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Abstract. The starting point of this work was an intriguing similarity between the
behavior of fields near a degenerate horizon and near the infinity of an asymptotically flat
spacetime, as revealed by the scattering theory for Dirac fields in the “exterior” region
of the extreme Kerr—de Sitter black hole, developed by Borthwick. However, in that
situation, the comparison was somewhat clouded by some of the analytical techniques
used in intermediate steps of the proof. The aim of the present work is to clarify the
comparison further by studying instead the peeling behavior of solutions to the wave
equation at an extremal horizon. We focus first on the extreme Reissner—Nordstrom
black hole, for which the Couch—Torrence inversion (a global conformal isometry that
exchanges the horizon and infinity) makes the analogy explicit. Then, we explore more
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general spherically symmetric situations using the Couch—Torrence inversion outside of
its natural context.

Keywords: Peeling; wave equation; extremal horizons; extreme Reissner—Nordstrom
metric; null infinity; conformal compactification.
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1. Introduction

There is a similarity in the behavior of a field when it propagates near a degenerate
horizon and when it propagates near infinity. Borthwick [4] has recently studied the
scattering of Dirac fields by an extremal Kerr—de Sitter black hole; the scattering
theory is obtained via spectral methods using Mourre theory, inferring from it prop-
agation estimates that serve as weak versions of the Huygens principle and allow
to compare the physical dynamics with a succession of simplified dynamics. Near
the degenerate horizon of the extremal black hole, the last and simplest comparison
dynamics is the radial part of the Dirac Hamiltonian on Minkowski spacetime. This
indicates an analogy, but the presence of the other comparison dynamics, one of
which involves a Dollard-type phase modification, makes the link rather obscure.
The main purpose of this paper is to clarify this analogy, from the point of view of
the peeling behavior instead of a scattering theory.

The peeling is a type of asymptotic behavior at infinity along outgoing null
geodesics, satisfied by zero rest-mass fields on Minkowski spacetime, that was dis-
covered by Sachs in the early 1960s [I5]. The original description by Sachs states
that an outgoing zero rest-mass field of spin s, along a null geodesic going out to
infinity, can be expanded in powers of 1/r and the part of the field falling-off like
r~%. 1 < k < 2s, has 25 — k of its principal null directions aligned along the null
geodesic. In 1965, Penrose [I3] proved that this is equivalent to a much simpler
property, the continuity at null infinity of the rescaled field. In 2009, Mason and
Nicolas [IT] studied the peeling for scalar fields on the Schwarzschild spacetime.
They redefined the notion of peeling using a characterization of regularity at any
order at null infinity in terms of Sobolev-type spaces, obtained as energy fluxes for a
special observer: the “Morawetz vector field”. This is in the same spirit as Penrose’s
version of the original definition, but is more amenable to analysis since such func-
tion spaces are naturally preserved under the evolution for hyperbolic equations,
unlike C* spaces. They provided a complete description of the classes of initial data
on a Cauchy hypersurface that give rise to a peeling at any given order at future null
infinity. Comparing the construction to the analogous one on Minkowski spacetime,
it turned out that these classes are the same in both spacetimes, in terms of regular-
ity and decay at infinity. This means that in spite of the different asymptotics of the
two metrics, the conditions for peeling are not more stringent on the Schwarzschild
metric than on Minkowski spacetime; they are identical. The original Morawetz
vector field is one of the conformal Killing vectors of Minkowski spacetime. It was
discovered by Morawetz [12] and used to establish decay properties for solutions
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to the wave equation on flat spacetime. The vector field used in [I1] is a natural
adaptation of this vector field to the Schwarzschild metric. The first occurrence of
such a modified (and slightly different) Morawetz vector field was in a paper by
Inglese and Nicolo [8].

A typical example of a degenerate horizon can be found in the extreme Reissner—
Nordstrém spacetime. In this case, there exists a remarkable conformal isometry of
the exterior of the black hole that exchanges the horizon and infinity. This was
initially discovered by Couch and Torrence [B] and is referred to as the Couch—
Torrence inversion. A nice description of it with useful additional properties can
be found in Aretakis’s book [2] as well as in Bizon and Friedrich [3] and in Liibbe
and Kroon [I0]. This inversion makes the above-mentioned analogy of behavior
very precise on the extreme Reissner—Nordstrom geometry. A detailed analysis of
the asymptotic behavior of solutions to the wave equation on an extreme Reissner—
Nordstrém spacetime, making use of the Couch—Torrence inversion, was obtained by
Angelopoulos et al. [1] adopting the point of view of scattering theory. Our present
approach is centered instead on peeling properties. First, extending the results of
[11] to infinity of the extreme Reissner—Nordstrom spacetime, we then translate
them at the extreme horizon via the Couch—Torrence inversion. The peeling at the
horizon is analogous to the peeling at the conformally rescaled infinity, modulo
a finite conformal rescaling of the horizon. This entails that massive fields can
also be shown to exhibit a complete peeling at the horizon. Such precise global
structures as the Couch—Torrence inversion do not seem to exist for other extremal
black hole spacetimes in four dimensions. Nevertheless, one may ask if they can be
localized near extremal horizons in order to provide an alternative description of
their neighborhoods in a useful way. We provide here a first example of this type of
construction and use it to study the peeling near a class of spherically symmetric
degenerate horizons.

Our paper is organized as follows. Section presents the conformal
d’Alembertian, the extreme Reissner—Nordstrom spacetime and its conformal com-
pactification. In Sec. Bl we describe the Couch—Torrence inversion on the extreme
Reissner—Nordstrom metric and observe something that seems to have been over-
looked until now in the literature: there exist many choices of conformal rescalings of
the extreme Reissner—Nordstrom metric that make the Couch—Torrence inversion an
isometry (and not just a conformal isometry), among which the simplest and most
useful rescaling associated with the conformal factor 2 = 1/r. Other examples are
given as well as the condition on the conformal factor for this to be true. Section Hlis
devoted to the peeling at infinity on extreme Reissner—Nordstrém spacetime and its
translation at the horizon, including for massive fields, using the Couch—Torrence
inversion. Finally, in Sec. 5] we consider a class of spherically symmetric degenerate
horizons and apply the Couch—Torrence inversion to describe them as conformally
rescaled infinities. We then study the peeling of scalar fields at these infinities and
translate back to the horizons.
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Notations: A < B means that there is a constant C > 0 such that A < CB,
A ~ B means that there are constants ¢, C' > 0 such that: ¢cB < A < CB. Given a
smooth differentiable manifold M, we denote by C§°(M) the space of smooth and
compactly supported functions on M. Throughout the paper, we use the abstract
index formalism of Penrose and Rindler [14].

Notebooks: Some computations performed in this paper are detailed in the fol-
lowing publicly available SageMath [16] notebooks:

e Sections 2 to [
https://cocalc.com/share/public_paths/
£05d583cb13735d5£9e8bd292d34b24633738129

e Section [
https://cocalc.com/share/public_paths/
795aec91a03a81ed3ce0154e6fe9bafb7b69845¢c

2. Geometrical Background
2.1. The conformal d’Alembertian and wave equation

Let (M,c) be a conformal manifold of dimension n and suppose that ¢ = [g] is
the conformal class of a Lorentzian metric g. Call £[w] the module of conformal
densities (see [0, Sec. 2.4]) on M of weight w € R. Conformal densities of weight
—n can be identified, given a choice of g € ¢, with usual 1-densities via the map:

o
o Vol,’

where Vol is the canonical volume density of g. For every g € c, there is a canonical

conformal density® of weight 1 that we denote by o, and that is parallel for the Levi-

Civita connection of g. Observe furthermore that g = gog is conformally invariant;

it is referred to as the conformal metric (it has conformal weight 2). It is well known

that the operator, expressed in terms of an arbitrary metric g € c:

1
e = gabvavb + EgabRab

is conformally invariant acting from £[—1] into £[—3]. In the above equation, V
and R,y are the Levi-Civita connection and Ricci tensor Ry = R, ., of the chosen
metric g, respectively, and conformal invariance is to be understood to mean that
the result of the above computation does not depend on the choice of g € ¢ used to

calculate it. We will refer to it as the conformal d’Alembertian and the equation
Ocp =0, ¢€&[-1], (2.1)

as the conformal wave equation.

2Roughly the }nth power of the image of Voly under the above map.
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In practice, this shall be exploited as follows. Let g € ¢ be given and suppose
that ¢ is a scalar field that satisfies

1
Oy¢ + 9" Ravd = 0, (2.2)

with 0, = ¢%V,V,, then the conformal density ¢ = (bag_l satisfies e = 0.
Introducing, § = Q%¢g, we see that ¢ = Q_1¢0§1 hence, qAS = Q¢ satisfies

N DU
Dg¢ + Eg bRab¢ =0.

For us g will be the physical metric and ¢ the compactified metric.

2.2. Extremal Reissner—Nordstrom metric
and its conformal compactification

Let us recall some basic facts about the extremal Reissner—Nordstrom metric. The
standard expression for the metric in Schwarzschild-like coordinates, valid for either
(t,r,w) ER x (0, M) x S? =1Int or (t,r,w) € R x (M, +00) x S? = Ext, is

2
dr? — r?dw?, F(r)z(r_M) ,

r

g = F(r)dt? —

1
F(r)
where dw? is the standard round metric on the unit 2-sphere.

Introduce now Regge—Wheeler’s tortoise type coordinate r,, defined by
dr, 1 M? 2M

Pl T Bk Rl e vl v (2.3)

re =0&1r=2M, (2.4)

which is easily integrated to yield

(2.5)

M M?
r*:r—M+2Mlog(TM )— —.
p—

We have chosen r,. so that it vanishes on the photon sphere, located at r = 2M.
The metric g can be extended analytically across the coordinate singularity
{r = M} in two different ways:

(1) In outgoing Eddington—Finkelstein coordinates, defined by
U=1t—"141 W, (2.6)
leading to £y = R, x R} x S?, endowed with the metric g;:
g1 = F(r)du? + 2dudr — r*dw?,

see Fig. [la). The past event horizon s~ is the hypersurface r = M of E.
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i S g+t
N | Ext LLL“IntA A Ext . A
7 Int b— + 2 D D —
Nl A S \\0 pn S
R g~ T
(a) By (b) E_

Fig. 1. Schematic representation of £ and E_, the horizontal and vertical lines in each block
represent future-oriented principal null geodesics. The terminology future/past horizon is to be
understood with respect to the exterior block.

(2) In ingoing Eddington-Finkelstein coordinates, defined by
v=t+r.,T,W, (2.7)
leading to E_ = R, x R% x 5%, equipped with
go = F(r)dv?® — 2dvdr — r’dw?,
see Fig. Mb). The future event horizon " is the hypersurface r = M of F_.

The time-orientation of both spaces is determined by % for large r. The con-
struction is based on the two distinguished null directions — the principal null di-
rections — defined in Schwarzschild coordinates by

1 0 0 1 0 0

" =Fma o T Fmor or (28)
In both E; and E_, Int and Ext are easily identified as open sets and Int UExt
is dense. In E, the coordinate lines of r are the integral curves of n, and are
(complete) geodesics; these are referred to as the outgoing principal null geodesics.
In E, ingoing principal null geodesics are defined as geodesic reparametrizations
of F(r)n_; they are however (future) incomplete. The situation is reversed in E_:
the coordinate lines of r (oriented for decreasing r) are integral curves of n_ and
are complete geodesics referred to as the ingoing principal null geodesics. Outgoing

principal null geodesics are the (past)-incomplete geodesic reparametrizations of
F(r)ny. Gluing E; and E_ together according to the tiling represented in Fig. 2
leads to a maximal analytical extension of the extreme Reissner—Nordstrém metric.
In any of the Ext blocks there is a past and future horizon, however they are not
joined by a crossing sphere (since the geodesics on the horizons are complete); there
is instead an “internal infinity”, which we shall denote by 4'.

A set of variables that will be useful to us for studying peeling properties are
the outgoing Eddington—Finkelstein coordinates with an inversion in r:

1

R=- u=t—r, w. (2.9)
r
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Fig. 2. Tiling constructed from E and E_ that completes the ingoing and outgoing principal null
geodesics.

These are also adapted to the 1/r-compactification of the exterior region equipped
with the metric g given by

G = R%’9 = R*(1 — MR)?du® — 2dudR — dw?. (2.10)

The future null infinity .#* is then the hypersurface {R = 0}. Note that it is a
degenerate Killing horizon with respect to the Killing vector 9/0u of §. Similarly,
the ingoing Eddington—Finkelstein coordinates with an inversion in 7:

1
R=—-, v=t+r, w, (2.11)
r

used to express g, allow to construct past null infinity 4~ as the hypersurface
{R = 0}. We use the standard notation " for spacelike infinity.

3. The Couch—Torrence Inversion

The original construction by Couch and Torrence [5], was a spatial inversion for
a modified radial coordinate on the extreme Reissner—Nordstrom spacetime that
turned out to be a global conformal isometry of the exterior region Ext. Introducing
a radial coordinate centered on the horizon in Ext:
r—M

M

y:
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the metric g can be expressed as

2 2
Y 2 2 (1 +y) 2 2 27 2
= —dt* — M"——dy* — M*“(1 + dw”.

In these coordinates the Couch—Torrence inversion is the map @ : (¢, y,w) —
(t, %, w). The pullback of the metric g by ® is given by

2 2
1 1 dy? 1 1
g = ———di? — M%y> (— + 1) S Ve (— + 1) dw? = =g,

v+ 5)? y y y y
which shows that ® is a conformal isometry of the exterior region.

Remark 3.1. In their original paper [5], Couch and Torrence work with the coor-

dinate x = —%.

In terms of the more usual coordinate r, the transformation can be expressed as

B(t,1,w) = (t, ﬂ,w) (3.1)

r—M
and
M?
d'g= ——g.
9= —wmp2?

The Couch—Torrence inversion is an involution that exchanges the horizon {r = M}
and infinity {R = 0} in Ext and fixes every point on the photon sphere {r = 2M}.

Things are in fact much simpler when expressed in terms of the Regge—Wheeler
variable r, [Eq. (Z3)], which, we recall, was chosen centered on the photon sphere.

Indeed:
rM M? M
T*<TM)—TM+2MlOg<m)—(T—M)

- <rM+2M10g (TMM) - r]fw)
= —r(r). (3.2)

So the Couch—Torrence inversion can be simply stated as r, — —r,.
Something that does not seem to have been noticed in the literature is that
the Couch—Torrence inversion is in fact an isometry (and not just a conformal

isometry) of the conformally compactified extreme Reissner—Nordstrom exterior
region (Ext, §) with conformal factor = 1/r. This can be seen directly, observing
that

(r—M)* M 7 (3.3)

O 5 = *(N%g) = (No d)?P*g = =
g () = (o @)@y = RSVl

Remark 3.2. One may wonder if Q = % is the only conformal factor €2 for which
the Couch—Torrence inversion ® is an isometry. It is not, and those conformal factors
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that have this property have the general form

Q0= M’ (3.4)

r
where f is an arbitrary (positive) function that is even in r,. This follows directly
from the intermediate steps in Eq. (33), from which we can see that {2 must satisfy
rM . rM
r—M r—M’

w) =rQ(t,r,w), (3.5)

which translates to the fact that the scalar field 72 is invariant under the Couch-
Torrence inversion, i.e. is an even function in 7. Defining © = r/M and A\(z) =
xQ(t, xM,w), Eq. B35) becomes

A (x - 1) = \x). (3.6)

There are as many conformal factors (2 making ® an isometry as there are smooth

positive solutions of this equation. The case @ = 1/r corresponds to the trivial

solution \(z) = const = M ! of Eq. (B.6). A whole family of solutions of Eq. ([B.6)) is
ai(z — 1) + axz?

)\(I) = b1<$ — 1) n b2$2 s (al,CLQ,bl,bQ) S R4, (al,a2) 7& (0,0), (bl,bg) 7é (0,0)

For instance, for (ai,as,b1,b2) = (0,1,1,0), we get

_ Mr
Cr—M’
while (a1, aq,b1,b2) = (1,0,0,1) yields
Q: M2(7‘3— M)
T

We also address the question of how one could interpret the Couch—Torrence
inversion on Int — the interior of the black hole. It is apparent that it is not an
endomorphism of Int, given that »M/(r — M) < 0 for 0 < r < M, but we can
instead view the coordinate expression ([B.I)) as defining a map from Int into a
manifold N' = R, x (—00,0), x S? equipped with the metric

gy = F(r)dv? + 2dvdr — r2dw?.

Using the more appropriate outgoing Eddington—Finkelstein coordinates on Int, this
map can be expressed as ® : (Int,g) = (N, gn), (u,7,w) — (u+ 2r*(r), 224 w).
Furthermore, one has

x M
ARG

® is therefore a conformal isometry between Int and N. Performing the change
of coordinate v = —r in N, we can identify (N, gn) with an extreme Reissner—
Nordstrom black-hole with negative mass —M and charge Q = =M (expressed in
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ingoing Eddington-Finkelstein coordinates (2.7)). In terms of 7/, ®~! : ' — Int,
(t, 1", w) — (t, %,w). As before, the conformal isometry becomes an isometry if
both g and ga are conformally rescaled by 2 = %

These properties of the Couch—Torrence inversion, are summarized in the fol-

lowing theorem.

Theorem 3.3. The Couch—Torrence inversion [B.1) is an isometry of the com-
pactified exterior of the extreme Reissner—Nordstrém spacetime Ext with conformal
factor R=1/r, i.e.
. |
O*g =g, withg= 29

It fizes the photon sphere and exchanges the future event horizon J+ and the
future null infinity #*, as well as the past event horizon £~ and the past null
infinity %~ .

Interpreting the coordinate expression of the Couch—Torrence inversion as a dif-
feomorphism from the interior of the black hole into another spacetime leads to
an isometry from (Int,§) onto a full negative mass extreme Reissner—Nordstrom
spacetime with mass —M and charge Q = £M, whose metric has been conformally
rescaled by 1/r%. The curvature singularities of both spacetimes are each other’s
images under ® and the extreme Reissner—Nordstrom horizon corresponds to the
infinity of the negative mass extreme Reissner—Nordstrom spacetime.

Corollary 3.4. As a consequence, both the d’Alembertian Oy and the scalar curva-
ture Scaly outside the extreme Reissner—Nordstrém black hole, are invariant under
the Couch—Torrence inversion (this can be easily checked by direct calculations).
Therefore, the conformal d’Alembertian

1
O + EScalg
18 invariant under the Couch—Torrence inversion.

It is natural to ask if there could be an isometry of the whole domain of outer
communication of a black hole with a non-degenerate horizon, that would exchange
the horizon and conformal infinity. There are two arguments against this. First, in
the stationary case, it is a general feature of stationary asymptotically flat space-
times that the future null infinity .#* of the 1/r-compactification is a degenerate
Killing horizon with respect to the vector field §/9u of the outgoing Eddington—
Finkelstein coordinates, which is a Killing vector of the conformal metric § = Q2%g
as soon as {2 is a function of r only. On the other side, the future event horizon J#*
is a Killing horizon with respect to the vector field 9/9v of the ingoing Eddington—
Finkelstein coordinates, which is a Killing vector of both g and g for Q = Q(r). It is
easy to see that the surface gravity x of £ is conformally invariant. If ® were to be

PThis property was in fact already observed in [I0].



Peeling at extreme black hole horizons 39

an isometry mapping S to .# T, it could not map a non-degenerate Killing horizon
(k # 0) to a degenerate one (x = 0); hence 1 has to be degenerate. Second and
more generally, spacelike infinity is a conformal singularity unlike the bifurcation
sphere. More precisely, null geodesics along the future or past horizons will reach
the bifurcation sphere with finite affine parameters, in contrast, null geodesics on
#* are complete and these would be exchanged by the transformation.

4. Peeling at the Extreme Reissner—Nordstréom Horizon
Using the Couch—Torrence Inversion

Since the Couch-Torrence inversion on Ext is an isometry that exchanges the hori-
zon and conformal infinity {R = 0}, knowledge about either of them will translate
to information about the other. Our first goal is to establish a peeling property
at the future null infinity .#*. This feature has been studied at infinity in other
spacetimes and following [I1], we will show that the result subsists in Reissner—
Nordstréom spacetime (by simply observing that the estimates can be performed
as in the Schwarzschild case). We will then translate this into a peeling property
at the degenerate horizon 7. We explain the essential steps of the proof for the
convenience of the reader.

4.1. Peeling at infinity on the extreme
Reissner—Nordstrom metric

In this section, we extend the work of [II] to the extreme Reissner—Nordstrom
spacetime. The goal is to characterize the regularity at .# T of the solution to the
conformal wave equation in terms of the regularity and decay of the initial data.
Once the regularity is known in an arbitrarily small neighborhood of i°, standard
results allow to propagate it in a complete neighborhood of #* (in fact to the
full domain E/b?c) provided the initial data have the same degree of smoothness
(see, for example, Friedrich [7]). In order to control the regularity within a small
neighborhood of i°, we prove energy estimates both ways and at all orders between
the part of .# T and the part of the {¢ = 0} Cauchy hypersurface that are contained
in this neighborhood. The energy current is associated with a Morawetz vector
field adapted to the geometry and the various levels of regularity are obtained by
considering the energy of successive partial derivatives of the field. This energy
current satisfies an approximate conservation law as we approach i®. The size of
the neighborhood of i® is adapted so as to allow a control of the error terms by
the energy on the slices of a well-chosen foliation; the estimates then follow by
Gronwall’s inequality. All the estimates are established for solutions associated with
smooth and compactly supported data. Given the linear nature of the equation,
their validity then naturally extends by density to the function spaces constructed
by completing the space of smooth compactly supported functions in the norms
defined by the energies.
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We work in the exterior block Ext equipped with the unphysical metric § = R%g
given by (2I0) expressed in outgoing Eddington—Finkelstein coordinates with an
inversion in 7:

1
R=—-, u=t—r, w.
r

The inverse metric is
§g' = —20,0r — R*(1 — MR)?*0% — 0.
The scalar curvature of § has the form
Scaly = 12MR(MR — 1) (4.1)
and the induced 4-volume form reads
d*Vol = du A dR A d2w. (4.2)

We remark that this specifies our global choice of orientation to be that of the basis
(Ous Or, g, D). X

Let us denote by V the Levi-Civita connection induced by §. Since the scalar
curvature of the physical metric vanishes, Scal, = 0, it follows from (2.2) that a
scalar field v satisfies the wave equation for g outside the black hole

Oyt =0 (4.3)
if and only if ¢ := R~ satisfies
Oz¢ + 2MR(MR — 1)¢ = 0, (4.4)
where the d’Alembertian for g is given by
o f 0 af
Osf = —2 — — | R*(1 - MR)*2% | — Ag=f. 4.
i =2 o (R0 MRP L) - A (@5)

Study of the peeling commences with the choice of an appropriate energy cur-
rent. As in Minkowski and Schwarzschild spacetimes, our choice will be associated
with the family of observers given by the Morawetz vector field

K =429, —2(14+uR)0r (4.6)

obtained, as in the Schwarzschild case, by transposition of the formula for the
Morawetz field in Minkowski space time, expressed in outgoing light-cone coordi-
nates. It satisfies

(K, K) = u*(4 + 4Ru + R*u*(1 — MR)?). (4.7)

Since 4 + 4Ru + R?*u? = (2 + Ru)?, ([@7) is positive in a neighborhood of i® (see
Lemma [£3). This and the expression (£.0) entail that K is timelike and future-
oriented in a neighborhood of i°. It is not a Killing (or even conformal Killing)
vector field of g, as can be seen from its Killing form

V(o Kpydz®da® = 2MR*(Ru(1 — MR) — 2MR + 3)du @ du. (4.8)
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Consider now the stress-energy tensor for the free wave equation [z = 0 on the
compactified spacetime

T(6) = Vet — 590, Vo)

and define
Ja() = K"Tin(0). (4.9)
Our analysis will concentrate on a neighborhood of i® defined for ug < —1,
Que ={t >0} N {u < wup}, (4.10)

that we foliate with the hypersurfaces
Howu :={u=—sre, u<up}, 0<s<1, (4.11)

where Hg u, is considered as the limit of the H; ., hypersurfaces as s — 0 and is in
fact

Houo =7 N{u<up} = 7,

Having a regular slicing between Z;f and M., = {t = 0} N {u < ug} gives a
convenient way of controlling the energies on either hypersurface in terms of the
other via Gronwall estimates. Another important hypersurface is part of the future
boundary of §,,:

Suo ={t>0rN{u=1up}. (4.12)

We orient each of the H; ,,, using the future pointing normal, i.e. in the direction
of decreasing s. The energy flux through any slice H; ,, is given by

Dp0¢ D¢\ 2
_ 201 2 20QUQ 2
_ /]Oom[xsz (R (1= MRPPSEZE 1y ( )

ou
+ M((RU)QH — MR)? 4+ 2(2 — s)Ru+2(2 — s))
. (%) i (Ru (B MR 1) Ve ¢|2)du N

dpdo 9o\’
_ 201 2, 2P YUY 2 (Y¥
_ /]Oom[xsz (R (1= MRPPSEZE 1y <8u)

N w%((RMDQ(l — MR)* —2(2 = s)RJul +2(2 - 5))

2
x <%) + <R|u| <1 + M) + 1) |v52¢|2)dmd2w.

(4.14)
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where *x is the Hodge dual defined on 1-forms by the identity
a A+ = gla, B)d*Vol = g*a, Byd*Vol. (4.15)

Remark 4.1. Alternatively, one can use the formula
Etug () = / Ja(¢)n® [d*Vol,
Y ]—o00,up[x S2

where 7 is a future-oriented normal vector field to H ., and [ a transverse vector
field to all Hs 4, such that g(I,n) = 1. A future-oriented normal vector field to Hs .y,
is easily obtained from

n=g Yd(u/r,)) =g <idu - iidr>

1 U
= _E(l —5)0gp — (1= MR (r.R)? Ou-

Note that on Hg u,, n reduces to —ud,, which is future oriented for u < 0, i.e. where
the foliation makes sense. It is straightforward to check that

(1 — MR)*(r,R)?

l= Or

satisfies g(I,n) = 1. In order to simplify the expressions of the two vectors fields,

we multiply n by — MRS ang g by — ot leading to
=By + (1 MR)2R2%*(1 —$)p, 1= —0n. (4.16)

We also orient S, using the future oriented normal, i.e. —0r and we have

Es. (6) = /S «J(@),

uo

- 7% /S ((4+4Ru+ (Ru)*(1 — MR)?) (%)2

+u2|Vsz¢|2)dR/\d2w, (4.17)

which is non-negative by the dominant energy condition since S, is a null hyper-
surface.

In order to derive our fundamental estimates, we will assume that ¢ is a solution
to ([@4), with smooth compactly supported initial data. We will then be able to
extend the estimates by density to the completion in the energy norm. We give a
simplified equivalent expression of the energy flux across Hs .. This is identical to
the corresponding result in the Schwarzschild geometry [I1, Lemma 4.1]. We give
the details of the proof since they will be useful when extending the results to more
general geometries in Sec.
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Proposition 4.2. Using the fact that Ru remains bounded on Hs ., one has the fol-
lowing equivalence uniformly in s € [0,1], provided u < ug < 0 and |ug| sufficiently
large:

9¢\° R (99)° 2
~ 2 R 2 )
sm,%(ab)_/]_w,uo[w <u (au) +—|u| <_8R) + |Vg20|” | du A d2w

(4.18)

The proof uses the following obvious results.

Lemma 4.3. Let € > 0, then one can find ug < 0, |ug| large enough, such that
in Qg s

I1<Rr,<l+e, O<Rlu/<l4e 1-e<(1-MR?<1.

Proof of Proposition In €,,,, we have

_ 2 o
Rr*(12 MR) 1) - (1+52)R|u| . 1 25,

1+ Rlul <

where ¢’ — 0 as ¢ — 0. The coefficient of (9r¢)? involves the expression

P(R|u|) := (R|u|)*(1 — MR)* — 2(2 — s)R|u| +2(2 — s)

multiplied by a factor that is equivalent to %% Restricting to Hs,y, for 0 < s <1
fixed, this becomes

P(Ru|) = (Rr)?s*(1 — MR)* —2(2 — 8)Rr.s + 2(2 — s)
> (1—¢)s? +2(2—5)(1—(1+¢)s)
=52 4+22-5)(1—s)—e(s® +25(2—5))
=3(s—1)2+1—e(s*+25(2—9))
>1-¢",

where ¢’ — 0 as ¢ — 0. And for s = 0, P(R|u|) = 4. The coefficient of %g—g is
R?(1 — MR)?u? and

IR | R
R2(1 _ MR)2U2 _ mlu“l _ MR)2(R|U|)3/2 < (1 +5)3/2 m|u|

Hence,

201 _ ym)2a222 99 3/ ﬁﬂ(a_qﬁf L2<%>2
R = MR v H 5R| = (L +e) <2|u| or) T2 \au) )

If we can choose A > 0 such that )‘72 < % and # < 1, this proves the proposition.

This is obviously possible since the two inequalities reduce to % <A< O
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Note that for s = 0, the equivalence is in fact an equality as can be seen

from (@I4I):
2
<u2 (%) + |v52¢|2> du A d*w. (4.19)

The main tool for obtaining our basic energy estimates is Stokes theorem
applied to

£, = [

N

d(xJ(¢)) = V@I, (¢)d*Vol.

Integrating over ,,, with ¢ € COO(E/)-x\t) supported away from i°, leads to the
fundamental energy identity

€y (0) +E5,,(0) = Eny , (0) = V@ Ja(¢)d*Vol. (4.20)

uo
Qg

Since K“ is not a Killing vector field, this is only an approximate conservation law
and the error terms are determined by

N N 1
V@ Ju(p) = VOKOT,, — 5 SealyoV ko

0¢
. o(p2as2 2
= -2(R*M RM)u d)au
+4(R*M? — RM + (R*M? — RQM)u)¢—g¢

2
—2(2R*M?* — 3R*M + (R*M?* — R*M)u) (%) . (4.21)

Provided uyp < —1 is large enough in absolute value, we have
VOJa(@)] ¢ +u(0u0)” + R*(9r0)". (4.22)

The integral on €, on the right-hand side of ([£20) can be decomposed into an
integral in s of integrals on the slices Hs_,,. This is done by choosing an appropriate
foliation chart that we describe by an identifying vector field v, transverse to all
Hs o, and such that v(s) = —1 (so that v be future oriented), for instance

(r.R)*(1 — MR)Qi B
u OR

The 4-volume measure can then be decomposed as follows:

V=

L. (4.23)

d*Vol = —ds A (1.d*Vol), (4.24)

where (1.d*Vol)

H. ., 18 @ 3-measure on H, 4, that is equivalent to

1 1
—Orud*Vol = —du A d*w. (4.25)
u Jul
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Hence,

/ @aJa(¢)d4Vo1=/ (/
Quy [0,1] Hiug

. 1
~ / / V@I, (¢)—dud?w | ds. (4.26)
[0,1] \/]—00,uq[x 52 |ul

The control of the error terms ([@22) then gives

VT, (6) le4Vol> ds

. 1
/ VI, (¢) —dud?w
]—o0,up[x S2 |u|

S / (¢* + u*(0ug)® + R2(6R¢)2)idud2w
]—o0,up[x 52

|u|
< / (6% + u?(0u0)? + R*(0r¢)?)dud’w.
]—o0,up[x 52

The Poincaré-type estimate obtained in [I1] (see Lemma 4.2 and Corollary 4.1 of
that paper) implies

/ p*dud®w < / u?(0,¢)*dud®w
]—o0,u0[x 52 ]—o0,ug[x S2

and it follows that

/ VoJu(6) mdud® S En, ., ().
]—o0,up[x S2 |u| o

This allows us to obtain estimates both ways between & e (¢) + E&s,,(¢) and
Ey g (¢) using Gronwall’s Lemma.

In order to study higher order estimates we commute derivatives into the equa-
tion, however, this requires a little more care because new terms will appear, some
of which do not vanish at infinity. This can be seen typically for the equation for
Or¢ that is obtained by commuting dr into ([@4]). The resulting equation reads

O5(0r) = [0;,0r) ¢ — 2MR(MR — 1)0rd — AM>Ré + 2M 6.

Using the expression (L3) of O;, we see that

2 2 82 2 9
[Dg,aR] = 8R(R (1 - MR) )— + aR(2R(1 - MR) )—

OR? OR
32
_ _ 2 _ 201 _ _—
= (2R(1 = MR)? = 2MR*(1 — MR)) ==
0

+ (2(1 — MR)? —2MR(1 — MR))ﬁ.
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Hence, if ¢ is a solution to (£4]), Or¢ satisfies
05 (0r6) = (2R~ MR)? ~ 2MR* (1~ MR)) = (910)
+(2(1 — MR)*> — 2MR(1 — MR))dr¢
—2MR(MR — 1)0r¢ — AM*Ré + 2M ¢. (4.27)

We can obtain an approximate conservation law for Or¢ by defining the energy
current

Ja(ﬁg(b) = KbTab(aR(b)
and calculating its divergence using Eq. (£.27)
V*Ja(0re) = VUKD T, (0r o)
. 0
+ (Vi (0r)) 2R(1 = MR)* = 2MR*(1 — MR)) == (9r¢)

+(Vi(9r9))(2(1 — MR)* — 2MR(1 — MR))dr¢
+ (Vi (0rd))(—2MR(MR — 1)0re¢ — 4AM2Re + 2M ). (4.28)

Both the terms 2(1 — MR)?0r¢ and 2M ¢ in the right-hand side of (Z27) have no
decay at infinity and the corresponding error terms in the approximate conservation
law (£28) for Or¢, once integrated on Hs ., , cannot be directly controlled by the
energy for either Or¢ or ¢. However, the geometry of our foliation is particular
since the leaves are getting closer and closer as we approach i. When we write
the 4-volume measure as the exterior product of ds and a 3-measure on Hs,,, (see
#24)) and ([425)) a factor 1/|u| appears in front of the integral on the spacelike
slices. Hence, what needs to be estimated by the energy is the integral over Hsg y,
of the error terms divided by |u|. For the fundamental estimates above, we did not
use this 1/|u| factor but now it becomes crucial. We show here how the estimate is
done for 2M ¢, whose corresponding error term is 2M gb@ KO-

.1
/ 2M PV g p—dud?w
]—o0,up[xS2 |U|

|ul
1
S / (¢2 +u?(0u0)? + —|¢||aR¢|) dudw.
]—o0,up[x 52 |U|

111 L\/E
|ul \fr*\/_ NG

= / 2M p(u? Oy — 2(1 + uR)aRqﬁ)idud?w
]—o00,up[x S2

We now observe that
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Hence,

|
/ 2M PV g p— dud?®w
]—o00,up[x S2 |U|

L
\/g ]—o0,up[x S?

and the Poincaré estimate from [I1] then gives

/ Vi ¢2Mp— L dud2e < — / (u2(8u¢)2 + 5(aRqs)?) dud?w
]—o0,up[x 52 | | \/_ 00,ug[x S? |U|

L,
>t

The term 2(1 — MR)?0r¢ is treated similarly to obtain

<¢2 +u?(9,0)* + £(3R¢)2) dud?w

Jul

Horug (0)-

. 1 1
/ Vk$2(1 — MR)*0p¢—dud’w S —=Ex, . (Ord).
]—o00,u0[x S2 $

Jul
The other error terms exhibit decay and can be controlled as was done for the
fundamental estimate. Finally, we obtain

/ VT (Or0) i’ S (€, (0) + Ent oy (Om0))
]—o0,up[x S? | | \/— 0 o
and since the function 1/4/s is integrable on (0, 1], we obtain estimates both ways
for the sum of the energies of ¢ and Or¢ between S, U fjo and H1 y,. For more
details, see [I1] since everything goes through as it does in the Schwarzschild case.
As a consequence, all the theorems on the peeling for massless scalar fields at
infinity on Schwarzschild’s spacetime obtained in [11]], extend without modification
to the extreme Reissner-Nordstrém geometry. We formulate one theorem that is in
a sense the most complete result since it involves all directional derivatives, but the
results available from [11] are more precise and detailed.

Theorem 4.4. Let (u, R,w) be the outgoing Eddington—Finkelstein coordinates of
the extreme Reissner—Nordstrom exterior Ext, ug < —1, k € N and ¢ a solution to
the conformal wave equation (&4). Then Egt (0£V%0)+Es,, (05 V% 0) < +oo for
allp,q € N, p+q < k if and only if the initial data (o, ¢1) on the spacelike slice {t =
0} is chosen in the completion of C§°([—ug, +00],, X S?) x C§°([—ug, +00],, X S?) in

the norm
1 k

where we replace ¢ by o and Oy$ by ¢1 in the expression of the energy flux &y,

> i (qugz (ii)) (4.29)

p+q<k
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and L is the operator defined by

7‘2 7‘2
“Fo “FD
L= ) ) (4.30)
T e A 2M o My
Fyoe A T (1 ) oo

In this case, we say that the solution ¢ peels at order k at infinity.

Remark 4.5. This means that for the wave equation on the extreme Reissner—
Nordstrom spacetime, the classes of physical initial data at t = 0 that ensure given
degrees of regularity of the rescaled field at £, are characterized by exactly the
same regularity and decay properties as on Minkowski spacetime.

Remark 4.6. The expression of the operator L in Theorem [£.4]is determined from
the action of
1 ré r?

Op = _m(ﬁr* +0) = —m(ar* +0;) = _F(r)

(ar* + at)

on the vector ! (¢ 9;¢),

7‘28 7‘2
8R<¢>_ CF(r) " F(r) <¢>>
8t<;5 B T2 82 . T2 a 8t<;5 ’
F(r) ™ F(r)™

where ¢ satisfies Eq. (#4). Using the aforementioned equation, the term 92¢ in
Or0i¢p can be written in terms of an operator involving only spatial derivatives
acting on ¢. Indeed, it is readily determined from Eq. (£35]) that

- F(r)
From which it can be seen that for a solution of ([@4):

r? _ r? 2M M
e e aeem S (-7

P (07 — 0%) — Age. (4.31)

This leads to the expression for L.

4.2. Peeling at the horizon for the extreme
Reissner—Nordstrom metric

The peeling result now being established at infinity, we can study how it pulls
back via the Couch-Torrence inversion ®. Recall from Theorem [3.3] that ® is an
isometric involution of (Ex\t, §). In particular, the pullback via ® commutes with
Oy, and (Corollary B4)) if ¢ solves [@4) then so does ®*¢. Moreover, whilst it
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preserves time-orientation, ® reverses the overall orientation of spacetime. Hence,
for any form « and any 4-form w,

B* (xa) = — % (B*a), / B*e = — / w. (4.32)

With this in mind, we will now translate the quantities we considered in a
neighborhood of i° to quantities in a neighborhood of the internal infinity i' in
the past of the degenerate horizon #T. To make this clearer, we can work in
two charts simultaneously, using ingoing coordinates (v, R,w) for image points and
outgoing coordinates (u, R, w) for starting points. Writing (v’, R’, w’) for the ingoing
coordinates of the image of ®(p) where p = (u, R,w), we have

1—-RM
v = u, R/:T’ W =w.

From this we can see that ® maps a neighborhood Q,, of i® to the neighborhood
of i' given by

Quo = {t >0} N {v < uo}.

Naturality of the exterior derivative combined with the fact that ® is an isometry
of g, give

D" Tup(¢) = Tap(279). (4.33)
Pullback and contractions also commute so that
B, = B (K Top(9)) = D" KB T (6) = D KT, (B%6).  (4.34)
Putting everything together with (@32 it follows that if we define
J(@) = (" K*)Tu(9), (4.35)

with

ey O 1-MR\, -, 0
(@K)axav8v+2(1+v 7 )8R'Kaxa’ (4.36)

the Couch-Torrence inversion relates energy fluxes of J(¢) to those of .J(®*¢). More
precisely, let

%ﬁ:%ﬂ+m{v<uo}, f[l,uoi{t:()}ﬂ{v<u0}7 Suo ={t >0} {v =ug}

and put for a given hypersurface S

Es(D*¢) = /S *J(D* ), (4.37)

then

i (070) = £, (0), &y, (¥76) = Em oy (0), Es, (270) = Es,,(0).
(4.38)
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Finally, the dictionary is completed by

" (0r¢) = (270r)(®"9) = —Or (2" ¢). (4.39)
We obtain the following by applying Theorem 4] to ®* .

Theorem 4.7. Let (v, R,w) be the ingoing Eddington—Finkelstein coordinates of
the extreme Reissner—Nordstrom exterior Ext, vg < —1, k € N and ¢ a solution
to the conformal wave equation [EQ). Then gﬁ‘fﬁ) (0% Vie2d) + gg% (0§ Ve29) < +o0
for allp,q € N, p+q < k if and only if the initial data (¢, d1) on the spacelike slice
{t = 0} is chosen in the completion of C§°(] — 00, vo]r, x S%)x C§°(] — o0, vo)r, x S?)

in the norm
2
O o) o
1

k  pt+a<k 1
where we replace ¢ by ¢g and Oz by ¢1 in the expression of the energy flux éﬁl v

and L is the operator defined by

- 2 ) 2
- F(r)y " F(r)
L=| | . y ) . (4.41)
52 s o2y 7
Fo) Oy + Qg2 + " (1 . ) Fo) Or,

In this case, we say that the solution ¢ peels at order k at the degenerate hori-

zon JCT.

Remark 4.8. Note that, due to the spherical symmetry, one can control the purely
radial regularity at the horizon as shown in [IT, Theorem 4].

Remark 4.9. The operator L is obtained exactly as L in Remark [£.6] but in this
case, we work with ingoing coordinates (v, R,w), whence

2

r
Or = ) (O — Or,).

Consequently,
2 2

T r

; <¢> T o <¢>
i _
8t¢ ’I“2 82 T2 8 8t¢

F(r)™  F)™

and if ¢ satisfies Eq. (@) then the action of dr on the vector * (ng 8t¢) is given

by (@AI).
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4.3. Peeling for massive fields at the horizon of the extreme
Retissner—Nordstrom metric

The peeling established directly at the horizon is proved for the rescaled metric
G = R?g but contrary to what happens at infinity, R — 1/M > 0 at the horizon,
hence the conformal rescaling is not singular there. This means that we can deal
with massive fields. Indeed, using the transformation law for the d’Alembertian
under a conformal rescaling

1 1
Oy + EScalg =03 <Dg + gScalg) ot
we obtain that for any m > 0,
1 1
O, + EScalg +m? =Q? (Dg + gScalg] + QQmQ) QL
Hence, for any distribution ) on the exterior of the black hole, putting ¢ = Q= 14),

1 1
(Dg + ESCalg + m2) =03 (Dg + gScalg + Q_2m2) o.

Remark 4.10. In the conformal density formalism of Sec. .1l this amounts to
studying the equation

Oc¢ +m?0, %9 =0, ¢ € &[-1],

where g is the physical metric and o, the canonical conformal 1-density it deter-
mines. Since if § = Q%g, 05 = Q7 1o, when writing this in a scale this leads to the
above equations.

With the conformal factor 2 = R, 1 is a solution to

1
(Dg + EScalg + m2) =0 (4.42)
if and only if ¢ = R~ 11 satisfies
1
G%+g&m@+R*mﬁ¢_o. (4.43)
Moreover, ®*¢ being a solution to ([{43) is equivalent to ¢ satisfying the equation
1 Mm \?
since under the Couch—Torrence inversion, 1/R = r is transformed into
rM M

r—M  1- MR
We can study the peeling at infinity and then translate the results, using the Couch—
Torrence inversion as a dictionary, at the horizon. The coefficient (Mm/(1 — MR))?
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tends to (Mm)? as r — oo and is therefore bounded in the neighborhood of infinity,
however it does not decay at infinity. Using the same stress-energy tensor and
observer as for the conformal wave equation to define the energy current J, we
obtain the following approximate conservation law for ¢ solution to ([A44):

. 1
veJ, =Verd T, — ESca1g¢VK¢ —m?¢Vko

9¢

= —2(R*M? — RM)U,Qd)a— +4(R*M? — RM + (R*M?* — R*M)u) 09
u

&

2
—2(2R°M?* - 3R*M + (R*M? — R*M)u) <%>

Mm \° 5,00 Mm \? ¢

The third line in the equation above has no decay and is therefore harder to con-
trol than the other two, however, the factor 1/|u| that we gain in the splitting of
the 4-volume measure allows to control this term exactly as we did for the first
order estimate in the massless case. The rest of the proof goes through without
modifications. We obtain the following result.

Theorem 4.11. Theorems L4l and &1 are wvalid, respectively, for solutions to
Eqs. @44) and [@43) with the operators L and L now given by

Y _r
F(r) F(r)
L =
2 2 2 ’
T 9 2M M Mmr T
8?2 A (12 _
F(r)ar* As r ( r ) + (TM F(r)ar*
- 2 o 2
. F0) F)
- 2 2
T 9 2M M 9 9 T
Nl ) i
N o U BLA e

5. The Couch—Torrence Inversion for a Spherically
Symmetric Degenerate Horizon and Peeling

The general form of the metric near a future degenerate horizon #*can be found
in [9], expressed in Gaussian null coordinates, with a horizon located at r = M,

1
g = —2dv (dr + (r— M)hg(r,z)dx® — 5(7’ — M)?T(r, :zz)dv) + Yap (r, x)dzda’.

(5.1)
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In this case, M has no physical significance other than the value of a coordinate.
We study a simple case for which the metric is spherically symmetric:

g =—2dv (dr - %(7’ - M)Qf(r)dv> —r?dw?, (5.2)

where the function I' is positive, analytic and does not vanish at » = M. In the case
of extreme Reissner—Nordstrom, we have
1

at the horizon.

5.1. The image asymptotic region and its conformal
compactification

Let us introduce a manifold, to be made more precise later, that we shall denote
by . with coordinates (u,z,w) (w € S?) and define a smooth map @ from the
r > M region near the degenerate horizon into .# that mimics the Couch—Torrence
inversion:

rM
D (v,7r,w) — (v,m,w) €.

We assume that we are working on open sets of the two manifolds such that this is
a diffeomorphism with inverse:

zM
o1 — _— .
(u7 Z7w) <u7 Z _ M’w)

Pulling back g to . by ®~ !, we find

(@1)'g = —2du ( <%)2dz - %(2 %\;FF <2iMM) du)

M ’ 2 zM 2 27 2

This shows that we can generalize the Couch—Torrence inversion to a conformal
isometry between a neighborhood of the » > M region near a degenerate horizon
and a manifold . with metric

M
Z—M> du? — 22dw?.

h = 2dudz + M (

Unless we are in the extreme Reissner—Nordstrom framework, we cannot assume
(M) = M~2 and it looks like the metric (5.3) has peculiar asymptotic behavior.
To clarify this issue, let us do a detailed calculation using Schwarzschild-type coor-
dinates. We define the variables r, and t by

(r — M)?T(r)dr, =dr, t=uv—r,. (5.4)
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The metric (5.2)) is expressed as

1
(r—M)I'(r)
We perform the Couch—Torrence inversion. Let us also introduce coordinates 7 and
zx on ¢ defined by

g =(r—M)*T(r)at* - dr? — r?dw?.

Mz
— Ut oz, za(2) = —T . 5.5
T=u+ 2., 24(2) T (z—M) (5.5)
Note that by definition we have
M
r (ﬁ) M2z, = dz. (5.6)

In terms of variables (¢,7,w) and (7, z,w), our map can be written
rM
o:(t,r,w)—(t,——,w | €
() o (857 )
and inverse:

M
O (1, 2,w) = <7’, Zr w).
z

Now pulling back g to . by ®~! gives

Let a = M/T(M),

Mo\ =M a?
—1yx 27 r2 2 2 227 2
(® )g<7(2_ )a) (aMF<Z_ )dT 72F(ZM)dz ozzdw)

and putting

we get

M\ 1
—1yk, ~2 2_ 223 2
(P )g—((z )a) (\I/dT \I/dz azdw),

where ¥ is an analytic positive function such that ¥(0) = 1.
The metric (®1)*g is conformally equivalent to

— M)a\’ 1
g: <¥) ((1)*1)*9: \I/d7~'2 o 6dZZ *OZQZQdLUQ
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whose asymptotic structure as z — 400 has the form
Goo = d7? — d2? — a?2%dw?.

In the extreme Reissner—Nordstrom case, « = 1 and g is the Minkowski metric. In
general, we cannot expect that & = 1 and the metric g will be asymptotically “con-
ical”. This is still asymptotically flat, but with a different rate of fall-off at infinity
of the curvature on the spheres, compared to the Minkowski or the Schwarzschild
metric. Near spacelike infinity, the spacelike slices look like the large ends of cones
rather than the neighborhood of infinity on R3.

We now turn to the conformal compactification of ([B.3]) near z = +o0. Instead
of multiplying the metric (®=1)*g by Z2, where Z = 1/z, we pull back via the
Couch—Torrence inversion the rescaled metric

Gg=R%, R=1/r

ie.

N 2 1 2 2

g=(1-MR)T (E) dv* + 2dvdR — dw*. (5.7)
We have, using (5.3]) and returning to our initial coordinate system on .7

—1\* ~ — —1y\* (Z — M)2 —1y\x*
(@) g=(Ro®@ ) (@ !)g= W(q) g
1 M
== <2dudz + M°T (ZZ_ M) du? — szwQ)

putting

we arrive at
(@ Y9 =2%f(Z)du? — 2dudZ — dw?. (5.8)

The function f is analytic and positive on an interval of the form [0,a[, a > 0
and the case f(0) = 1 corresponds to those situations where I'(M) = 1/M?2. In the
extreme Reissner—Nordstrém case, we have f(Z) = (1 — M Z)2.

5.2. Peeling for the wave equation on the
image asymptotic region

In this section, we revert to more usual notations, making the replacements z — r,
Z — R for the radial and inverted radial variables, respectively. We will study the
peeling at null infinity for the metric

= R*f(R)du? — 2dudR — dw?. (5.9)
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Future null infinity (.#71) is described as {R = 0} x R,, x S2. The scalar curvature
of g is

Scaly = —R*f"(R) — 4 Rf'(R) + 2(1 — f(R))

and it is nonzero at .t unless f(0) = 1.
Recall from Egs. (&) and (B.6]) that the variables ¢ and r, (denoted by 7 and
zx previously) satisfy

f(R)dr, = dr or equivalently — R?f(R)dr, =dR and t =u +r.. (5.10)

The metric § in terms of (¢,r.,w) is expressed as

. f(r ~ 1
g = f£2)(dt2 —dr?) —dw?, f(r):=f <;> . (5.11)
The d’Alembertian for g is given by
0, = —R2f(R)8—2 — (R*f'(R) + 2Rf(R))i EPSAENN (5.12)
9 OR? R “ouor T\
In terms of variables (¢, 7.,w) it takes the form
7,2 62 62
Oy==— | === ) —Ag 1
e <at2 arz> s (5.13)
so the conformal wave equation reads
r2 (0% 0% 1
— | = — == | — Ag —Scalzp = 0. .14
) (8152 81‘3) Ag2d + 680a s0=0 (5.14)

We work in a neighborhood of spacelike infinity of the form
Dy ={t >0} N{u < up}
for ug <« —1 and we use the same foliation
Howo = {u=—sre, u<upg}, 0<s<1

as in the extreme Reissner—Nordstrom case. The analogue of Lemma 3] in our new
framework is the following.

Lemma 5.1. Let 0 < e < 1, then one can find ug < 0, |ug| large enough, such that

in Que,

L R <Xt g R < IS f ) —2) < f(R) < £(0) < (1+2)
£(0) IO f0)° '
Proof. It is a direct consequence of L’Hépital’s rule and (5.10). O

We choose once more the family of observers associated to the Morawetz vector
field K defined in ([&4). Its Killing form for (B.9) reads

Lr§=2R2(1 - f(R)) — R(1 +uR)f(R))du ® du. (5.15)
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In the extreme Reissner—Nordstrom case, the Killing form (8] of K vanished at
order 2 at .# T, whereas (5.15]) only generically vanishes at order 1 (again we need
f(0) = 1 for it to vanish at order 2). Moreover, the Morawetz vector field was
timelike in the neighborhood of i®. Here, we have the following restriction.

Lemma 5.2. We can choose ug < —1 such that the Morawetz vector field is uni-
formly timelike on 0, if and only if f(0) > %.

Proof. The “squared norm” of K is given by

(K, K) = R*f(R)u* + 4u*(1 + Ru) = 4u® <1 + Ru + W). (5.16)

On H; 4,, as one approaches i, we have R — 0, f(R) — f(0) and Ru — —ﬁ
whence

3

4£(0)°

which is negative if f(0) < 2. In this case, K is not timelike on the whole of Q.

On Ho vy, §(K, K) = 4u? independently of the value of f(0) and on Hs 4, 0 < s < 1
we have

1+ Ru+ i(Ru)%(R) —1—

f](K,K) = 4u2 (1 _ SRT'* + 382(RT*)2][<R))

2 782 132(175)3]0(0)
= (1 ORESIOE )

On [0,1], 5(4 — s) is increasing and varies between 0 and 3. So if f(0) > 2, choosing
¢ sufficiently small enables us to ensure that K is uniformly timelike on the whole
of Qy,. The case f(0) = 2 is marginal, K becomes null at i and depending on the
behavior of r,, may also become null or timelike near H; - O

Note that the closer f(0) is to %, the smaller one has to choose €2, in order to
ensure that K remains timelike uniformly on €2, .

With this restriction in mind, we turn to the calculation of the energy flux across
Hs,uo- A normal vector field to Hs ., is given by

s—1

n=0,+ R2f(R)%(1 — $)0p = 0y + R2f(R)Z—0p

and

l=—-0r
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is a future-oriented transverse vector field to #; ,, such that §(I,n) = 1. The energy
on Hg y, 1S
909¢ 9¢*
& = R2Z2f(R)=2ZZ 227
Hs,ug ((b) ,/]_Oo,u[)[uxsz ( u f( )au aR +u 8’{,&

- (B 2= ) 047

2s s OR
(R
2s

090¢ d¢*
= 2,2 opo9p 209
a /]oo,uo[uxsg (R wI(R) ou OR tu ou

+ R3f(R)(2—s)— +

w | &

+ Ru+ 1) |v52¢|2> dud?w,

# LR (1) - 202 - Rl + 22 - 9) 51
+ <1 + Rlu| <%(R) - 1)) |v52¢|2> dud®w.

On 4t N{u < up}, this reduces to

2097 2 2
Etoruy (B) = wo V20 ) dud®w.
]—o0,uguxS2 U

Proposition 5.3. The energy on Hs ., is equivalent, uniformly in s € [0,1] to the
simpler expression

99> R D>
‘5 TR 0% ) dud®w.
/]oo,uo[uxsgu (u ou + |u| OR +|VS ¢| ud“w

Proof. Using Lemma 5.1l we have
* 1- 2
1+R|u|<w1>21+R|u|<( 2 1)

2 2
(1+¢) (1—5)2_
SRR ( 2 1)
1

1
>1———=+4+0(c) > -+ O(e).
21— g7 + 06 > 5 +006)
In the last inequality, we use the restriction identified in Lemma
As for the factor of (Or¢)?, it is the product of

Rr.f(R) R (1 +0(5)) R

2 Jul |ul

2
and the quantity:

P(RJul) == (Rlul)*f(R) — 2(2 — s)Rlu| +2(2 - s).
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On Hs o for 0 < s < 1:
P(RJul) = (Rr,)2f(R)s? +2(2 - 5)(1 - (Rr.)s)

- (176)332—1—2(2—3) (1_ 1+€S)

7(0) f(0)
L §2 S — —5)s €
= Ty T 22~ 9)f(0) ~ 22~ )s) +0()
Loao o, -
. m(ss 25(f(0) +2) +4£(0)) + O(e).

Let us briefly consider the polynomial:

Q(s) := 3s% — 25(f(0) +2) + 4£(0),

Q attains its minimum value at smin = £(f(0) + 2), this is in the interval [0, 1] if
and only if f(0) < 1 (we assume f(0) > 0).
value is given by

When this is the case then the minimum

Quin = 41(0) = 5((0) + 2%

which is positive for 0 < f( ) < 1if and only if f(0) > 4 — 2v/3. Since 4 — 2V/3 <

3 and we assume f(0) > 2, it follows that: Qmin > 0. Note that, in this case,

Qmin > %
When f(0) > 1, the minimum is reached beyond s = 1, thus the minimum on
the interval [0, 1] is

Q1) =2f(0) —1> 1.
It follows that, overall when f(0) > 2:

2 +O(e) > § + O(e)

P(R >
(Rl =

~ 48f(0)

and

Rr.f(R) R 23 R
A 2l > ( e >) z

Finally, we turn to the control of the term involving 0r¢d,¢ on Q,,,

|R*u®f(R)0u¢Ord| = w/ ul(Rlul)? f(R)|8.¢Ird|

(1+¢)3
| | |0upOR .
[ul " /F(0)
Now for any A > 0 we have
1 R

2
R22 F(R)0udOnd| < (1+ )} (A—u%auas)? 4

> ol

2X2£(0) Jul
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The proposition will be proved if we can choose A such that the following conditions
hold:

36 1
<N <2
23 f(0)
Since f(0) > 2 it is sufficient to impose
104 35
— <N <2,
T~ T
which is always possible. |

The error terms in the approximate conservation law for J¢ are

Ve, = <R2ﬁ+4Rf’(R)+2f(R) ) ¢8¢

OR?

~ SR/ (R) + (Ff"(R) + 4 B*f'(R) + 2 Rf (R) — 2 R)u
FARJ(R)+2 [(R) - 20650

_2(R2(1 + Ru)f'(R) + 2 RF(R) — 23)32 (5.17)

Thanks to the result of Proposition 5.3l these can be dealt with as before; the same
is true for higher order estimates. We obtain the following theorem.

Theorem 5.4. For the metric § defined on . by (59) and under the assumption
that f(0) > 3/4, Theorem Al is valid for solutions to Eq. (5I4)) with the operator
L given by

T2 ,,,.2
), -

L Fam o)
P 2 Aw 4t iSeal, ——" g
~Fmy O~ As 4 gSals — o

5.3. Peeling at the degenerate horizon

As before, the Couch—Torrence inversion provides a dictionary between objects near
the horizon with rescaled metric defined by (5.7)) and those in . with the met-
ric (5.8). By construction of ., it is in all points identical to the dictionary in
Sec. B2 under the proviso that we relate objects on two different spacetimes. It is
again possible to include massive fields in our treatment following the same steps
outlined in Sec. 43l This leads to the following generalization of Theorem [£.111

Theorem 5.5. The conclusions of Theorem &1 hold for solutions of the equation:

1
Oy + gScalgng +7r2m2¢p =0,
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where § is the metric defined by Eq. (B.1) of which the scalar curvature is given by

B d? 1 2\ o d o d [(T(r)(r—m)?

and the operator L is replaced by

2

= r
[ ="
(r— M)>T'(r)
-0, 1
X
_ 2F _ 2F
83* + 70“ ]\7"42) (r) Agz — 7(7‘ Jé{l (r) Scaly — r?m? -0,

6. Conclusion

The peeling at an extreme horizon is analogous (modified merely by a finite confor-
mal transformation) to the peeling at a conformally rescaled asymptotically flat
infinity with conformal factor 1/r. The analogy of behavior between a degenerate
horizon and null infinity for an asymptotically flat spacetime should therefore be
read between the physical field at the horizon (or its finite conformal rescaling ri)
and a conformally rescaled field ¢ at null infinity. Also, an important feature of the
peeling at a degenerate horizon is that it is also valid for massive fields; in fact lower
order perturbations of the d’Alembertian with coefficients bounded at all orders in
the neighborhood of internal infinity can also be accommodated.
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