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EMISSION FEATURES
IN AGN JETS

* We can identify two main regions :

» Standing regions : understood™ as

recollimation shocks in the jet,
BH

* Moving regions : understood” as
moving ejecta (blob) in the jet.

» Efficient particle acceleration mechanism
— Fermi |”

* Flare event during shock - shock
interactions ?

*in this studly.
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MODEL (1) : RECIPE FOR
A RELATIVISTIC JET

Jet propagation axis
—>

1. Use the AMRVAC code [5] which can
resolve SR-MHD equations inside an
adaptive cell mesh.

2. Initial cylindrical jet set with initial

—

conditions (p,p, B, ++).

3. To reproduce standing knots : use an
over-pressured jet [2, 3] (comparead

to the ambient medium) : pio > p,n.
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MODEL (1) : RECIPE FOR
A RELATIVISTIC JET

D.

Detect the shock regions in the jet
by checking variations of /.

Inject relativistic electrons in shocks.
We define an energy 7y, and a
density n,.

Check for radiative cooling : extract
a fraction of energy along time [4].

Jet propagation axis

T ————————————_
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MODEL (1) :

RECIPE FOR

A RELATIVISTIC JET

/. Launch compt

tations on super-

computer (suc

n as CIN

-S / Meso-

PSL) and wait a few days.

Picture may differ from actual products...




MODEL (1) : AND
THE EJECTA 7

We inject an ejecta at the base of our
jet with :

pej — pjet / peJ =pjet aﬂd }/e] —yi

't generates a moving shock able to
inject relativistic electrons.

Perturbations appear in the wake of
the ejecta...
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MODEL (2)
RIPTIDE CODE [3] s

Radiation Integration Processes in
Time-Dependent code.
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Synchrotron parameters from
relativistic electrons quantities

. Ay Ty).

Resolution of the radiative transfer
equation along a line of sight.

Relativistic eftects : Doppler
oeaming, light crossing time eftect...
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standing shocks moving shocks

OBSERVATIONAL
MARKER N®1 : THE FORK
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We report the distance traveled by
moving & standing regions in time.
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Since the beginning, the leading
moving shock is localizea.

A relaxation wave appears during the
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third shock - shock interaction and
propagates at lower speed.

For low opacity and / or a high enough
observation angle, we expect to see « fork » 0.5 1.0 1.5
events in VLBI data.

Observational time (year)
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v = 1019 Hz

OBSERVATIONAL
MARKER N°2 : THE ECHO

We distinguish emissions coming

from / (@1 = 90°).

O

Low frequencies :

—mission & variability dominated
by jet and relaxation waves.
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High frequencies :

Clear echo after shock - shock
INteractions.

We expect to detect an echo for all
frequencies, but especially in the X-ray
band. 5 10 15

Observational time (year)
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APPLICATION TO 3C 111 :

railing components have been detected in
1997 [4].

Trailing components (F, E2, E3, E4) appear
in the wake of a leading one (E, E1), after
interactions with standing shocks.

Associated radio flare events have been
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observed with asymmetry due to emission
from relaxation shocks.

Their origin are still matter of debate [1] but
our scenario can explain fork events and
the outburst.

Core separation of components vs. time [4].

10
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observed with asymmetry due to emission
from relaxation shocks.

Their origin are still matter of debate [1] but
our scenario can explain fork events and
the outburst.

Light curves of 3C 111 at 4.8, 8 and 14.5 GHz [4].
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KEY TAKEAWAYS

Paper
SO0
N to pe submitted .
O A&A |

* Thanks to a MWL study we aim to identity two relaxation waves observational markers

. At low frequency : fork events could be detected and give us information on the jet
physical parameters.

1. At all frequencies (especially high) : tlare echo after shock - shock interactions coming
from shock oscillations and / or relaxation shocks.

Comparison with 3C 111 is promising and dedicated simulations
need to be done. Relaxation waves can help us to constraint the jet
physics and build a coherent model of AGN.
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