nuclear physics
computations [16, 77];

• for strange quark matter [78, 72].

All these computation are based on a flat conformal metric [choice (115)], by
solving the helically symmetric XCTS system (116)-(118), supplemented by an elliptic
equation for the velocity potential. Only very recently, configurations based on a non
flat conformal metric have been obtained by Uryu, Limousin, Friedman, Gourgoulhon
and Shibata [98]. The conformal metric is then deduced from a waveless approximation
developed by Shibata, Uryu and Friedman [85] and which goes beyond the IWM
approximation.

6.5. Initial data for black hole - neutron star binaries

Let us mention briefly that initial data for a mixed binary system, i.e. a system
composed of a black hole and a neutron star, have been obtained very recently by
Grandclément [55] and Taniguchi, Baumgarte, Faber and Shapiro [88, 89]. Codes
aiming at computing such systems have also been presented by Ansorg [2] and Tsokaros
and Uryu [95].
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[14] T.W. Baumgarte, N. Ó Murchadha, and H.P. Pfeiffer : Einstein constraints: Uniqueness and
non-uniqueness in the conformal thin sandwich approach, Phys. Rev. D 75, 044009 (2007).

[15] R. Beig and W. Krammer : Bowen-York tensors, Class. Quantum Grav. 21, S73 (2004).
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