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Basics of black hole physics

Plan of the lectures

@ What is a black hole? (yesterday)

@ Schwarzschild black hole (today)

@ Kerr black hole (today)

© Black hole dynamics (on Wednesday)

Home page for the lectures

https://luth.obspm.fr/ luthier/gourgoulhon/bh16/chennai/
(slides, lecture notes, SageMath notebooks)
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Lecture 3: The Kerr black hole

© The Kerr solution in Boyer-Lindquist coordinates
© Kerr coordinates

© Horizons in the Kerr spacetime

@ Penrose process

© Global quantities

@ The no-hair theorem
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The Kerr solution in Boyer-Lindquist coordinates

Outline

© The Kerr solution in Boyer-Lindquist coordinates
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The Kerr solution in Boyer-Lindquist coordinates

The Kerr solution (1963)

Spacetime manifold .#
M=R>xS*\ %

with Z := {p cR?xS% r(p)=0and b(p) = g}

(t,r) spanning R? and (6, ) spanning S*

Boyer-Lindquist (BL) coordinates (¢, 7,6, ) (1967)

(t,7,0,p) witht €R, |r € R|, 8 € (0,7) and ¢ € (0,27)
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The Kerr solution in Boyer-Lindquist coordinates

The Kerr solution (1963)

Spacetime metric g

2 parameters (m, a) such that 0 < a <m

2 4 in? 6 .
ds? = _<1— mr) a2 — 2N T G dp 4+ 2 dr? + p2de?

p? P A

2a*mr sin® 0
+ <T2+a2+amr251n) sin? 0 dy?,
p

where p? := 12 4+ a®cos® 0 and A = r? — 2mr + a®

Some metric components diverge when
@ p=0 < r=0and § =r/2 (set Z, excluded from .#)

e A=0 <= r=ry:=m+vVm?—alorr=r_:=m—vm?—a?

Define #: hypersurface r = ry, %, hypersurface r = r_
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The Kerr solution in Boyer-Lindquist coordinates

Section of constant Boyer-Lindquist time coordinate

View of a section
t = const in
O'Neill coord.
(R, 0, ) with
R:=¢"

NB:r=0is a
sphere, not a point

| . .
: rotation axis

Define three regions, bounded by 7 or J4),:
M T > Ty My T <1 < Ty, M T <r_
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The Kerr solution in Boyer-Lindquist coordinates

Basic properties of Kerr metric (1/3)

2 4 in? 0 .
ds? = —(1— ;””) dt2—%dtdcp+%dr2+p2d62
2a%mrsin? 6
+ ( T m) sin? 0 di?,
p

@ g is a solution of the vacuum Einstein equation: Ric(g) =0
See this SageMath notebook for an explicit check:
https://nbviewer. jupyter.org/github/egourgoulhon/BHLectures/
blob/master/sage/Kerr_solution.ipynb
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The Kerr solution in Boyer-Lindquist coordinates

Basic properties of Kerr metric (2/3)

2 4 0
a= - (1280 ap - 2L g 1 2+

2a%mr sin? 0
iy (7'2 +a? + amr;m) sin? 0 dy?,
p

@ asymptotic behavior:
r— 400 = p*~r? pP/A~ (1 —-2m/r)7,
4amr/p* dt dp ~ dam/r? dtrdyp
— ds’ ~ —(1—2m/r) dt® + (1 —2m/r)" "t dr?
r? (dH2 + sin? 0 dcp2) +0 (7‘_2)
—> Schwarzschild metric of mass m for r > 0

Schwarzschild metric of mass m’ = —m (negative!l) for r < 0
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The Kerr solution in Boyer-Lindquist coordinates

Basic properties of Kerr metric (3/3)

2 4 in? 6 .
ds? = _<1_ pm) i = 2L o B ar? 4 a2
2 2 202
+ <T2 +a? + amrem e m7“2sm 9) sin? @ dy?,
P

@ 0gap/0t =0 = is a Killing vector; since g(&,&) < 0 for r
large enough, which means that £ is timelike, (#, g) is
pseudostationary
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The Kerr solution in Boyer-Lindquist coordinates

Basic properties of Kerr metric (3/3)

2 4 in? 6 .
ds? = _<1_ pm) i = 2L o B ar? 4 a2
2 2 202
+ <T2 +a? + amrem e m7“2sm 9) sin? @ dy?,
P

@ 0gap/0t =0 = is a Killing vector; since g(&,&) < 0 for r
large enough, which means that £ is timelike, (#, g) is
pseudostationary

o if a #0, gip # 0 = & is not orthogonal to the hypersurface
t = const = (., g) is not static
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The Kerr solution in Boyer-Lindquist coordinates

Basic properties of Kerr metric (3/3)

2 4 in? 6 .
ds? = _<1_ pm) i = 2L o B ar? 4 a2
2 2 202
+ <T2 +a? + amrem e mr2sm 9) sin? @ dy?,
P

@ 0gap/0t =0 = is a Killing vector; since g(&,&) < 0 for r
large enough, which means that £ is timelike, (#, g) is
pseudostationary

o if a #0, gip # 0 = & is not orthogonal to the hypersurface
t = const = (., g) is not static

@ 09ap/0p =0 = is a Killing vector; since 1 has closed
field lines, the isometry group generated by it is SO(2) = (., g) is
axisymmetric
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The Kerr solution in Boyer-Lindquist coordinates

Basic properties of Kerr metric (3/3)

2 4 in? 6 .
ds? = _<1_ pm) i = 2L o B ar? 4 a2
2 2 202
+ <T2 +a? + amrem e mr2s1n 9) sin? @ dy?,
P

@ 0gap/0t =0 = is a Killing vector; since g(&,&) < 0 for r
large enough, which means that £ is timelike, (#, g) is
pseudostationary

o if a #0, gip # 0 = & is not orthogonal to the hypersurface
t = const = (.#,g) is not static

@ 09ap/0p =0 = is a Killing vector; since 1 has closed
field lines, the isometry group generated by it is SO(2) = (., g) is
axisymmetric

@ when a =0, g reduces to Schwarzschild metric (then the region » <0
is excluded from the spacetime manifold)
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The Kerr solution in Boyer-Lindquist coordinates

The ring singularity

2 4 in? 6 .
ds? = _<1_ pm) it - 2L o B ar? 4 a2
2 2 202
+ <’I“2 + a® + amrem e mrzsm 0) sin? @ dy?,
P

@ The singularity of the metric components at A = 0 is a mere
coordinate singularity as we shall see by moving to Kerr coordinates
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The Kerr solution in Boyer-Lindquist coordinates

The ring singularity

2 4
ds? = — <1 - W) dt? - 7‘””’" S0 11 do + 'OA dr? + p2d6>
P>

2a?mr sin® 0
+ <r2 gt e e mr:m ) sin? 0 de?,
p

@ The singularity of the metric components at A = 0 is a mere
coordinate singularity as we shall see by moving to Kerr coordinates

@ The singularity at p? = 0 corresponds a curvature singularity as shown
by the expression of the Kretschmann scalar:

2
K := Ry ,c RMP7 = 48% ( — 15r*a? cos? 0 + 15r%a* cos* 6 — a® cos 0)
P

p? =1+ a?cos’h =0 — T:Oandﬁzg

= ring singularity Z
CSGC, Chennai, 18 Jan 2022 11 / 40
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The Kerr solution in Boyer-Lindquist coordinates
Ergoregion

Scalar square of the pseudostationary Killing vector £ = 9;:

2mr
= pr— —1 e —
9(&.8) = gu t O ol

£ timelike <= r <rg-—(0) orr > re+(0)

2 _q2cos26
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The Kerr solution in Boyer-Lindquist coordinates
Ergoregion

Scalar square of the pseudostationary Killing vector £ = 9;:

2mr
= pr— —1 e —
9(&.8) = gu t O ol

£ timelike <= r <rg-—(0) orr > re+(0)
re+(0) :=m+\/m? —a?cos? 6

0<re-(0)<r_<m<ry<re+() <2m

Ergoregion: part & of .# where £ is spacelike

Ergosphere: boundary & of the ergoregion: r = r+(0)

¢ encompasses all .11, the part of .#; where r < rz+(0) and the part of
A1 where > reo—(6)

Remark: at the Schwarzschild limit, a = 0 = 7+ (0) = 2m

— ¢ = black hole region
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The Kerr solution in Boyer-Lindquist coordinates
Ergoregion

e"/™cosf

e'/Msinf

Meridional slice ¢ = g, ¢ € {0, 7} viewed in O'Neill coordinates
grey: ergoregion; yellow: Carter time machine; red: ring singularity
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Kerr coordinates

© Kerr coordinates

Eric Gourgoulhon (LUTH) Basics of black hole physics 3 CSGC, Chennai, 18 Jan 2022 14 / 40



Kerr coordinates

From Boyer-Lindquist to Kerr coordinates

Introduce (3+1 version of ) Kerr coordinates (¢,7,0, %) by
At = dt+ 2 dr

dp = de+ xdr

)t = t o (re || = v In| 5= )
~ T—r
2 ¥ + 2\/ 2_¢g2 T—Tt

CSGC, Chennai, 18 Jan 2022 15 / 40
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Kerr coordinates

From Boyer-Lindquist to Kerr coordinates

Introduce (3+1 version of ) Kerr coordinates (¢,7,0, %) by
At = dt+ 2 dr

dp = de+ xdr

g r—r r—r_

t = t+ﬁ<r+ln) 2m+ —7",111 m D
~ r—r

SO = 80 + 2\/m%,a2 T—Tt

Kerr coord. reduce to ingoing Eddington-Finkelstein coord. when a — 0

(ry —2m, r— — 0):

P o

t = t+2mln | 3 1‘

Y = ¥
Eric Gourgoulhon (LUTH) Basics of black hole physics 3 CSGC, Chennai, 18 Jan 2022 15 / 40



Kerr coordinates

Kerr coordinates

Spacetime metric in Kerr coordinates

2 ~ 4
ds? = _<1_W>dt A gy damrsin®d g
p? P p?

2 2
+ <1+W> dr? — 2a <1+ ”;r) sin? 0 dr dg
P2 p

2a*mr sin® 0
+p2d0% + <r2 +a? + amrf“) sin 0 2.
p

Note

@ contrary to Boyer-Lindquist ones, the metric components are regular
where A =0, ie. at r =7y () and r =r_ ()

@ the two Killing vectors € and m coincide with the coordinate vectors

associated to ¢ and @: ‘5 = 9;
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Horizons in the Kerr spacetime

Outline

© Horizons in the Kerr spacetime
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Horizons in the Kerr spacetime
Constant-r hypersurfaces

A normal to any r = const hypersurface is n := p2€7', where ér is the
2 A
gradient of r: V% = g*0,r = ¢*" = (727“7 =0, CLQ)
p? p* T p

= n=2mro;+ A0+ ads
One has
g(n,n) = guntn” = g,p*VFrn’ = p*V,rn’ = p*d,rn’ = p*n"
hence

g(n,n) = p’A
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Horizons in the Kerr spacetime
Constant-r hypersurfaces

A normal to any r = const hypersurface is n := p2€7', where ér is the
2 A
gradient of r: V% = g*0,r = ¢*" = <n;r7 =0, CZ)
p? p* T p

= n=2mro;+ A0+ ads
One has
g(n,n) = guntn” = g,p*VFrn’ = p*V,rn’ = p*d,rn’ = p*n"
hence

g(n,n) = p’A

Given that A = (r —r_)(r — ), we conclude:
@ The hypersurfaces r = const are timelike in .#1 and .11

@ The hypersurfaces r = const are spacelike in .11

o J (where r =ry) and J&, (where r = r_) are null hypersurfaces
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Horizons in the Kerr spacetime
Killing horizons

The (null) normals to the null hypersurfaces .7#” and J&, are
n=2mr 0 + A Or+a 0; =2mri§+an

2mr+ ¢ 0 n
On 7, let us consider the rescaled null normal x := (2mr. )" 'n:
x=&+Qun)
with
QO a_ _ a _ a

C2mry r}ta? 2m (m -+ vim? = o)
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Horizons in the Kerr spacetime
Killing horizons

The (null) normals to the null hypersurfaces .7#” and J&, are
n=2mr 0 + A Or+a 0; =2mri{+an
2mr+ ¢ 0 n

On 7, let us consider the rescaled null normal x := (2mr. )" 'n:

X =&+ Qun)|

with

a a a

Qu = omry 12 + a2 -
+ T 2m (m +vVm? — a2)

x = linear combination with constant coefficients of the Killing vectors &
and n = x is a Killing vector. Hence

The null hypersurface 7 defined by » = r is a Killing horizon J

Similarly

The null hypersurface %, defined by » = r_ is a Killing horizon )
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Horizons in the Kerr spacetime

Killing horizon 77

Null normal to 7 x =&+ Qpn
(on the picture £ x x)

= Qp ~ “angular velocity” of 7
= rigid rotation (2 independent
of 0)

NB: since 7 is inside the ergoregion,
& is spacelike on 7

(b)

Eric Gourgoulhon (LUTH) Basics of black hole physics 3 CSGC, Chennai, 18 Jan 2022 20 / 40



Horizons in the Kerr spacetime
Two views of the horizon 7

A

(a)

null geodesic generators field lines of Killing vector &
drawn vertically drawn vertically
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Horizons in the Kerr spacetime

The Killing horizon 57 is an event horizon

<+ Principal
null geodesics
for a/m = 0.9

Recall: for

r — 400, Kerr
metric ~
Schwarzschild
metric

—> same
asymptotic
structure

— same ¥ "

J€ is a black hole event horizon J
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Horizons in the Kerr spacetime

What happens for a > m?

A =72 —2mr +a®

a = m: extremal Kerr black hole
2

a=m < A=(r—m)
<= double root: 7y =r_ =m <= H and J%, coincide

<= J is a degenerate Killing horizon (vanishing surface gravity &,
see below)

a > m: naked singularity

a>m <= A>0

g(n,n) = p?A >0 <= all hypersurfaces r = const are timelike
any of them can be crossed in the direction of increasing r

no horizon <= no black hole

the curvature singularity at p? = 0 is naked

1117
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Penrose process

@ Penrose process
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Penrose process
Penrose process

P’ Particle 2 (4-momentum p) in free
fall from infinity into the ergoregion
4. At point A € 4, & splits (or
decays) into
e particle &2’ (4-momentum p’),
which leaves to infinity

e particle 22" (4-momentum p”’),
which falls into the black hole

Energy gain: ‘AE = Fout — Fin ‘

with Ei, = — g(€,p)|,, and Eow = — g(&,0")|

since at infinity, £ = 0; is the 4-velocity of the inertial observer at rest with
respect to the black hole.

CSGC, Chennai, 18 Jan 2022 25 /40
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Penrose process

Conserved energy along a geodesic

Geodesic Noether's theorem

Assume

e (#,g) is a spacetime endowed with a 1-parameter symmetry group,
generated by the Killing vector &

e Zis a geodesic of (., g) with tangent vector field p:
Then the scalar product E := —g(§, p) is constant along .Z.
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Penrose process

Conserved energy along a geodesic

Geodesic Noether's theorem
Assume

e (#,g) is a spacetime endowed with a 1-parameter symmetry group,
generated by the Killing vector &

e Zis a geodesic of (., g) with tangent vector field p:
Then the scalar product E := —g(§, p) is constant along .Z.

Proof:
Vp (g(£7p>) = pava(g,tw&upy) = pgva(gupy) = vaéu pgpy + éupav
1
= §(VU§V + vaU)pUpV + €V povapy =0
—_———— —_———

0 0

Eric Gourgoulhon (LUTH) Basics of black hole physics 3 CSGC, Chennai, 18 Jan 2022
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Penrose process
Penrose process

, AE=—g(&p)| + 9 D)l

p
Geodesic Noether's theorem:
AE = —g(& )4+ 9(&Dp)ls
= g&p-p)|,
Eric Gourgoulhon (LUTH) Basics of black hole physics 3
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Penrose process
Penrose process

, AE=—g(&p)| + 9 D)l

])
Geodesic Noether's theorem:
AE = —g(& )4+ 9(&Dp)ls
= g&p-p)|,

Conservation of energy-momentum at
. _ / 4
event A: p|, = p'|, + "],

— pl,— 0|, =0"|,
= AE = g(¢.p")|,

Now

e p” is a future-directed timelike or null vector
@ £ is a spacelike vector in the ergoregion
= one may choose some trajectory so that g(ﬁ,p")}A >0

— , i.e. energy is extracted from the rotating black hole! J
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Penrose process

Penrose process at work

Jet emitted by the nucleus of
the giant elliptic galaxy M87,
at the center of Virgo cluster

[HST]
Mgy = 3 x 10° M,
Viet == 0.99 ¢
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Global quantities

© Global quantities
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Global quantities
Mass

Total mass of a (pseudo-)stationary spacetime (Komar integral)

1
M=—— He vo
8W/¢V§ 6# s

e .7 any closed spacelike 2-surface located in the vacuum region
e &: stationary Killing vector, normalized to g(&,&) = —1 at infinity

@ e: volume 4-form associated to g (Levi-Civita tensor)

Physical interpretation: M measurable from the orbital period of a test
particle in far circular orbit around the black hole (Kepler's third law)
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Global quantities
Mass

Total mass of a (pseudo-)stationary spacetime (Komar integral)

1
M=-— rev va
8W/¢V§ E'LL A

e .7 any closed spacelike 2-surface located in the vacuum region
e &: stationary Killing vector, normalized to g(&,&) = —1 at infinity

@ €: volume 4-form associated to g (Levi-Civita tensor)

Physical interpretation: M measurable from the orbital period of a test
particle in far circular orbit around the black hole (Kepler's third law)

For a Kerr spacetime of parameters (m, a):

M=m )
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Global quantities
Angular momentum

Total angular momentum of an axisymmetric spacetime (Komar integral)

~ / VI €uvos

@ .¥: any closed spacelike 2-surface located in the vacuum region

e 1: axisymmetric Killing vector

@ e: volume 4-form associated to g (Levi-Civita tensor)

Physical interpretation: J measurable from the precession of a gyroscope
orbiting the black hole (Lense-Thirring effect)
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Global quantities
Angular momentum

Total angular momentum of an axisymmetric spacetime (Komar integral)

~ / VI €uvos

@ .¥: any closed spacelike 2-surface located in the vacuum region

@ m): axisymmetric Killing vector

@ €: volume 4-form associated to g (Levi-Civita tensor)

Physical interpretation: J measurable from the precession of a gyroscope
orbiting the black hole (Lense-Thirring effect) For a Kerr spacetime of
parameters (m, a):

J=am )
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Global quantities
Black hole area

As a non-expanding horizon, % has a well-defined (cross-section
independent) area A:

A= / J/7d0d@
S

@ . cross-section defined in terms of Kerr coordinates by
—> coordinates spanning .%: y* = (0, $)

e ¢ := det(qqp), with g,» components of the Riemannian metric g
induced on . by the spacetime metric g
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Global quantities
Black hole area

Evaluating ¢: set dt =0, dr = 0, and 7 = 7 in the expression of g in
terms of the Kerr coordinates:

2 4 in%60 -
g daida” = (1 - Z”) a2 + p—dtd % di dg

2 2
- (1 + ";”") dr® — 2a <1 + ”;”) sin® 0 dr dg
p p

2a*mr sin® 0
1p2d6% + <r2 ra?+ amTf“) sin2 0 A2,
p

and get

2a2mr, sin?
b_ .2 2 2 2 +
qab dy*dy’ = (ri +a” cos” ) db —|—<T‘+—|—CL +—2 2 4 2 cos? 0

) sin? 0 dp?
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Global quantities
Black hole area

ry is a zero of A := 1% — 2mr + o> = 2mr, :Ti+a2
— (up Can be rewritten as

adet = (r2 4+ a2 cos? 0) d6> (r} +a?)? 12 0 42
qap dy*dy’ = (ri +a”cos”0)d —i—m sin” 0 dg
= q:= det(qa) = (17 + a*)*sin® 0
= A=(r} +a2)/ysin9d0dg5

4
= | A =dn(rl + a®) = 8mmr,
Since 74 :=m + v/m? — a?, we get
A =8mm(m + vm? — a?) J
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Global quantities
Black hole surface gravity

Surface gravity: name given to the non-affinity coefficient x of the null
normal x = & + Qg to the event horizon 7 (cf. lecture 1):

T
VX =rX

Computation of x: cf. the SageMath notebook
https://nbviewer. jupyter.org/github/egourgoulhon/BHLectures/blob/

master/sage/Kerr_in_Kerr_coord.ipynb

m2 — g2

2m(m + vVm? — a?)

K =
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Global quantities
Black hole surface gravity

Surface gravity: name given to the non-affinity coefficient x of the null
normal x = & + Qg to the event horizon 7 (cf. lecture 1):

VX =rX

Computation of x: cf. the SageMath notebook
https://nbviewer. jupyter.org/github/egourgoulhon/BHLectures/blob/

master/sage/Kerr_in_Kerr_coord.ipynb

2 2

mes —a

2m(m + vVm? — a?)

Remark: despite its name, « is not the gravity felt by an observer staying a
small distance of the horizon: the latter diverges as the distance decreases!

K =
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@ The no-hair theorem
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The no-hair theorem
The no-hair theorem

Doroshkevich, Novikov & Zeldovich (1965), Israel (1967), Carter (1971),

Hawking (1972), Robinson (1975)

Within 4-dimensional general relativity, a stationary black hole in an
otherwise empty universe is necessarily a Kerr-Newman black hole, which is
an electro-vacuum solution of Einstein equation described by only 3
parameters:

@ the total mass M

o the total specific angular momentum a = J/M

@ the total electric charge @

= "a black hole has no hair" (John A. Wheeler)
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The no-hair theorem
The no-hair theorem

Doroshkevich, Novikov & Zeldovich (1965), Israel (1967), Carter (1971),

Hawking (1972), Robinson (1975)

Within 4-dimensional general relativity, a stationary black hole in an
otherwise empty universe is necessarily a Kerr-Newman black hole, which is
an electro-vacuum solution of Einstein equation described by only 3
parameters:

o the total mass M

o the total specific angular momentum a = J/M

@ the total electric charge @

= "a black hole has no hair" (John A. Wheeler)

Astrophysical black holes have to be electrically neutral:
@ () =0 : Kerr solution (1963)
@ @ =0and a=0: Schwarzschild solution (1916)
@ (@ # 0 and a = 0: Reissner-Nordstrém solution (1916, 1918))
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The no-hair theorem

The no-hair theorem: a precise mathematical statement

Any spacetime (., g) that

is 4-dimensional

is asymptotically flat

is pseudo-stationary

is a solution of the vacuum Einstein equation: Ric(g) =0
contains a black hole with a connected regular horizon

has no closed timelike curve in the domain of outer communications
(DOC) (= black hole exterior)

is analytic

has a DOC that is isometric to the DOC of Kerr spacetime.
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The no-hair theorem

The no-hair theorem: a precise mathematical statement

Any spacetime (., g) that
@ is 4-dimensional
is asymptotically flat
is pseudo-stationary
is a solution of the vacuum Einstein equation: Ric(g) =0

contains a black hole with a connected regular horizon

has no closed timelike curve in the domain of outer communications
(DOC) (= black hole exterior)

@ is analytic
has a DOC that is isometric to the DOC of Kerr spacetime.

Possible improvements: remove the hypotheses of analyticity and
non-existence of closed timelike curves (analyticity removed but only for slow
rotation [Alexakis, lonescu & Klainerman, Duke Math. J. 163, 2603 (2014)])
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Addendum

An important topic not discussed here: Kerr geodesics

See Chap. 11 and 12 of the lecture notes for details

timelike geodesic (orbit) around a

Kerr BH with a = 0.998 m spherical photon orbit around a Kerr

BH with a = 0.95m
— gravitational waves from extreme |

mass ratio inspiral (EMRI) = critical curve on images of the J

“ vicinity of a Kerr BH
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Addendum
Examples of images and critical curves

(ro/m) B

-10 -5 0 5 10
(ro/m) a

Image of a thick accretion disk around a
Kerr BH with @ = 0.95m seen from an
inclination angle 8 = 60°, computed
with the open-source ray-tracing code
Gyoto [https://gyoto.obspm.fr/]
(Fig. 12.28 of the lecture notes)

Eric Gourgoulhon (LUTH)

e \VIRT* April 11, 2017

ety
/’/

-

O

15

-15 50 pas

-15 =10 -5 0

(ro/m) ag
EHT image of M87* [EHT coll., ApJL 875,
L1 (2019)] with 2 critical curves
superposed: Schwarzschild BH (magenta
dotted) and extremal Kerr BH with
inclination 6 = 163° (green dotted)
(Fig. 12.30 of the lecture notes)
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