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Basics of black hole physics
Plan of the lectures

1 What is a black hole? (today)
2 Schwarzschild black hole (tomorrow)
3 Kerr black hole (tomorrow)
4 Black hole dynamics (on Wednesday)

Prerequisite
An introductory course on general relativity

Éric Gourgoulhon (LUTH) Basics of black hole physics 1 CSGC, Chennai, 17 Jan 2022 2 / 59



Basics of black hole physics
Plan of the lectures

1 What is a black hole? (today)
2 Schwarzschild black hole (tomorrow)
3 Kerr black hole (tomorrow)
4 Black hole dynamics (on Wednesday)

Prerequisite
An introductory course on general relativity

Éric Gourgoulhon (LUTH) Basics of black hole physics 1 CSGC, Chennai, 17 Jan 2022 2 / 59



Home page for the lectures

https://luth.obspm.fr/~luthier/gourgoulhon/bh16/chennai/

includes
these slides
the lecture notes (draft)
some SageMath notebooks
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Lecture 1: What is a black hole?

1 The framework: relativistic spacetime

2 A first (naive) definition of black hole

3 Basic geometry of null hypersurfaces

4 Non-expanding horizons and Killing horizons

5 Generic black holes
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The framework: relativistic spacetime

Framework of the lectures

spacetime = (M , g)

M : 4-dimensional smooth manifold
g: Lorentzian metric on M

Smooth manifold:
topological space M that
locally resembles R4 (but
maybe not globally)
=⇒ coordinate charts
=⇒ tangent vectors

Remark: vector connecting two
points p and q defined only for p
and q infinitely close
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The framework: relativistic spacetime

Lorentzian metric

Metric tensor g: (pseudo) scalar product on M ,
i.e. field of nondegenerate symmetric bilinear forms on M :

∀p ∈M , g|p : TpM × TpM −→ R

(u,v) 7−→ g(u,v) = gµνu
µvν

of signature (−,+,+,+):
∃ basis (eα)0≤α≤3 of TpM such that

g(u,v) = −u0v0 + u1v1 + u2v2 + u3v3

(Lorentzian signature)

The “line element”:
ds2 := g(dx, dx) = gµν dxµ dxν
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The framework: relativistic spacetime

Metric’s null cone

Vector v ∈ TpM is
spacelike ⇐⇒ g(v,v) > 0

null ⇐⇒ g(v,v) = 0

timelike ⇐⇒ g(v,v) < 0

Additional assumption:
the spacetime (M , g) is time-oriented
=⇒ future and past directions
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The framework: relativistic spacetime

Lorentzian manifold (M , g)
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The framework: relativistic spacetime

Worldlines

Particle described by its spacetime
extent: worldline L

massive part. ⇐⇒ timelike worldline
massless part. ⇐⇒ null worldline
(tachyon ⇐⇒ spacelike worldline)

Dynamics of a simple particle (no
spin, no internal structure) entirely
described by a future-directed vector
field tangent to the worldline: the
4-momentum p

Particle’s mass: m =
√
−g(p,p)

Éric Gourgoulhon (LUTH) Basics of black hole physics 1 CSGC, Chennai, 17 Jan 2022 10 / 59



The framework: relativistic spacetime

Worldlines

Particle described by its spacetime
extent: worldline L

massive part. ⇐⇒ timelike worldline
massless part. ⇐⇒ null worldline
(tachyon ⇐⇒ spacelike worldline)

Dynamics of a simple particle (no
spin, no internal structure) entirely
described by a future-directed vector
field tangent to the worldline: the
4-momentum p

Particle’s mass: m =
√
−g(p,p)

Éric Gourgoulhon (LUTH) Basics of black hole physics 1 CSGC, Chennai, 17 Jan 2022 10 / 59



The framework: relativistic spacetime

Einstein’s equation

Theory of gravity assumed in these lectures: general relativity

=⇒ the metric tensor g obeys Einstein’s equation:

R− 1

2
R g + Λ g = 8πT

where
R := Ric(g), Ricci tensor: Rαβ = Riem(g)µαµβ
R := gµνRµν , Ricci scalar
Λ cosmological constant
T energy-momentum tensor of matter/fields

In these lectures: Λ = 0.

The definition of a black hole and some of its properties do not depend on
Einstein’s equation.

We shall make clear whether a black hole property relies on Einstein’s
equation or not.
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A first (naive) definition of black hole

Outline
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A first (naive) definition of black hole

What is a black hole?

A layperson (loose) definition

A black hole is a localized region of spacetime from which neither massive
particles nor massless ones (photons) can escape.

[A. Riazuelo, IJMPD 28, 1950042 (2019)]
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A first (naive) definition of black hole

What is a black hole?

A layperson (loose) definition

A black hole is a localized region of spacetime from which neither massive
particles nor massless ones (photons) can escape.

[A. Riazuelo, IJMPD 28, 1950042 (2019)]

Two aspects:
localization
impassable boundary (to the
exterior)
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A first (naive) definition of black hole

Impassable boundaries in spacetime

no escape =⇒ black hole region is delimited by an impassable boundary,
called the event horizon

Boundary in spacetime =⇒ 3-dimensional submanifold, i.e. hypersurface

Locally, a hypersurface Σ can be of one of 3 types:

Σ timelike Σ spacelike Σ null
g|Σ Lorentzian g|Σ Riemannian g|Σ degenerate
n spacelike n timelike n null (and tangent to Σ)
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A first (naive) definition of black hole

Timelike hypersurface

1 2

For worldlines L directed
towards the future:

timelike hypersurface = 2-way
membrane
=⇒ not eligible for a black
hole boundary
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A first (naive) definition of black hole

Spacelike hypersurface

1

2

For worldlines L directed
towards the future:

spacelike hypersurface =
1-way membrane
=⇒ eligible for a black hole
boundary
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A first (naive) definition of black hole

Null hypersurface

1 2

For worldlines L directed
towards the future:

null hypersurface = 1-way
membrane
=⇒ eligible for a black hole
boundary...

...and elected! (as a
consequence of the formal
definition of a black hole, to
be given later)

The event horizon of a black hole is a null hypersurface of spacetime.
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Basic geometry of null hypersurfaces

Outline

1 The framework: relativistic spacetime

2 A first (naive) definition of black hole

3 Basic geometry of null hypersurfaces

4 Non-expanding horizons and Killing horizons

5 Generic black holes
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Basic geometry of null hypersurfaces

Basic geometry of null hypersurfaces

A generic hypersurface H of (M , g) can be (locally) defined as a level set
(or “isosurface”) of some scalar field u : M → R:

H = {p ∈M , u(p) = 0}

Any vector field ` normal to H must be collinear to the gradient of u:

` = −eρ
−→
∇u

where ρ is some scalar field and the minus sign is chosen for later
convenience1

In term of components with respect to a coordinate system (xα):

`α = −eρ∇αu = −eρgαµ∇µu = −eρgαµ∂µu

H null hypersurface ⇐⇒ g(`, `) = 0 ⇐⇒ gµν∂µu ∂νu = 0

1can be turned to + by introducing u′ := −u
Éric Gourgoulhon (LUTH) Basics of black hole physics 1 CSGC, Chennai, 17 Jan 2022 19 / 59
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Basic geometry of null hypersurfaces

Example 1: null hyperplane in Minkowski spacetime

ds2 = −dt2 +dx2 +dy2 +dz2

u := t− x = 0

∇u = dt− dx

∇αu = (1,−1, 0, 0)

∇αu = (−1,−1, 0, 0)

Choose ρ = 0

=⇒ `α = (1, 1, 0, 0)

` = ∂t + ∂x
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Basic geometry of null hypersurfaces

Example 2: future null cone in Minkowski spacetime

ds2 = −dt2 +dx2 +dy2 +dz2

u := t−
√
x2 + y2 + z2 = 0

∇u = dt− x
r
dx− y

r
dy− z

r
dz

r :=
√
x2 + y2 + z2

∇αu =
(

1,−x
r
,−y

r
,−z

r

)
∇αu =

(
−1,−x

r
,−y

r
,−z

r

)
Choose ρ = 0

=⇒ `α =
(

1,
x

r
,
y

r
,
z

r

)
` = ∂t +

x

r
∂x +

y

r
∂y +

z

r
∂z
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Basic geometry of null hypersurfaces

Example 3: Schwarzschild horizon
in Eddington-Finkelstein coordinates

ds2 = −
(

1− 2m

r

)
dt2+

4m

r
dtdr+

(
1 +

2m

r

)
dr2+r2dθ2+r2 sin2 θ dϕ2

u :=
(

1− r

2m

)
exp

(
r − t
4m

)
= 0

H : u = 0 ⇐⇒ r = 2m

∇u =
1

4m
e(r−t)/(4m)

[
−
(

1− r

2m

)
dt

−
(

1 +
r

2m

)
dr
]

Exercise: compute ` with ρ chosen so
that `t = 1 and get

` = ∂t +
r − 2m

r + 2m
∂r =⇒ `

H
= ∂t
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Basic geometry of null hypersurfaces

Example 3: Schwarzschild horizon
in Eddington-Finkelstein coordinates

0 2 4 6 8 10 12 14

r/m

-10

-5

0

5

10

15

t/
m

u= − 2u= − 1u= 0

u= 1

u= 2

Hypersurfaces of constant value of u
around the Schwarzschild horizon u = 0
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Basic geometry of null hypersurfaces

Frobenius identity
A fundamental identity obeyed by any normal ` to a hypersurface

Starting point: ` = −eρ
−→
∇u

=⇒ `α = −eρ∇αu

=⇒ ∇α`β = −eρ∇αρ∇βu− eρ∇α∇βu

=⇒ ∇α`β −∇β`α = −eρ∇αρ∇βu+ eρ∇βρ∇αu

=⇒ ∇α`β −∇β`α = ∇αρ `β −∇βρ `α

In terms of exterior (Cartan) calculus:
d` = dρ ∧ `

where
` is the 1-form metric-dual to vector `: ` = `αdx

α, `α = gαµ`
µ

d` is the exterior derivative of ` (2-form)
∧ is the exterior product of p-forms
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Basic geometry of null hypersurfaces

Null geodesic generators

Contract Frobenius identity with `:

`µ∇µ`α − `µ∇α`µ = `µ∇µρ `α − `µ`µ︸︷︷︸
0

∇αρ

Now `µ∇α`µ = ∇α(`µ`µ︸︷︷︸
0

)− `µ∇α`µ =⇒ `µ∇α`µ = 0

Hence
`µ∇µ`α = κ `α with κ := `µ∇µρ = ∇` ρ

or, by metric duality (index raising):

`µ∇µ`α = κ `α

i.e.
∇` ` = κ `
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Basic geometry of null hypersurfaces

Null geodesic generators

∇` ` = κ ` =⇒ ` is a pregeodesic vector, i.e. ∃ rescaling factor α such
that `′ = α` is a geodesic vector: ∇`′ `

′ = 0
Exercise: prove it!
=⇒ the field lines of ` are (null) geodesics.

κ is called the non-affinity coefficient of the null normal ` because
κ = 0 ⇐⇒ λ is an affine parameter

where λ is the parameter along a geodesic field line of ` whose derivative
vector is `:

` =
dx

dλ

Any null hypersurface H is ruled by a family of null geodesics, called the
generators of H , and each vector field ` normal to H is tangent to
these null geodesics.
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Basic geometry of null hypersurfaces

Examples of null geodesic generators

null hyperplane future null cone Schwarzschild horizon

∇` ` = 0 ∇` ` = 0 ∇` ` = κ `

κ = 0 κ = 0 κ =
1

4m
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Basic geometry of null hypersurfaces

Using SageMath to compute κ for the Schwarzschild horizon

SageMath: Python-based free mathematics software system with tensor
calculus capabilities (cf. https://sagemanifolds.obspm.fr)

The computation of κ:
https://nbviewer.jupyter.org/github/egourgoulhon/BHLectures/
blob/master/sage/Schwarzschild_horizon.ipynb

See also
https://luth.obspm.fr/~luthier/gourgoulhon/bh16/sage.html
for all the notebooks associated with these lectures
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Basic geometry of null hypersurfaces

Cross-sections of a null hypersurface

cross-section of the null hypersurface H :
2-dimensional submanifold S ⊂H such
that

1 the null normal ` is nowhere tangent to
S

2 each null geodesic generator of H
intersects S once, and only once

Any cross-section S is spacelike, i.e. all vectors tangent to S are
spacelike.

Proof: a vector tangent to H cannot be timelike, nor null and not normal.
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Basic geometry of null hypersurfaces

Expansion along a null normal

1 Consider a cross-section S
and a null normal ` to H

2 ε being a small parameter,
displace the point p by the
vector ε` to the point pε

3 Do the same for each point
in S , keeping the value of ε
fixed

4 Since ` is tangent to H ,
this defines a new
cross-section Sε

At each point, the expansion along ` is defined from the relative change
of the area element δA:

θ(`) := lim
ε→0

1

ε

δAε − δA
δA

= L` ln
√
q = qµν∇µ`ν
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cross-section Sε

At each point, the expansion along ` is defined from the relative change
of the area element δA:

θ(`) := lim
ε→0

1

ε

δAε − δA
δA

= L` ln
√
q = qµν∇µ`ν
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Basic geometry of null hypersurfaces

Expansion along a null normal

The expansion θ(`) at a point p ∈H
depends solely on the null normal `,
not on the choice of the cross-section
S through p.

Dependency of θ(`) w.r.t. `:

`′ = α` =⇒ θ(`′) = αθ(`)
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Basic geometry of null hypersurfaces

Examples of expansions

null hyperplane future null cone Schwarzschild horizon

θ(`) = 0 θ(`) =
2

r
θ(`) = 0
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Non-expanding horizons and Killing horizons

Outline

1 The framework: relativistic spacetime

2 A first (naive) definition of black hole

3 Basic geometry of null hypersurfaces

4 Non-expanding horizons and Killing horizons

5 Generic black holes
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Non-expanding horizons and Killing horizons

Distinguishing a black hole horizon from a generic null
hypersurface

Recall the naive definition stated above:

A black hole is a localized region of spacetime from which neither massive
particles nor massless ones (photons) can escape.

no-escape facet =⇒ boundary = null hypersurface
But we don’t want the interior of a future null cone in Minkowski
spacetime to be called a black hole...

localized facet: for equilibrium configurations, can be enforced by
cross-sections = closed surfaces with constant area, i.e. vanishing
expansion
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Non-expanding horizons and Killing horizons

Non-expanding horizons

Definition
A non-expanding horizon (NEH) is a null hypersurface H whose
cross-sections S are closed surfaces (i.e. compact without boundary) and
such that the expansion along any null normal ` vanishes identically:

θ(`) = 0

Remark 1: definition independent of `, due to `′ = α` =⇒ θ(`′) = αθ(`)

Remark 2: most of the time, the cross-sections S are assumed to have the
S2 topology, so that H has the “cylinder” topology: H ' R× S2.

Remark 3: concept introduced by P. Há́iček in 1973 [Com. Math. Phys. 34, 37]

under the name perfect horizon; the term non-expanding horizon has been
coined by A. Ashtekar, S. Fairhurst & B. Krishnan in 2000 [PRD 62, 104025].

Éric Gourgoulhon (LUTH) Basics of black hole physics 1 CSGC, Chennai, 17 Jan 2022 35 / 59

https://doi.org/10.1007/BF01646541
https://doi.org/10.1103/PhysRevD.62.104025


Non-expanding horizons and Killing horizons

Non-expanding horizons

Definition
A non-expanding horizon (NEH) is a null hypersurface H whose
cross-sections S are closed surfaces (i.e. compact without boundary) and
such that the expansion along any null normal ` vanishes identically:

θ(`) = 0

Remark 1: definition independent of `, due to `′ = α` =⇒ θ(`′) = αθ(`)

Remark 2: most of the time, the cross-sections S are assumed to have the
S2 topology, so that H has the “cylinder” topology: H ' R× S2.

Remark 3: concept introduced by P. Há́iček in 1973 [Com. Math. Phys. 34, 37]

under the name perfect horizon; the term non-expanding horizon has been
coined by A. Ashtekar, S. Fairhurst & B. Krishnan in 2000 [PRD 62, 104025].

Éric Gourgoulhon (LUTH) Basics of black hole physics 1 CSGC, Chennai, 17 Jan 2022 35 / 59

https://doi.org/10.1007/BF01646541
https://doi.org/10.1103/PhysRevD.62.104025


Non-expanding horizons and Killing horizons

(Counter-)examples of non-expanding horizons

null hyperplane future null cone Schwarzschild horizon

no closed cross-sections nonzero expansion OK
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Non-expanding horizons and Killing horizons

Connection with marginally trapped surfaces
Definition of a trapped surface (1/2)

S : closed (compact without boundary) spacelike 2-dimensional surface
embedded in spacetime (M , g)

Being spacelike, S lies outside the
light cone =⇒ ∃ two future-directed
null directions orthogonal to S :
` = outgoing, expansion θ(`)

k = ingoing, expansion θ(k)

In Minkowski spacetime:
θ(k) < 0 and θ(`) > 0

S is trapped ⇐⇒ θ(k) < 0 and θ(`) < 0 [Penrose 1965]

S is marginally trapped ⇐⇒ θ(k) < 0 and θ(`) = 0
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Non-expanding horizons and Killing horizons

Connection with marginally trapped surfaces
Definition of a trapped surface (2/2)

untrapped surface trapped surface

θ(k) < 0 and θ(`) > 0 θ(k) < 0 and θ(`) < 0

No trapped surface in Minkowski spacetime
=⇒ trapped surface = local concept characterizing strong gravity

(cf. Badri Krishnan’s lecture)
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Non-expanding horizons and Killing horizons

Connection with marginally trapped surfaces

Generically, one has θ(k) < 0 along cross-sections of a non-expanding
horizon. Hence:

A non-expanding horizon is (generically) a null hypersurface foliated by
marginally trapped surfaces.

Example: Schwarzschild horizon

θ(k) = − 1

m
and θ(`) = 0
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Non-expanding horizons and Killing horizons

Area of a non-expanding horizon

Each cross-section S of H is a
spacelike closed surface.

The area of S is given by the
positive definite metric q induced by
g on S :

A =

∫
S

√
q dy1dy2

where ya = (y1, y2) are coordinates
on S and q := det(qab)

Since θ(`) = 0, we have:

On a non-expanding horizon, the area A is independent of the choice of the
cross-section S =⇒ area of H
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Non-expanding horizons and Killing horizons

Example: area of the Schwarzschild horizon

Spacetime metric:

ds2 = −
(

1− 2m

r

)
dt2+

4m

r
dtdr+

(
1 +

2m

r

)
dr2+r2dθ2+r2 sin2 θ dϕ2

H : r = 2m; coord: (t, θ, ϕ)

S : r = 2m and t = t0; coord: ya = (θ, ϕ)

=⇒ induced metric on S :

qab dyadyb = (2m)2
(
dθ2 + sin2 θ dϕ2

)
=⇒ q := det(qab) = (2m)4 sin2 θ

=⇒ A =

∫
S

(2m)2 sin θ dθdϕ

=⇒ A = 16πm2
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Non-expanding horizons and Killing horizons
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Non-expanding horizons and Killing horizons

An important subclass of NEH: Killing horizons

Killing vector: generator ξ of a 1-parameter symmetry group of the
spacetime (M , g) (isometries)
(M , g) is invariant along the field lines of ξ:

Lξ g = 0 ⇐⇒ ∇αξβ +∇βξα = 0

Definition
A Killing horizon is a null hypersurface H in a spacetime (M , g)
endowed with a Killing vector field ξ such that, on H , ξ is normal to H .

=⇒ ξ is null on H

=⇒ the null geodesic generators of H are orbits of the 1-parameter group
of isometries generated by ξ.
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Non-expanding horizons and Killing horizons

Killing horizons as non-expanding horizons

A Killing horizon with closed cross-sections is a non-expanding horizon.

Proof: since ξ is a symmetry generator and ξ = ` on H , the area δA of
an element of cross-section does not vary when Lie-dragged along `, hence
θ(`) = 0.
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Non-expanding horizons and Killing horizons

Example of Killing horizon: the Schwarzschild horizon

Spacetime metric:

ds2 = −
(

1− 2m

r

)
dt2+

4m

r
dtdr+

(
1 +

2m

r

)
dr2+r2dθ2+r2 sin2 θ dϕ2

Killing vector field of Schwarzschild
spacetime associated with stationarity:
ξ = ∂t

On H : ξ = `
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Generic black holes

Outline

1 The framework: relativistic spacetime

2 A first (naive) definition of black hole

3 Basic geometry of null hypersurfaces

4 Non-expanding horizons and Killing horizons

5 Generic black holes
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Generic black holes

Limitation of the concept of non-expanding horizon

Non-expanding horizons capture well the “localized-in-space” feature of the
black hole region. However they do so only for steady-state configurations,
for which the cross section area remains constant. In particular, Killing
horizons assume that the spacetime is endowed with some symmetry,
usually stationarity.

To define black holes in dynamical spacetimes, one shall define properly
some “infinitely far” region and distinguish among the timelike or null
worldlines, those that can reach the far region from those that cannot.

The definition of the “infinitely far” region is best performed via Penrose’s
concept of conformal completion, also called conformal compactification.
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Generic black holes

Conformal completion of Minkowski spacetime
1. Introducing “compactified” coordinates

Spacetime metric:
ds2 = −dt2 + dx2 + dy2 + dz2

Move to spherical coordinates (t, r, θ, ϕ):
x = r sin θ cosϕ, y = r sin θ sinϕ, z = r cos θ

=⇒ ds2 = −dt2 + dr2 + r2dθ2 + r2 sin2 θdϕ2

Move to coordinates (τ, χ, θ, ϕ) with 0 ≤ χ < π and χ− π < τ < π − χ: τ = arctan(t+ r) + arctan(t− r)

χ = arctan(t+ r)− arctan(t− r)
⇐⇒


t =

sin τ

cos τ + cosχ

r =
sinχ

cos τ + cosχ

=⇒ ds2 = (cos τ + cosχ)−2 [−dτ2 + dχ2 + sin2 χ
(
dθ2 + sin2 θ dϕ2

)]
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Generic black holes

Conformal completion of Minkowski spacetime
2. The conformal metric

Thus we may write g = Ω−2g̃, or equivalently
g̃ = Ω2g

with

Ω := cos τ + cosχ =
2√

(t− r)2 + 1
√

(t+ r)2 + 1

g̃ is the metric defined by

ds̃2 = −dτ2 + dχ2 + sin2 χ
(
dθ2 + sin2 θ dϕ2

)︸ ︷︷ ︸
standard metric on S3

g̃ is a Lorentzian metric on the Einstein cylinder E = R× S3

(E , g̃) is a solution of Einstein’s equation with a cosmological constant
Λ > 0 and some pressureless matter of uniform density ρ = Λ/(4π).

Éric Gourgoulhon (LUTH) Basics of black hole physics 1 CSGC, Chennai, 17 Jan 2022 48 / 59



Generic black holes

Conformal completion of Minkowski spacetime
3. Embedding into the Einstein cylinder

on E :
−∞ < τ < +∞
0 ≤ χ ≤ π
on M :
χ−π < τ < π−χ
0 ≤ χ < π

cf. https://nbviewer.org/github/egourgoulhon/BHLectures/blob/master/sage/
conformal_Minkowski.ipynb for an interactive 3D view
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Generic black holes

Conformal completion of Minkowski spacetime
3. Embedding into the Einstein cylinder

Boundaries of the embedding of
M into E :

I + = hypersurface
{τ = π − χ, 0 < τ < π}
I − = hypersurface
{τ = χ− π, −π < τ < 0}
i0 = point (τ, χ) = (0, π)

i+ = point (τ, χ) = (π, 0)

i− = point (τ, χ) = (−π, 0)

Closure of M in E : M = M ∪I + ∪I − ∪
{
i0, i+, i−

}
NB: I + and I − are not parts of M and i0, i+ and i− are not points of
M
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Generic black holes

Conformal completion of Minkowski spacetime
4. Conformal diagram

0.5 1 1.5 2 2.5 3
χ

-3

-2

-1

1

2

3

τ

i 0

i +

i −

+

−

red: r = const
grey: t = const
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Generic black holes

Conformal completion of Minkowski spacetime
4. Conformal diagram

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
r

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
t

0.5 1.0 1.5 2.0 2.5 3.0
χ

3

2

1

1

2

3

τ

i 0

i +

i −

+

−

solid:
u := t− r = const
dashed:
v := t+ r = const

Radial null geodesics
appear as straight
lines with ±45◦ slope
(conformal diagram)
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Generic black holes

Conformal completion of Minkowski spacetime
4. Conformal diagram

0.5 1.0 1.5 2.0 2.5 3.0
χ

3

2

1

1

2

3

τ

i 0

i +

i −

+

−

I +: where all radial future-directed null
geodesics terminate =⇒ future null
infinity
I −: where all radial future-directed null
geodesics originate =⇒ past null infinity

Let I := I + ∪I − and M̃ := M ∪I
M̃ is a manifold with boundary, and its
boundary is I . The conformal factor Ω
relating g̃ and g vanishes at the boundary:

Ω
I
= 0

g = Ω−2g̃ =⇒ I is “infinitely far” from any
point in M
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Generic black holes

Conformal completion

Definition 1
A spacetime (M , g) admits a conformal completion iff there exists a
Lorentzian manifold with boundary (M̃ , g̃) equipped with a smooth
non-negative scalar field Ω : M̃ → R+ such that

M̃ = M ∪I , with I := ∂M̃ (the boundary of M̃ );
on M , g̃ = Ω2g;
on I , Ω = 0;
on I , dΩ 6= 0.

Definition 2

(M̃ , g̃) is a conformal completion at null infinity of (M , g) iff the
boundary I := ∂M̃ obeys I = I + ∪I −, with I + (resp. I −) being
never intersected by any past-directed (resp. future-directed) causal curve
originating in M . I + is called the future null infinity and I − the past
null infinity of (M , g).
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Generic black holes

General definition of a black hole, at last!

Causal past J−(I +): set of
points of M̃ that can be
reached from a point of I +

by a past-directed causal (i.e.
null or timelike) curve.

Definition
Let (M , g) be a spacetime with a conformal completion at null infinity such
that I + is complete; the black hole region, or simply black hole, is the
set of points of M that are not in the causal past of the future null infinity:

B := M \ (J−(I +) ∩M )

The boundary of B is called the (future) event horizon: H = ∂B
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Generic black holes

No black hole in Minkowski spacetime

0.5 1.0 1.5 2.0 2.5 3.0
χ

3

2

1

1

2

3

τ

i 0

i +

i −

+

−

J−(I +) ∩M = M =⇒ B = ∅
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Generic black holes

Completeness of I + to avoid spurious BH

If I + is a null hypersurface, I + complete
⇐⇒ I + generated by complete null
geodesics.

← Spurious black hole region B in
Minkowski spacetime resulting from a
conformal completion with a non-complete
I +.
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Generic black holes

Properties of the event horizon of a black hole

Property 1
The event horizon H is an achronal set, i.e. no pair of points of H can
be connected by a timelike curve of M .

Property 2
H is a topological manifold of dimension 3.
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Generic black holes

Properties of the event horizon

[ R.A. Matzner et al., Science 270,

941 (1995)]

Property 3 (Penrose 1968)

H is ruled by a family of null geodesics that
either lie entirely in H or never leave
H when followed into the future from
the point where they arrived in H

have no endpoint in the future.
Moreover, there is exactly one null geodesic
through each point of H , except at special
points where null geodesics enter in contact
with H .

Property 4
Wherever it is smooth, H is a null hypersurface.
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