Have strange quark stars been discovered ?

Eric Gourgoulhon Laboratoire de l'Univers et de ses Théories (LUTH) CNRS / Observatoire de Paris Meudon, France

Based on a collaboration with Dorota Gondek-Rosińska, Pawel Haensel & Leszek Zdunik

Eric.Gourgoulhon@obspm.fr
http://www.luth.obspm.fr

Semaine de l'Astrophysique Française, SF2A, Paris, 27 June 2002

Plan

- 1. Strange quark matter
- 2. Theoretical models of strange quark stars
- 3. Recent Chandra observations

Strange quark matter

The strange quark

Quark properties

flavor	d	u	S	С	b	t
spin	1/2					
baryon number	1/3					
electric charge	$-\frac{e}{3}$	$\frac{2e}{3}$	$-\frac{e}{3}$	$\frac{2e}{3}$	$-\frac{e}{3}$	$\frac{2e}{3}$
isospin (z-comp.)	$-\frac{1}{2}$	$\frac{1}{2}$	0	0	0	0
mass $[MeV c^{-2}]$	~ 7	~ 3	~ 150	~ 1200	~ 4200	$\sim 175 \ { m GeV} c^{-2}$

Recall:nucleons : $\mathbf{p} = \mathbf{uud}, \mathbf{n} = \mathbf{udd}$ hyperons : $\Lambda = \mathbf{usd}, \Sigma^+ = \mathbf{uus}, \dots$ mesons : $\pi^+ = \mathbf{ud}, \pi^- = \mathbf{ud}, \dots$

Strange quark matter hypothesis and strange stars

1971: A.R. Bodmer \rightarrow the ground state of nuclear matter may be a state of **deconfined quarks**.

1984: E. Witten reformulated (independently) this idea, and contemplated the possibility that neutron stars are in fact strange quark stars.

1986: first numerical models of static strange stars by P. Haensel, J.L. Zdunik & R. Schaeffer, as well as C. Alcock, E. Farhi & A.V. Olinto.

1989 : announcement of a half-millisecond pulsar in SN 1987A

1996 : discovery of high frequency QPO in low-mass X-ray binaries

2002 : NASA announcement of "discovery" of two strange quark stars

Ground state of hadronic matter

Why non-zero strangeness ?

Quarks are **fermions**:

Pauli exclusion principle \implies 3-flavor quark matter has a lower energy than 2-flavor quark matter.

Approximate treatment of QCD

Complexity of QCD \implies a direct computation of the quark matter EOS is not doable.

The simplified approach to quark matter EOS:

- describe non-perturbative aspects of QCD (quark confinement and asymptotic freedom) by a very simplified phenomenological model: the MIT bag model;
- describe perturbative effects (quark interactions within the bag) by an expansion in $\alpha_s = g^2/(4\pi)$, where g is the QCD coupling constant .

Numerical models of strange quark stars

Static strange stars

First numerical models computed by Haensel, Zdunik & Schaeffer [A&A 160, 121 (1986)] and Alcock, Fahri & Olinto [ApJ 310, 261 (1986)] by integration of the **Tolman-Oppenheimer-Volkoff equations** with MIT bag-model EOS.

Basic features:

- finite density at the surface (zero pressure)
- for small mass (weak gravity): almost constant density profile $\varepsilon \sim 4B$

Mass-radius relation

From strangelets to strange stars

 M/M_{\odot}

Gravitational mass as a function of the areal radius for nonrotating strange stars in the MIT bag model [from Bombaci (2001)]

Approximate scaling laws (exact for
$$\alpha_{\rm s} = 0$$
) [Zdunik, A&A 359, 311 (2001)] :
 $M \simeq M \left[B_{60} = 1, \alpha_{\rm s}, m_{\rm s} B_{60}^{-1/4} \right] B_{60}^{-1/2}$
 $R \simeq R \left[B_{60} = 1, \alpha_{\rm s}, m_{\rm s} B_{60}^{-1/4} \right] B_{60}^{-1/2}$

Comparison with neutron stars

Gravitational mass as a function of the areal radius for nonrotating neutron stars (BBB1, BBB2, Hyp and K^-) and nonrotating strange stars in the MIT bag model (B90) and Dey et al model (SS1 and SS2) [from Bombaci (2002)]

neutron stars = gravitationally bound objects strange quark stars ~ self-bound objects

Rotating strange quark stars

[from Gourgoulhon et al., A&A 349, 851 (1999)]

Minimal rotation period (for $m_{\rm s} = 0$ and $\alpha_{\rm s} = 0$): $P_{\rm min} = 0.634 B_{60}^{-1/2} {\rm ms}$

Solid crust

EOS: $B = 56 \text{ MeV fm}^{-3}$, $\alpha_s = 0.2$, $m_s = 200 \text{ MeV } c^{-2}$ star: $M_B = 1.63 M_{\odot}$, f = 1210 Hz. [from Zdunik, Haensel, Gourgoulhon, A&A **372**, 535 (2001)]

Stellar radius in presence of crust

There exists a minimal radius:

Chandra observations

RX J1856.5-3754

• Discovered as an X-ray source with ROSAT in 1996 [Walter et al., Nature **379**, 233 (1996)] Best fit black body $kT_{\infty} = 57 \pm 1 \text{ eV}$ $\iff T_{\infty} \simeq 6.6 \times 10^5 \text{ K}$

In front of molecular cloud R Coronae Australis $\Rightarrow d \leq 130 - 170 \text{ pc}$

• Optical counterpart discovered in 1997 with HST [Walter & Matthews, Nature **389**, 358 (1997)] magnitude V = 25.6Optical flux 2 to 3 times larger than the tail of the 57 eV black body

RX J1856.5-3754 observed by VLT

VLT Kueyen + FORS2 (field: $80" \times 80"$) \rightarrow bowshock (heated interstellar gas by accelerated e^- and p from the star ?) [ESO 2000]

Distance to RX J1856.5-3754

First measure of proper motion and parallax (erroneous) [Walter, ApJ 549, 433 (2001)]

 \Rightarrow erroneous $d = 61 \pm 9 \text{ pc}$

• New determinations of parallax:

 $d = 140 \pm 40 \ \mathrm{pc}$ [Kaplan, van Kerkwijk, Anderson, astro-ph/0111174] $d = 117 \pm 12 \ \mathrm{pc}$ [Walter & Lattimer, astro-ph/0204199]

RX J1856.5-3754 spectrum

Spectrum from Chandra, EUVE and HST data:

----: black body best fit to Chandra data $kT_{\infty} = 63 \text{ eV}$ [Burwitz et al., A&A 379, L35 (2001)]: 63 eV black body + 15 eV black body with $R_{\infty}(15 \text{ eV}) = 5R_{\infty}(63 \text{ eV})$

[from Walter & Lattimer, astro-ph/0204199]

Simple estimation of radius from black body emission

Observed quantities: (at infinite distance from the star)

- electromagnetic flux f_{∞}
- surface temperature T_∞ (black body fit to the spectrum)
- distance *d* (parallax)

Estimation of the radius:

Total luminosity for black body emission: $L_{\infty} = 4\pi R_{\infty}^2 \sigma T_{\infty}^4$

Flux on Earth:
$$f_{\infty} = rac{L_{\infty}}{4\pi d^2} = \left(rac{R_{\infty}}{d}
ight)^2 \sigma T_{\infty}^4$$

Hence the radius "measured" at infinity:

$$R_{\infty} = \frac{d}{T_{\infty}^2} \left(\frac{f_{\infty}}{\sigma}\right)^{1/2}$$

Relation between R_{∞} and the true radius of the star R

Areal radius of the star (surface value of the Schwarzschild coordinate r): R

Redshift factor at the surface of the star: $N = \sqrt{-g_{00}} = \left(1 - \frac{2GM}{c^2R}\right)^{1/2}$

Gravitational dilation of time: $dt_{\infty} = N^{-1}dt$ (N : lapse function)

Energy and wavelength of a particle reaching infinity: $E_{\infty} = NE$ and $\lambda_{\infty} = N^{-1}\lambda$

Luminosity at infinity: $L_{\infty} = \frac{dE_{\infty}}{dt_{\infty}} = N^2 \frac{dE}{dt} = N^2 L$

Local black body emissivity: R areal radius $\Rightarrow L = 4\pi R^2 \sigma T^4$

"Observed" temperature: $\lambda_{\max}T = \text{const.} \Rightarrow T_{\infty} = NT$

Observed black body: $L_{\infty} = 4\pi R_{\infty}^2 \sigma T_{\infty}^4$

Hence
$$R_{\infty} = N^{-1}R$$
, i.e. $R_{\infty} = \left(1 - \frac{2GM}{c^2R}\right)^{-1/2} R$

The very small radius puzzle

- Erroneous distance of Walter 2001 : $d = 61 \text{ pc} \Rightarrow R_{\infty} = 3.3 \text{ km}$ (for $f_{\infty}^{\text{ROSAT}}$ and $kT_{\infty} = 57 \text{ eV}$).
- New distance of Walter & Lattimer 2002 : $d = 117 \text{ pc} \Rightarrow R_{\infty} = 4.8 \text{ km}$ (for $f_{\infty}^{\text{Chandra}}$ and $kT_{\infty} = 61 \text{ eV}$).
- New distance of Kaplan et al. 2002 : $d = 140 \text{ pc} \Rightarrow R_{\infty} = 5.8 \text{ km}$ (for $f_{\infty}^{\text{Chandra}}$ and $kT_{\infty} = 61 \text{ eV}$).

Minimal radius of neutron stars

Solid lines: neutron star models; dashed line: strange quark star with MIT bag model EOS: $B = 41 \text{ MeV fm}^{-3}$, $m_{\rm s} = 150 \text{ MeV } c^{-2}$, $\alpha_{\rm s} = 0.6$ [from Haensel, A&A 380, 186 (2001)].

Minimal radius of strange quark stars

[from Gondek-Rosińska, Kluźniak & Stergioulas, astro-ph/0206470 (2002)]

A proposed solution

Pons et al. [ApJ **564**, 981 (2002)] : the emission is not a pure black body one. Two atmospheric models:

- 1. Uniform temperature + heavy elements (Fe)
- 2. Two thermal components (optical flux from cooler part)

Model 1 $\Rightarrow R_{\infty} \simeq 15$ km for d = 117 pc, $f_{\infty}^{\text{ROSAT}}$ and $kT_{\infty} = 57$ eV Model 2 $\Rightarrow R_{\infty} \simeq 21$ km for d = 117 pc, $f_{\infty}^{\text{Chandra}}$ and $kT_{\infty} = 63$ eV

[Walter & Lattimer, astro-ph/0204199]

Recent Chandra observations

Drake et al. [ApJ **572**, 996 (2002)] have conducted deep observations of RX J1856.5-3754 in October 2001 (446 ks of data).

Findings:

- X-ray spectrum well represented by a black body spectrum with $kT_{\infty} = 61.2 \pm 1.0$ eV $(T_{\infty} = 7.1 \times 10^5 \text{ K})$
- no heavy element spectral lines \Rightarrow disfavors atmospheric model 1 of Pons et al. (2002)
- no X-ray pulsation (pulse fraction < 2.7%) \Rightarrow disfavors atmospheric model 2 of Pons et al. (2002)

Inferred pure black body radius: $R_{\infty} = 4.12 \pm 0.68 \text{ km} \frac{d}{100 \text{ pc}}$

Has a strange quark star been discovered ?

Maybe, but one should remain cautious:

- extrapolation of the $\sim 61~{\rm eV}$ black body spectrum to low frequencies underpredicts the optical flux by a factor 6 [Walter & Lattimer, astro-ph/0204199]
- disagreement between Chandra flux and ROSAT one: $f_{\rm Chandra} \sim 0.8 f_{
 m ROSAT}$
- $R_{\infty} = 5.8 \text{ km} (d = 140 \text{ pc}) \text{ implies a maximum mass of only } \sim 0.7 M_{\odot} \Rightarrow \text{how to form such light star ?}$

A possible answer proposed by Nakamura [astro-ph/0205526] :

Gravitational collapse of a very rapidly neutron star with Kerr parameter J/M^2 larger than 1 does not lead to a black hole but to a small mass quark star + a jet. In addition this provides a source for gamma ray bursts !

The second strange star candidate: 3C 58

3C 58: remnant of the supernova SN 1181 (younger than Crab nebula: SN 1054)

Central object: X-ray and radio pulsar PSR J0205+6449, P = 65 ms, discovered by Chandra observations [Murray et al., ApJ **568**, 226 (2002)]

Argument for a strange quark star: $T_{\infty} < 1.1 \times 10^6$ K, too cold for a neutron star 820 years old [Slane, Helfand, Murray, ApJ 571, L45 (2002)]

...but this argument is not conclusive !

Many alternatives are possible within cooling theories of ordinary neutron stars:

[from Yakovlev, Kaminker, Haensel, Gnedin, astro-ph/0204233]

Conclusions and perspectives

- From our (poor) knowledge of strong interaction, it is not inconceivable that strange quark matter constitutes the ground state of cold dense matter.
- A class of compact stellar objects, bound by strong interaction (in addition to gravity), would then constitute an alternative to neutron stars: **strange quark stars**.
- Strange quark stars have some features (small radius, large break-up rotation velocity, location of ISCO, etc...) than make them observationally distinguishable from neutron stars.
- Discovering a strange quark star would be an extremely valuable contribution of **astrophysics** to **particle physics**.
- From the two claims of discovery based on recent Chandra observations, of **RX J1856.5-3754** can be considered as providing a strange quark star serious candidate. It has to be **confirmed** by further observational studies.

Conclusions and perspectives (cont'd)

- If RX J1856.5-3754 is confirmed as a strange star, there remains to explain the formation of such a small mass object.
- Since RX J1856.5-3754 is one of the closest compact stars, it would be then likely that most, if not all, compact stars are actually strange quark stars.
- A strong support for the possible existence of strange quark star would be the discovery of **strangelets** in the next generation of ultra-relativistic heavy ion colliders (RHIC at Brookhaven, LHC at CERN).