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Global picture & motivations
• Some of the “greatest challenges” in theoretical physics:  

- what are Dark Matter and Dark Energy ?  
- how can we develop a quantum theory of gravity and/or unify it with the 
Standard Model of particles ?
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Astronomy & cosmology
(Grav. waves, SNIa, CMB, structure 
formation, galactic dynamics, …)

Quantum 
Gravity

Unification
DM and DE

Local physics
(Solar System, lab tests, 
GNSS, … )
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sans matière noire
observations

High energy
(particle physics: CERN-
LHC, Fermilab, DESY, …)

Figure inspired by Altschul et al, Adv, in Space Res. 55, 501, 2015



General Relativity

Einstein Equivalence Principle

Smat =

Z
d4x

p
�gLmat(gµ⌫ , )

Effects of 
gravitation

Space-time 
geometry

gµ⌫

- All types of mass-energy are 
coupled universally to gravitation 
(anomalous compared to other 
interactions)

- Governs the motion of test-
particles, light ray, gyroscope, 
etc… from a given metric

see K. Thorne et al, PRD, 1972

see C. Will, 1993 see C. Will, 1993

Einstein Field Equations

Energy/Matter 
content

Space-time 
geometry

- Contains the dynamics of 
the space-time metric: 
how is space-time curved?

Sgrav =
1

2

Z
d4x

p
�gR

- Light deflection, GW 
propagation, orbital 
dynamics, …
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Why search for a breaking of the EEP?
• Since the “universal” character of gravitation seems “anomalous” the 

question should rather be:  why is the EEP satisfy? [does not rely on 
any fundamental symmetry]

• The SM of particles contains several arbitrary constants: this seems 
rather unsatisfactory ⇒ introduction of dynamical fields that replace 

the constants and explain their values 

• Several models of DM break the EEP

• Several models of Dark Energy also break the EEP

• Several unification scenarios and most attempts to develop a 
quantum theory of gravity break the EEP

see the discussion in Damour, CQG, 2012

see Damour and Polyakov, Gen. Rel. Grav., 1994

see the discussion in Damour, CQG, 2012

Searching for a breaking for the EEP seems promising and can 
shed light on new physics

see e.g. Arvanitaki et al, PRD, 2015

see e.g. refs in Altschul et al, 2015

see the ESA Voyage 2050 white paper: arXiv1908.11785



Where to search for new physics?

1) Improving “standard tests” of the EEP. 

2) consider other frameworks and use existing data to search for new 

signatures. Example: model of ultralight Dark Matter 

3) consider new regimes unexplored so far. Example: S-stars around our 

Galactic Center
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EEP implies Universality of Free Fall

A B

⌘ =
�a

a

If any uncharged test body is 
placed at an initial event in space-
time and given an initial velocity 

there, then its subsequent trajectory 
will be independent of its internal 

structure and composition

2 different bodies are sensitive to the same space-time geometry



MICROSCOPE

7

MICROSCOPE
MICRO-Satellite pour l’Observation du Principe d’Equivalence

An Equivalence Principle test in space on the way to launch 

Manuel Rodrigues, ONERA project manager
On behalf of the Microscope team

manuel.rodrigues@onera.fr

• Launched on April 25th, 2016 ; life-time: ~ 2 yr  
(12% of the time used for UFF tests)

• Drag-free satellite,  two cylindrical test masses:  
Pt/Ti. Measurement of the diff. acceleration along the symmetry axis

• So far, only 1 scientific session is published (120 orbits, ~ 8 days)

collaboration between CNES, 
ONERA, CNRS, ESA, ZARM, PTB

⌘ = (�1± 9[stat]± 9[syst])⇥ 10�15
<latexit sha1_base64="yMtFeiqUqjN+7IqNuR0FBflDIvo="></latexit>

Touboul et al, PRL, 2017

• Independent analysis in the time domain @SYRTE: verification + very 

modular: other scientific objectives (Lorentz invariance)
Pihan-Le Bars et al, PRL, 2019

• 1 order of magnitude improvement expected for the final results



EEP implies that the constants of Nature 
are constant (Local Position Invariance)

Constancy of the fine structure constant, mass of 
fermions, etc…

A
B

for a review, see J.P. Uzan, LRR, 2011

↵̇

↵
< 10�17yr�1

• Measurements performed using atomic clocks on Earth

• Improves relatively quick 

d ln↵

dU/c2
< 10�7

2 different atomic transitions/frequencies are sensitive to the same 
space-time geometry



Are the constants of Nature constant on 
astrophysical scales?

Quasars Absorption 
system z1  

• Quasar measurements: each absorption line acts as a “clock”

see King et al, MNRAS 2012 
       Wilczynska et al, Sciences Ad. 2020

- 338 absorption systems up to redshift 7
- Spatial variation of ! reported at the level of 3.9 "

��↵/↵ ⇠ 10�4 � 10�6

<latexit sha1_base64="3COjJZR6nvEUyJzrcLeRveG5RI4=">AAACKXicbVDJTsMwEHVYS9kKHLlYVEhcWhJUsdwq4MCxSHSRmhBNXLe1aieR7SBVUX6Dn+AXuMKdG3CEH8FdDtDyJGue3pvRjF8Qc6a0bX9YC4tLyyurubX8+sbm1nZhZ7ehokQSWicRj2QrAEU5C2ldM81pK5YURMBpMxhcjfzmA5WKReGdHsbUE9ALWZcR0EbyC7arWE+An7rXlGtwgcd9OJ6UzHgCO/Z9WqpkpXE9zfxC0S7bY+B54kxJEU1R8wtfbiciiaChJhyUajt2rL0UpGaE0yzvJorGQAbQo21DQxBUeen4Zxk+NEoHdyNpXqjxWP09kYJQaigC0ylA99WsNxL/9QIxs1l3z72UhXGiaUgmi7sJxzrCo9hwh0lKNB8aAkQyczsmfZBAtAk3b0JxZiOYJ42TslMpX9xWitXLaTw5tI8O0BFy0BmqohtUQ3VE0CN6Ri/o1Xqy3qx363PSumBNZ/bQH1jfP2nSpl4=</latexit>

• White dwarf (G191-B2B): Fe absorption lines from the white dwarf 
atmosphere

- “Strong” gravitational potential � ⇠ GM

c2R
⇠ 5⇥ 10�5

<latexit sha1_base64="cDloYTKSQq83yWx3oI09sBopu6s=">AAACJnicbVDNSsNAGNzUv1r/oh69LBbBS0tSWtRb0YNehCq2FZq2bLabduluEnY3Qgl5Cl/CV/Cqd28i3sQncZvmoK0DC8PM9zHfjhsyKpVlfRq5peWV1bX8emFjc2t7x9zda8kgEpg0ccACce8iSRj1SVNRxch9KAjiLiNtd3wx9dsPREga+HdqEpIuR0OfehQjpaW+WXLCEYWOpBw6nkA4vrxOYtyr3CapVnMU5URC2+rFpVrSN4tW2UoBF4mdkSLI0Oib384gwBEnvsIMSdmxrVB1YyQUxYwkBSeSJER4jIako6mPdFg3Tr+VwCOtDKAXCP18BVP190aMuJQT7upJjtRIzntT8V/P5XPJyjvtxtQPI0V8PAv2IgZVAKedwQEVBCs20QRhQfXtEI+QbkvpZgu6FHu+gkXSqpTtavnsplqsn2f15MEBOATHwAYnoA6uQAM0AQaP4Bm8gFfjyXgz3o2P2WjOyHb2wR8YXz/b4qUT</latexit>

see Berengut et al, PRL, 2013 
       Hu et al, MNRAS, 2020

�↵

↵
= (6.36± 0.35stat ± 1.84sys)

<latexit sha1_base64="l2PH7N3xhmDtcZw3A3kvehkMdYk=">AAACU3icbVFNb9NAEN2YQkugkNIjlxURUrlYNg39OFSqSg8ci9S0Fd0oGm/Gyaq7trU7rhRZ/m/9Ez1w5cAV7r2wTi1RUp402qf3ZjSjt0mhlaMo+t4Jnqw8fba69rz74uX6q9e9jTdnLi+txKHMdW4vEnCoVYZDUqTxorAIJtF4nlx9bvzza7RO5dkpzQscGZhmKlUSyEvj3jeRWpCVOEZNIEAXM6ir9uUHXGhMaWsn3N4RheFRuP1pLAzQzJrKEVDdqHG4N/irzl0trJrO6MO414/CaAH+mMQt6bMWJ+PeDzHJZWkwI6nBucs4KmhUgSUlNdZdUTosQF7BFC89zcCgG1WLDGr+3isTnubWV0Z8oT6cqMA4NzeJ72xOdcteI/7XS8zSZkr3RpXKipIwk/eL01JzynkTMJ8oi5L03BOQVvnbuZyBD5n8N3R9KPFyBI/J2ccwHoT7Xwf9w6M2njX2lr1jWyxmu+yQfWEnbMgku2E/2S/2u3PbuQuCYOW+Nei0M5vsHwTrfwA4NLTI</latexit>

�↵

↵
= (4.21± 0.48stat ± 2.25sys)

<latexit sha1_base64="yySCd2bv4Ov+E84nvgmS4tQJqlg="></latexit>

and

- variation of ! in strong gravitational field reported at the level of 1.5-3 "
Independent measurements from other systems with other lines 

needed to confirm (or infirm) these results



© SYRTE

EEP implies the GR gravitational redshift 
(Local Position Invariance)

A free falling body and an atomic transition are 
sensitive to the same space-time geometry

A B aA = �rU

�⌫

⌫

�

B,grav

=
U

c2


�⌫

⌫

�

grav

= (1 + ↵redshift)
U

c2

↵redshift = (0.19± 2.48)⇥ 10�5

See Delva et al, PRL, 2018 and Herrman et al, PRL 2018

• The best redshift test uses 2 
misplaced Galileo satellites



Where to search for new physics?

1) Improving “standard tests” of the EEP. 

2) consider other frameworks and use existing data to search for new 

signatures. Example: model of ultralight Dark Matter 

3) consider new regimes unexplored so far. Example: S-stars around our 

Galactic Center



Motivations: Dark Matter?
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• Required to explain several astro/cosmo observations: CMB, galactic 
rotation curves, lensing, structures formation, …

• So far: Not directly detected at high energy

Dark Matter can be made out of bosonic scalar particles

Fig. from US cosmic vision: new idea for Dark Matter, 2017, arXiv:1707:04591



A light scalar Dark Matter model

Searching for an Oscillating Massive Scalar Field as a Dark Matter Candidate Using
Atomic Hyperfine Frequency Comparisons

A. Hees,1,2,* J. Guéna,1,† M. Abgrall,1,‡ S. Bize,1,§ and P. Wolf1,∥
1SYRTE, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06,

LNE, 61 avenue de l’Observatoire, 75014 Paris, France
2Department of Physics and Astronomy, University of California, Los Angeles, California 90095, USA

(Received 26 April 2016; published 5 August 2016)

We use 6 yrs of accurate hyperfine frequency comparison data of the dual rubidium and caesium cold
atom fountain FO2 at LNE-SYRTE to search for a massive scalar dark matter candidate. Such a scalar field
can induce harmonic variations of the fine structure constant, of the mass of fermions, and of the quantum
chromodynamic mass scale, which will directly impact the rubidium/caesium hyperfine transition
frequency ratio. We find no signal consistent with a scalar dark matter candidate but provide improved
constraints on the coupling of the putative scalar field to standard matter. Our limits are complementary to
previous results that were only sensitive to the fine structure constant and improve them by more than an
order of magnitude when only a coupling to electromagnetism is assumed.

DOI: 10.1103/PhysRevLett.117.061301

While thoroughly tested [1], the theory of general
relativity (GR) is currently challenged by theoretical con-
siderations and by galactic and cosmological observations.
Indeed, the development of a quantum theory of gravitation
or of a theory that would unify gravitation with the other
fundamental interactions leads to deviations from GR.
These modifications are usually characterized by the
introduction of new fields in addition to the space-time
metric to model the gravitational interaction. For example,
string theory generically predicts the existence of new
scalar fields (dilaton, moduli, axions). In addition, in the
current cosmological paradigm, some galactic and cosmo-
logical observations are explained by the introduction of
cold dark matter (DM) and of dark energy. Little is
currently known about these two components that con-
stitute the major part of our Universe. They can be
interpreted as new types of matter (although they have
not been directly detected so far), as a modification of the
theory of gravitation, or even as a combination of the two.
The introduction of nonminimally coupled scalar fields

additionally to GR (tensor-scalar theories) generally leads
to a space-time dependence of fundamental constants,
which can then be searched for by experiments that test
the Einstein equivalence principle (EEP) like weak equiv-
alence principle (WEP) tests or tests of local position or
Lorentz invariance (LPI and LLI) [1]. In the past, spec-
troscopy of different atomic transitions has been widely
used to carry out such searches and has set the tightest
limits so far on a possible present-day space-time variation
of fundamental constants [2–14].
Such scalar fields could be a candidate for DM and/or

dark energy. Different cosmological evolutions of the scalar
fields are possible (see, e.g. [15,16]). In several scenarios
(in particular, in the one defined by the action below), a

massive scalar field will oscillate at a frequency related to
its mass, leading to a corresponding oscillation of funda-
mental constants (see, e.g. [17,18]). Recently, atomic
spectroscopy of Dy has been used to constrain such
oscillations [2] of the fine structure constant α. In this
Letter, we present limits on possible oscillations of a linear
combination of constants (α, quark mass, and Λ quantum
chromodynamics—QCD—mass scale) using ≈6 yrs of
highly accurate hyperfine frequency comparison of 87Rb
and 133Cs atoms. This provides complementary constraints
to those from Dy spectroscopy [2] which is sensitive to α
alone. When assuming a variation of α only, our results
improve the limits of [2] by over an order of magnitude.
Tensor-scalar theories of gravitation have been widely

studied as an extension of GR (see, for example [19–23]
and references therein) motivated by unification theories
[15,24–27] or by models of dark energy [28–31].
Moreover, models of a light scalar field coupled to DM
have been proposed [32–36] as well as bosonic models of
DM [37–39]. In this Letter, we focus on a massive scalar
field model of DM parametrized by the action (see, e.g.
[40])

S¼ 1

c

Z
d4x

ffiffiffiffiffiffi−gp

2κ
½R − 2gμν∂μφ∂νφ − VðφÞ%

þ 1

c

Z
d4x

ffiffiffiffiffiffi−gp ½LSMðgμν;ΨÞ þ Lintðgμν;φ;ΨÞ%; ð1Þ

with κ ¼ 8πG=c4 where G is Newton’s constant, R the
curvature scalar of the space-time metric gμν, φ a dimen-
sionless scalar field (the dimensionless scalar field φ is
related to the scalar field ϕ of [2,17] through
φ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πG=cℏ

p
ϕ ¼

ffiffiffiffiffiffi
4π

p
ϕ=MPl, with MPl the Planck
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• A massive scalar field (sometimes called dilaton)

V (') / m2'2

+Smat [gµ⌫ ,']

• will oscillate at the cosmological level

see e.g.  Arvanitaki et al PRD, 2015 or Stadnik and Flambaum, PRL 2015

⇢ / m2'2
0• similar to a cosmo pressure-less fluid with

V (')

'' ⇠ '0 cos


mc2

~ t

�

<latexit sha1_base64="5ud2tlmM8pBHg5GgFPAV5m09pow="></latexit>
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FIG. 1. Simulated VULF based on the approach in Ref. [40]
with field value �(t) and time normalized by �DM and coher-
ence time ⌧c respectively. The inset plot displays the high-
resolution coherent oscillation starting at t = 0.

corresponding frequency-space DM “lineshape” (power
spectral density, PSD) were derived in Ref. [40], and red-
erived in the axion context by the authors of Ref. [51].
While Refs. [40, 51] explicitly discuss data-analysis im-
plications in the regime of the total observation time T
being much larger than the coherence time, T � ⌧c, de-
tailed investigation of the regime T ⌧ ⌧c has been lacking
(although we note that Ref. [51] includes a brief discus-
sion of the change in sensitivity 2 in this regime).

Here we focus on this regime, T ⌧ ⌧c, characteris-
tic of experiments searching for ultralight (pseudo)scalars
with masses . 10�13 eV [32–38] that have field coherence
times & 1 day. This mass range is of significant interest
as the lower limit on the mass of an ultralight particle
extends to 10�22 eV and can be further extended if it
does not make up all of the DM [26]. Additionally, there
has been recent theoretical motivation for “fuzzy dark
matter” in the 10�22 � 10�21 eV range [26–29] and the
so-called string “axiverse” extends to 10�33 eV [30]. Sim-
ilar arguments also apply to dilatons and moduli [31].

Figure 1 shows a simulated VULF field, illustrating
the amplitude modulation present over several coherence
times. At short time scales (⌧ ⌧c) the field coherently os-
cillates at the Compton frequency, see the inset of Fig. 1,
where the amplitude �0 is fixed at a single value sampled
from its distribution. An unlucky experimentalist could
even have near-zero field amplitudes during the course of
their measurement.

On these short time scales the DM signal s(t) exhibits

2 The authors discuss the change of sensitivity due to coherent
averaging of the signal in the T ⌧ ⌧c regime, T 1/4 ! T 1/2, in
their Appendix E. There is no mention of how the velocity and
amplitude distributions would impact the derived limits.

a harmonic signature,

s(t) = �⇠�(t) ⇡ �⇠�0 cos(2⇡f�t+ ✓) , (1)

where � is the coupling strength to a standard-model field
and ✓ is an unknown phase. Details of the particular ex-
periment are accounted for by the factor ⇠. In this regime
the amplitude �0 is unknown and yields a time-averaged
energy density h�(t)2iT⌧⌧c = �2

0/2. However, for times
much longer than ⌧c the energy density approaches the
ensemble average determined by h�2

0i = �2
DM. This field

oscillation amplitude is estimated by assuming that the
average energy density in the bosonic field is equal to the
local DM energy density ⇢DM ⇡ 0.4GeV/cm3, and thus
�DM = ~(m�c)�1p2⇢DM.
The oscillation amplitude sampled at a particular time

for a duration ⌧ ⌧c is not simply �DM, but rather a ran-
dom variable whose sampling probability is described by
a distribution characterizing the stochastic nature of the
VULF. Until recently, most experimental searches have
been in the m� � 10�13 eV regime with short coherence
times ⌧c ⌧ 1 day. However, for smaller boson masses
it becomes impractical to sample over many coherence
times: for example, ⌧c & 1 year for m� . 10�16 eV. As-
suming the value �0 = �DM neglects the stochastic na-
ture of the bosonic dark matter field [32–38].
The net field �(t) is a sum of di↵erent field modes with

random phases. The oscillation amplitude, �0, results
from the interference of these randomly phased oscillat-
ing fields. This can be visualized as arising from a ran-
dom walk in the complex plane, described by a Rayleigh
distribution [51]

p(�0) =
2�0

�2
DM

exp

✓
� �2

0

�2
DM

◆
, (2)

analogous to that of chaotic (thermal) light [57]. This dis-
tribution implies that ⇡ 63% of all amplitude realizations
will be below the r.m.s. value �DM. Equation (2) [51]
is typically represented in its exponential form [50] (see
Supplementary Material), and is well sampled in the
T � ⌧c regime. However, this stochastic behavior should
not be ignored in the opposite limit.
We refer to the conventional approach assuming �0 =

�DM as deterministic and approaches that account for
the VULF amplitude fluctuations as stochastic. To com-
pare these two approaches we choose a Bayesian frame-
work and calculate the numerical factor a↵ecting cou-
pling constraints, allowing us to illustrate the e↵ect on
exclusion plots of previous deterministic constraints [32–
38]. It is important to emphasize that di↵erent frame-
works to interpret experimental data than presented here
can change the magnitude of this numerical factor [58–
61], see Supplementary Material for a detailed discussion.
In any case, accounting for this stochastic nature will
generically relax existing constraints as we show below.
Establishing constraints on coupling strength — We

follow the Bayesian framework [62] (see application to

• Around 10-22 eV, nice large scales properties

Some properties of this ultralight DM 
candidate

14

• For low masses (m < 10 eV), it behaves as a classical field

see e.g. Marsh, Phys. Reports, 2016

see Derevianko, PR A, 2018 for a detailed derivation

see Centers et al, arXiv:1905.13650

• oscillation coherent over 106 
oscillations only (due to DM 
velocity distribution): complex 
data analysis for long dataset (or 
high frequency)
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• An effective Lagrangian for the scalar-matter coupling 

• This leads to a space-time dependance of some constants of Nature to 
the scalar field

see Damour and Donoghue, PRD, 2010

• Most usual couplings: linear (cfr Damour-Donoghue) or quadratic (cfr 
Stadnik et al) in #

Lmat [gµ⌫ , ,'] = LSM [gµ⌫ , ] + 'i

2

4d(i)e

4e2
Fµ⌫F

µ⌫ � d(i)g �3
2g3

FA
µ⌫F

µ⌫
A �

X

j=e,u,d

⇣
d(i)mj

+ �mjd
(i)
g

⌘
mj ̄j j

3

5

↵(') = ↵
⇣
1 + d(i)e 'i

⌘

⇤3(') = ⇤3

⇣
1 + d(i)g 'i

⌘
mj(') = mj

⇣
1 + d(i)mj

'i
⌘

for j = e, u, d

ULDM induces a space/time variation 
of constants of Nature

ULDM will induce periodic signals on atomic clocks comparison



Search for a period signal in Cs/Rb 
comparison
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• Cs/Rb FO2 atomic fountain data from SYRTE: high accuracy and high 
stability, running since 2008

• Search for a periodic signal in the data

A. Hees, J. Guéna, M. Abgrall, S. Bize, P. Wolf, PRL, 2016

using Scargle’s method, see Scargle ApJ, 1982

No positive detection

see J. Guéna et al, Metrologia, 2012 and J. Guéna et al., IEEE UFFC, 2012
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⌫ (~r , t)� ⌫ (~r , t)

⌫(~r , t )� ⌫(~r , t )

Search for a period signal in a Mach-
Zender interferometer

17

• New type of experiment proposed by P. Wolf (SYRTE). Simplified 
principle:

For the theoretical interpretation, see Savalle et al, arXiv:1902.07192

A

�⌫A
⌫A

= (i)
A 'i

<latexit sha1_base64="l9uNoUbIv1f7w95wEVJLml5z0SQ="></latexit>

Fiber 
delay T0

⌫A(t� T0)

<latexit sha1_base64="58LTvOVK3OjgdQqWQ1qumLVwgv0=">AAACA3icbVDLSsNAFJ34rPVVdelmsAh1YUmkoO6qblxW6AuaECbTSTt0MgkzN0IJXfoLbnXvTtz6IW79EqdtFtp64MLhnHs5lxMkgmuw7S9rZXVtfWOzsFXc3tnd2y8dHLZ1nCrKWjQWseoGRDPBJWsBB8G6iWIkCgTrBKO7qd95ZErzWDZhnDAvIgPJQ04JGMl1ZerfVOC86dtnfqlsV+0Z8DJxclJGORp+6dvtxzSNmAQqiNY9x07Ay4gCTgWbFN1Us4TQERmwnqGSREx72eznCT41Sh+HsTIjAc/U3xcZibQeR4HZjAgM9aI3Ff/1gmghGcIrL+MySYFJOg8OU4EhxtNCcJ8rRkGMDSFUcfM7pkOiCAVTW9GU4ixWsEzaF1WnVr1+qJXrt3k9BXSMTlAFOegS1dE9aqAWoihBz+gFvVpP1pv1bn3MV1es/OYI/YH1+QPrMpdY</latexit>

⌫A(t)
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Oscillations of the 
scalar field

• Main advantage: explored frequency range ~ kHz-MHz while standard 
clocks are limited to 100 mHz
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The DAMNED experiment (DArk 
Matter from Non Equal Delays)
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• In practice:

- the “clock” is a laser cavity (its length/output frequency oscillate)
- the length of the fiber oscillates
- the refractive index of the fiber oscillates

see Savalle et al, submitted to PRL, arXiv:2006.07055

Fiber - 54km

Cavity

• First experiment built @SYRTE (E. Savalle’s PhD) and data analyzed

• A Lomb-Scargle analysis shows that 
no significant periodic signal is detected in the 10-200 kHz frequency band



Let’s focus on two specific cases: a 
linear and a quadratic coupling
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Lmat[gµ⌫ , ] = LSM[gµ⌫ , ] + '

2

4 de
4e2

Fµ⌫F
µ⌫ � dg�3

2g3
FA
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µ⌫
A �

X

i=e,u,d

(dmi + �midg)mi ̄i ̄i
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• “Easy” to solve (existence of a Green function)

4

way to parametrize a possible variation of any atomic
frequency X to variations of the constants of Nature is
to use the following parametrization (see e.g. [41, 42])

d lnX = [k↵]X d ln↵+ [kµ]X d lnµ+ [kq]X d lnmq/⇤3 ,
(12)

where µ = me/mp is the ration of the electron mass over
the proton mass, mq is the mass of the light quarks (as-
sumed to be equals), and ki are the sensitivity coe�cients
of the specific transition X. The atomic and nuclear cal-
culations to derive these sensitivity coe�cients have been
achieved in [40, 41, 43, 44] and the obtained numerical
values can be found in Table I from [42].

While the parametrization (12) is widely used, another
equivalent parametrization is useful since closer to the
form of the interaction Lagrangian from Eq. (2)

d lnX = [k↵]X d ln↵+ [kµ]X d lnme/⇤3

+
⇥
k0q
⇤
X
d lnmq/⇤3 , (13)

with k0q = kq � 0.049(8)(3) [45]. These sensitivity coe�-
cients play a role equivalent to the ones of the dilatonic
charges introduced in the previous section.

The coupling of the scalar field to a clock working on
the transition X is then encoded in the coupling function
X which is defined by

d lnX = (i)
X d

�
'i
�
, (14)

and can be expressed as

(i)
X =

1

i
[k↵]X d(i)e +

1

i
[kµ]X

⇣
d(i)me

� d(i)g

⌘

+
1

i

⇥
k0q
⇤
X

⇣
d(i)m̂ � d(i)g

⌘
. (15)

IV. SOLUTIONS FOR THE SCALAR FIELD

The space-time evolution of the scalar field depends
on the distribution of matter. In this manuscript, we
will consider spherically symmetric extended bodies that
will be characterized by a radius RA and by a constant
matter density ⇢A. The reason for this simplification be-
comes obvious when considering the case of the quadratic
coupling: the non-linearity of this case complexifies the
derivations and the solutions (see Appendix B). Never-
theless, the case of a two-layers spherical body is also
considered in Appendix B.

At first order, we model usual matter as a pressureless
perfect fluid whose stress-energy tensor is given by Tµ⌫ =
c2⇢uµu⌫ , where ⇢ is the matter density and u⌫ the 4-
velocity of the fluid 4. For this matter modeling, the

4 Corrections due to the pressure will arise at the post-Newtonian
order and can safely be neglected here.

source term in the Klein-Gordon equation (5b)) writes
as

� = �↵(')⇢c2 , (16)

where ↵ is given by Eq. (7).
Having in mind that the scalar field’s perturbation

must be small if it depicts dark matter (see SEC. IVC),
equation (5b) can be written at leading order as

1

c2
'̈(t,x)��'(t,x) = �

4⇡G

c2
↵A(')⇢A(x)�

c2m2
'

~2 '(t,x) ,

(17)
where the dot denotes a derivative with respect to the
coordinate time t and � is the 3-dimensional flat Lapla-
cian. In this equation, we have neglected terms that are
of the order of O(|hµ⌫ |) (with hµ⌫ = gµ⌫ � ⌘µ⌫). Indeed,
a linearized version of the Einstein equation (5a) shows
that the metric will be generated by sources that will
contribute as ⇠ GMA

c2r ⌧ 1 and by terms that are propor-
tional to '2

0 ('0 being the typical amplitude of the scalar
field). If the scalar field is associated to DM, one can
show that '0 ⇠ 6 ⇥ 10�31 eV/m' [37, 38] which shows
that '2

0 ⌧ 1 for scalar field masses above 10�30 eV. Un-
der this assumption, the space-time behavior of the scalar
field will be governed by Eq. (17) whose solution will be
given in this section. Nevertheless, the explicit limit at
which this assumption breaks down has been carefully
taken into account when deriving the constraints on the
parameters di in Section VI.

A. Linear coupling

In the case of a linear coupling, the function ↵A(') =

↵̃(1)
A appearing in Eq. (17) is independent of the scalar

field and the general solution is a sum of free waves and a
Yukawa-type scalar field generated by the central body.
Details about the derivation of the results are given in
Appendix B. The general expression of the scalar field is
given by

'(1)(t,x) = '0 cos (k.x� !t+ �)� s(1)A

GMA

c2r
e�r/�' ,

(18)

where |k|2 + c2m2
'/~2 = !2/c2 and

�' =
~

cm'
. (19)

The constant s(1)A is the e↵ective scalar charge of the ex-
tended body and is given by

s(1)A = ↵̃(1)
A I

✓
RA

�'

◆
, (20)

with the function I(x) given by

I(x) = 3
x coshx� sinhx

x3
.

Oscillations can be interpreted as DM

A fifth force generated by a 
body (more common in the 
modified gravity community)

Atomic sensors are more 
sensitive

UFF measurements are more 
sensitive

Independent of the DM 
interpretation

see A. Hees et al, PRD, 2018
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Update from Hees et al, PRD, 2018
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- Rb/Cs: Hees et al, PRL, 2016
- JILA: Kennedy et al, PRL, 2020
- Eöt-Wash: Wagner et al, CQG, 2012
- MICROSCOPE: Bergé et al, PRL, 2018
- DAMNED: Savalle et al, arXiv:2006.07055

Assuming the DM density to be constant over the whole Solar System (0.4 GeV/cm3)
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- Rb/Cs: Hees et al, PRL, 2016
- JILA: Kennedy et al, PRL, 2020
- Eöt-Wash: Wagner et al, CQG, 2012
- MICROSCOPE: Bergé et al, PRL, 2018
- Antypas, PRL, 2019
- DAMNED: Savalle et al, arXiv:2006.07055

Large density of scalar field can be (gravitationally) bound by the gravitational field of 
the Earth/Sun

see Banerjee et al, Communications Physics, 2020 [and ref. therein]
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• No more Yukawa term! And a non-linear dependency for

Scalar field for a quadratic coupling
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• More difficult to solve

5

Note that this result, valid only for a homogeneous
sphere, is generalized to a two-layers sphere in Appendix
B. The only di↵erence is related to the expression of the
e↵ective scalar charge sA.

B. Quadratic coupling

In the case of a quadratic coupling, the function

↵A(') = ↵̃(2)
A ' that appears in the Klein-Gordon equa-

tion (17) is now linear in '. This linear dependency
changes drastically the form of the solution. In partic-
ular, it is easy to show that there exists no static solu-
tion beyond the trivial one. The time-dependent solution
contains several modes but only one is non-vanishing at
infinity and can be interpreted as DM. It’s expression is
given by

'(2)(t,x) = '0 cos

✓
m'c2

~ t+ �

◆
1� s(2)A

GMA

c2r

�
,

(21)
with the e↵ective scalar charge

s(2)A = ↵̃(2)
A J

sign[↵̃(2)
A ]

 r
3
���↵̃(2)

A

���
GMA

c2RA

!
, (22)

which depends on the sign of ↵̃(2)
A through

J+(x) = 3
x� tanhx

x3
, (23a)

J�(x) = 3
tanx� x

x3
. (23b)

J+ corresponds to the cases that are such that ↵̃(2)
A >

0 while J� corresponds to the cases that are such that

↵̃(2)
A < 0. In the limit of weak gravitational field and

small coupling constants (i.e. x ⌧ 1), J±(x) = 1 and

s(2)A = ↵̃(2)
A . In this case, note that the expression of

the scalar field is similar to the one derived in [32]. The
behavior of the scalar field around a body A — through

the e↵ective scalar charge s(2)A — depends only on the
dimensionless parameter

"A = ↵̃(2)
A

GMA

c2RA
, (24)

as illustrated in Fig. 1.

In particular, the sign of ↵̃(2)
A (or of "A) plays an im-

portant role and two di↵erent non-linear mechanisms can
arise: a deamplification mechanism for "A � 1 and
an amplification mechanism for "A ⌧ �1 (see Figs. 1
and 2). This behavior is similar to the one arising for
massless scalar fields, for which both amplification and
deamplification non-pertubative mechanisms have been
studied since the seminal work of Damour and Esposito-
Farèse [33] — although in the somewhat di↵erent context
of metric scalar-tensor theories. In particular, in metric

FIG. 1. Evolution of the e↵ective scalar charge s(2)A that ap-
pears in the solution of the scalar field from Eq. (21) as a
function of "A from Eq. (24). For large positive values of "A,
a deamplification mechanism occurs and the scalar field at
the surface of the body tends to vanish. On the other hand,
for negative values of "A, the scalar field is amplified, which
leads to non-perturbative e↵ects.

theories, the amplification mechanism for ↵̃(2)
A < 0 has

been known as the scalarization of compact objects.

For positive values of the coupling coe�cient ↵̃(2)
A > 0

and for very large couplings ("A � 1), one gets J+(x) ⇠

3/x2. In that case, s(2)A ⇠
RAc2

GMA
and the scalar field at the

surface of the body (r = RA in Eq. (21)) tends to vanish.
Indeed, the scalar field solution in that limit reduces to

'(2)(t,x) = '0 cos

✓
m'c2

~ t+ �

◆✓
1�

RA

r

◆
. (25)

Similarly, the interior solution tends towards 0 when the
coupling constant increases (see in Appendix B 2 a for its
expression and see the top of Fig. 2). This means that
the scalar field only penetrates a thin shell at the surface
of the body. A detailed analysis of the internal solution
given by Eq. (B24) shows that the typical length over
which the field is not constant inside the body is given

by ` ⇠ RA/
⇣
3↵̃(2)

A GMA/c2/RA

⌘1/2
. Fig. 2 illustrates

this behavior, which has similarities with the chameleon
mechanism [46–49]. Conceptually, the situation can be
compared to the case of an insulator located in an ex-
ternal electric field: the electric field inside and at the
surface will vanish. This property has an interesting con-
sequence: experiments located at the surface of the Earth
are not appropriate to detect or constrain such a scalar
field while space-experiments are better suited.

On the other hand, for the cases where ↵̃(2)
A < 0, the

scalar field diverges in the limit where
���↵̃(2)

A

��� GMA
c2RA

!
⇡2

12

as illustrated in the bottom of Fig. 2 and in Fig. 1. For
couplings approaching this limit and for couplings above
this limit, the approximation used in this paper (see be-
ginning of Sec. IV) does not hold anymore and one needs
to solve numerically the full field equations — which in-
clude the metric — in order to fully take into account
non-linear behaviors. On top of that, when di'2/2 < �1,

5

Note that this result, valid only for a homogeneous
sphere, is generalized to a two-layers sphere in Appendix
B. The only di↵erence is related to the expression of the
e↵ective scalar charge sA.

B. Quadratic coupling

In the case of a quadratic coupling, the function

↵A(') = ↵̃(2)
A ' that appears in the Klein-Gordon equa-
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changes drastically the form of the solution. In partic-
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. (23b)
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A >

0 while J� corresponds to the cases that are such that

↵̃(2)
A < 0. In the limit of weak gravitational field and

small coupling constants (i.e. x ⌧ 1), J±(x) = 1 and

s(2)A = ↵̃(2)
A . In this case, note that the expression of

the scalar field is similar to the one derived in [32]. The
behavior of the scalar field around a body A — through

the e↵ective scalar charge s(2)A — depends only on the
dimensionless parameter

"A = ↵̃(2)
A

GMA

c2RA
, (24)

as illustrated in Fig. 1.

In particular, the sign of ↵̃(2)
A (or of "A) plays an im-

portant role and two di↵erent non-linear mechanisms can
arise: a deamplification mechanism for "A � 1 and
an amplification mechanism for "A ⌧ �1 (see Figs. 1
and 2). This behavior is similar to the one arising for
massless scalar fields, for which both amplification and
deamplification non-pertubative mechanisms have been
studied since the seminal work of Damour and Esposito-
Farèse [33] — although in the somewhat di↵erent context
of metric scalar-tensor theories. In particular, in metric

FIG. 1. Evolution of the e↵ective scalar charge s(2)A that ap-
pears in the solution of the scalar field from Eq. (21) as a
function of "A from Eq. (24). For large positive values of "A,
a deamplification mechanism occurs and the scalar field at
the surface of the body tends to vanish. On the other hand,
for negative values of "A, the scalar field is amplified, which
leads to non-perturbative e↵ects.

theories, the amplification mechanism for ↵̃(2)
A < 0 has

been known as the scalarization of compact objects.

For positive values of the coupling coe�cient ↵̃(2)
A > 0

and for very large couplings ("A � 1), one gets J+(x) ⇠

3/x2. In that case, s(2)A ⇠
RAc2

GMA
and the scalar field at the

surface of the body (r = RA in Eq. (21)) tends to vanish.
Indeed, the scalar field solution in that limit reduces to
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Similarly, the interior solution tends towards 0 when the
coupling constant increases (see in Appendix B 2 a for its
expression and see the top of Fig. 2). This means that
the scalar field only penetrates a thin shell at the surface
of the body. A detailed analysis of the internal solution
given by Eq. (B24) shows that the typical length over
which the field is not constant inside the body is given

by ` ⇠ RA/
⇣
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A GMA/c2/RA

⌘1/2
. Fig. 2 illustrates

this behavior, which has similarities with the chameleon
mechanism [46–49]. Conceptually, the situation can be
compared to the case of an insulator located in an ex-
ternal electric field: the electric field inside and at the
surface will vanish. This property has an interesting con-
sequence: experiments located at the surface of the Earth
are not appropriate to detect or constrain such a scalar
field while space-experiments are better suited.

On the other hand, for the cases where ↵̃(2)
A < 0, the

scalar field diverges in the limit where
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as illustrated in the bottom of Fig. 2 and in Fig. 1. For
couplings approaching this limit and for couplings above
this limit, the approximation used in this paper (see be-
ginning of Sec. IV) does not hold anymore and one needs
to solve numerically the full field equations — which in-
clude the metric — in order to fully take into account
non-linear behaviors. On top of that, when di'2/2 < �1,
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FIG. 2. Evolution of the scalar field around a homogeneous
spherically symmetric body. The di↵erent curves show the
impact of the values of ↵̃(2). In particular, in the limit of
large positive couplings, the scalar field tends to vanish inside
the body and the scalar field diverges for negative values of
↵̃(2).

the fundamental constants from Eq. (3) change their sign,
which is an unacceptable behavior.

The amplification mechanism for ↵̃(2)
A < 0 in metric

theories has been known as the scalarization of compact
objects [33]. It is a fully non-perturbative e↵ect that re-
quires to solve both the scalar and the metric fields equa-
tions numerically. Recently, several works extended the
work from [33] to the case of massive scalar fields [50–52].
However, those studies only focus on stationary solutions
of the field equations, preventing them to find oscillating
dark-matter candidate solutions to the problem. The so-
lutions presented in this section, although only valid for
weak gravitational field, indicates that a non-stationary
scalarization may also occur for light scalar DM. In other
words, dark matter as a light scalar-field may also lead to
a potential scalarization of compact objects. A detailed
investigation of such e↵ects — which would include the
non-pertubative resolution of the scalar and the metric
field equations without the stationarity assumption — is
beyond the scope of this paper.

C. Identification as Dark Matter

In order to identify the scalar field as dark matter,
one has to consider its asymptotical behavior. For both
solutions computed in the previous section, the scalar
field oscillates at spatial infinity. It can be shown that
this scalar field gives rise to cosmological energy density

⇢' and pressure p':

⇢' =
c2

8⇡G


'̇2 +

c2V (')

2

�
,

p' =
c2

8⇡G


'̇2

�
c2V (')

2

�
.

After averaging over one period, an oscillating scalar field
gives a vanishing pressure and a energy density [37, 38]

⇢' =
c6

4⇡G~2
m2

''
2
0

2
. (26)

Assuming that all DM is made of one light scalar-field,
this relationship fixes its amplitude for a given mass.

V. OBSERVABLES

A. Comparison of two atomic clocks

One way to search for a violation of the EEP is to
measure the frequency ratio between two clocks working
on di↵erent atomic transitions and located at the same
position. The observable is then Y = XA/XB where XA

and XB are the specific transition for each clocks. It
follows from Eq. (14) that variation in Y take the form
of

d lnY =
⇣
(i)
XA

� (i)
XB

⌘
d
�
'i
�
. (27)

If we assume that the variations are small (i.e. |Y � 1| ⌧
1) then, the evolution of the observable Y is given by

Y (t,x) = K +
⇣
(i)
XA

� (i)
XB

⌘
'i(t,x) , (28)

where K is a constant that is unobservable.

1. Linear coupling

Using the expression of the scalar field solution of the
Klein-Gordon equation with a linear coupling leads to

Y (t,x) = K +�(1)'0 cos (k.x� !t+ �) (29)

��(1)s(1)A

GMA

c2r
e�r/�' .

The first part corresponds to the coupling of the clocks
to the oscillating DM field. This signature has already
been searched for in several measurements [29, 37, 38].
The second part corresponds to the coupling of the clock
to the scalar field generated by the central body and has
been considered in data analyzis in [53].
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FIG. 2. Evolution of the scalar field around a homogeneous
spherically symmetric body. The di↵erent curves show the
impact of the values of ↵̃(2). In particular, in the limit of
large positive couplings, the scalar field tends to vanish inside
the body and the scalar field diverges for negative values of
↵̃(2).

the fundamental constants from Eq. (3) change their sign,
which is an unacceptable behavior.

The amplification mechanism for ↵̃(2)
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theories has been known as the scalarization of compact
objects [33]. It is a fully non-perturbative e↵ect that re-
quires to solve both the scalar and the metric fields equa-
tions numerically. Recently, several works extended the
work from [33] to the case of massive scalar fields [50–52].
However, those studies only focus on stationary solutions
of the field equations, preventing them to find oscillating
dark-matter candidate solutions to the problem. The so-
lutions presented in this section, although only valid for
weak gravitational field, indicates that a non-stationary
scalarization may also occur for light scalar DM. In other
words, dark matter as a light scalar-field may also lead to
a potential scalarization of compact objects. A detailed
investigation of such e↵ects — which would include the
non-pertubative resolution of the scalar and the metric
field equations without the stationarity assumption — is
beyond the scope of this paper.

C. Identification as Dark Matter

In order to identify the scalar field as dark matter,
one has to consider its asymptotical behavior. For both
solutions computed in the previous section, the scalar
field oscillates at spatial infinity. It can be shown that
this scalar field gives rise to cosmological energy density

⇢' and pressure p':

⇢' =
c2

8⇡G


'̇2 +

c2V (')

2

�
,

p' =
c2

8⇡G


'̇2

�
c2V (')

2

�
.

After averaging over one period, an oscillating scalar field
gives a vanishing pressure and a energy density [37, 38]

⇢' =
c6

4⇡G~2
m2

''
2
0

2
. (26)

Assuming that all DM is made of one light scalar-field,
this relationship fixes its amplitude for a given mass.

V. OBSERVABLES

A. Comparison of two atomic clocks

One way to search for a violation of the EEP is to
measure the frequency ratio between two clocks working
on di↵erent atomic transitions and located at the same
position. The observable is then Y = XA/XB where XA

and XB are the specific transition for each clocks. It
follows from Eq. (14) that variation in Y take the form
of

d lnY =
⇣
(i)
XA

� (i)
XB

⌘
d
�
'i
�
. (27)

If we assume that the variations are small (i.e. |Y � 1| ⌧
1) then, the evolution of the observable Y is given by

Y (t,x) = K +
⇣
(i)
XA

� (i)
XB

⌘
'i(t,x) , (28)

where K is a constant that is unobservable.

1. Linear coupling

Using the expression of the scalar field solution of the
Klein-Gordon equation with a linear coupling leads to

Y (t,x) = K +�(1)'0 cos (k.x� !t+ �) (29)

��(1)s(1)A

GMA

c2r
e�r/�' .

The first part corresponds to the coupling of the clocks
to the oscillating DM field. This signature has already
been searched for in several measurements [29, 37, 38].
The second part corresponds to the coupling of the clock
to the scalar field generated by the central body and has
been considered in data analyzis in [53].

Screening for positive couplings and amplification for negative couplings!

Similar to the “scalarization”, see Damour and Esposito-Farèse, PRL, 1993

see A. Hees et al, PRD, 2018
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2. Quadratic coupling

The signature produced by the scalar field in the case of
a quadratic coupling between the scalar field and matter
is richer, it reads

Y (t,x) = K +�(2)'
2
0

2

✓
1� s(2)A

GMA

c2r

◆2

(30)

+�(2)'
2
0

2
cos (2!t+ 2�)

✓
1� s(2)A

GMA

c2r

◆2

where ! = m'c2/~. This signature is quite unique and
is the combination of two distinct terms. The first one is
space-dependent and could be searched for by comparing
spatial and terrestrial clocks located at various positions,
and/or by monitoring the evolution of the frequency of
a given clock with respect to the position of the Earth
in the gravitional field of the Sun. The second term is
an oscillating term whose amplitude depends on the lo-
cation in the gravitational field. In particular, if one
considers two clocks located at the surface of the Earth
(r = R�), the oscillating part of the signal becomes (from
Eqs. (B21), (B26) and (B27c))

Ỹ (t) =
�(2)

↵̃(2)
�

c2R�
6GM�

'2
0 tanh

2

 s

3↵̃(2)
�

GM�
c2R�

!
(31)

⇥ cos (2!t+ 2�) .

B. Tests of the Universality of Free Fall

The motion of a test mass can be derived from the
action (6), or equivalently from the Lagrangian

LT = �mT (')c

r
�gµ⌫

dxµ

dt

dx⌫

dt
. (32)

In this section, we are interested in UFF experiments for
which the acceleration of two test masses located at the
same location are compared. Therefore, we are only in-
terested in the first order part of the acceleration that is
composition dependent. We can therefore use the follow-
ing approximation for the Lagrangian

LT = �mT (')c
2

r
1�

v2

c2
⇡ �mT (')c

2

✓
1�

v2

2c2

◆
,

(33)
where, as for the Klein-Gordon equation, we neglect
terms that are of the order of O (|hµ⌫ |). A simple Euler-
Lagrange derivation gives the first order contribution to
the violation of the UFF:

[aT ]EEP = �↵T (')
⇥
c2r'+ v'̇

⇤
, (34)

where ↵T is the coupling defined by Eq. (7). The di↵er-
ential acceleration between two bodies A and B located
at the same position is therefore given by

[�a]A�B = aA(t,x)� aB(t,x)

= � (↵A(')� ↵B('))
⇥
c2r'+ v'̇

⇤
. (35)

1. Linear coupling

In the case of a linear coupling, the di↵erential accel-
eration between two bodies A and B located in the same
location, in the gravitational field generated by a central
body C can be determined from Eq. (18) and is given by

[�a]A�B = �↵̄(1)'0

�
c2k � !v

�
sin (k.x� !t+ �)

��↵̄(1)s(1)C e�r/�'

✓
1 +

r

�'

◆
GMC

r3
x , (36)

where �↵̄(1) =
⇣
↵̄(1)
A � ↵̄(1)

B

⌘
with ↵̄(1) given in Eq. (11).

The first line represents an oscillating variation of the
di↵erential acceleration of the two bodies. This oscilla-
tion is induced by the oscillating DM. The amplitude of
this UFF violation is linearly proportional to the cou-

pling constant d(1)i . The second line is a regular fifth
force di↵erential acceleration that is due to the coupling
of the two bodies to the scalar field generated by the cen-
tral body. The amplitude of the violation of the UFF is

proportional to the square of the d(1)i coe�cients. This
term can be identified from standard UFF measurements
by using the Eötvös parameter ⌘ defined as

⌘ = 2
|aA � aB |

|aA + aB |
, (37)

by (see also [35])

⌘ = �↵̃(1)s(1)C e�r/�'

✓
1 +

r

�'

◆
. (38)

2. Quadratic coupling

The di↵erential acceleration between two bodies in the
case of a quadratic coupling can be determined from
Eq. (21) and is given by

[�a]A�B = �↵̄(2)'
2
0

2

✓
1� s(2)C

GMc

c2r

◆"
�

GMc

r3
x s(2)C

�
GMc

r3
xs(2)C cos (2!t+ 2�) (39)

+

✓
1� s(2)C

GMc

c2r

◆
!v sin (2!t+ 2�)

#

where �↵̄(2) =
⇣
↵̄(2)
A � ↵̄(2)

B

⌘
with ↵̄(2) given in Eq. (11).

The first line correspond to a di↵erential acceleration pro-
portional to the Newtonian acceleration. This term can
be identified from standard UFF measurements by using
the Eötvös parameter ⌘ defined by Eq. (37) with

⌘ = s(2)C �↵̄(2)'
2
0

2

✓
1� s(2)C

GMc

c2r

◆
. (40)
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2. Quadratic coupling

The signature produced by the scalar field in the case of
a quadratic coupling between the scalar field and matter
is richer, it reads

Y (t,x) = K +�(2)'
2
0

2

✓
1� s(2)A

GMA

c2r

◆2

(30)

+�(2)'
2
0

2
cos (2!t+ 2�)

✓
1� s(2)A

GMA

c2r

◆2

where ! = m'c2/~. This signature is quite unique and
is the combination of two distinct terms. The first one is
space-dependent and could be searched for by comparing
spatial and terrestrial clocks located at various positions,
and/or by monitoring the evolution of the frequency of
a given clock with respect to the position of the Earth
in the gravitional field of the Sun. The second term is
an oscillating term whose amplitude depends on the lo-
cation in the gravitational field. In particular, if one
considers two clocks located at the surface of the Earth
(r = R�), the oscillating part of the signal becomes (from
Eqs. (B21), (B26) and (B27c))

Ỹ (t) =
�(2)

↵̃(2)
�

c2R�
6GM�

'2
0 tanh

2

 s

3↵̃(2)
�

GM�
c2R�

!
(31)

⇥ cos (2!t+ 2�) .

B. Tests of the Universality of Free Fall

The motion of a test mass can be derived from the
action (6), or equivalently from the Lagrangian

LT = �mT (')c

r
�gµ⌫

dxµ

dt

dx⌫

dt
. (32)

In this section, we are interested in UFF experiments for
which the acceleration of two test masses located at the
same location are compared. Therefore, we are only in-
terested in the first order part of the acceleration that is
composition dependent. We can therefore use the follow-
ing approximation for the Lagrangian

LT = �mT (')c
2

r
1�

v2

c2
⇡ �mT (')c

2

✓
1�

v2

2c2

◆
,

(33)
where, as for the Klein-Gordon equation, we neglect
terms that are of the order of O (|hµ⌫ |). A simple Euler-
Lagrange derivation gives the first order contribution to
the violation of the UFF:

[aT ]EEP = �↵T (')
⇥
c2r'+ v'̇

⇤
, (34)

where ↵T is the coupling defined by Eq. (7). The di↵er-
ential acceleration between two bodies A and B located
at the same position is therefore given by

[�a]A�B = aA(t,x)� aB(t,x)

= � (↵A(')� ↵B('))
⇥
c2r'+ v'̇

⇤
. (35)

1. Linear coupling

In the case of a linear coupling, the di↵erential accel-
eration between two bodies A and B located in the same
location, in the gravitational field generated by a central
body C can be determined from Eq. (18) and is given by

[�a]A�B = �↵̄(1)'0

�
c2k � !v

�
sin (k.x� !t+ �)

��↵̄(1)s(1)C e�r/�'

✓
1 +

r

�'

◆
GMC

r3
x , (36)

where �↵̄(1) =
⇣
↵̄(1)
A � ↵̄(1)

B

⌘
with ↵̄(1) given in Eq. (11).

The first line represents an oscillating variation of the
di↵erential acceleration of the two bodies. This oscilla-
tion is induced by the oscillating DM. The amplitude of
this UFF violation is linearly proportional to the cou-

pling constant d(1)i . The second line is a regular fifth
force di↵erential acceleration that is due to the coupling
of the two bodies to the scalar field generated by the cen-
tral body. The amplitude of the violation of the UFF is

proportional to the square of the d(1)i coe�cients. This
term can be identified from standard UFF measurements
by using the Eötvös parameter ⌘ defined as

⌘ = 2
|aA � aB |

|aA + aB |
, (37)

by (see also [35])

⌘ = �↵̃(1)s(1)C e�r/�'

✓
1 +

r

�'

◆
. (38)

2. Quadratic coupling

The di↵erential acceleration between two bodies in the
case of a quadratic coupling can be determined from
Eq. (21) and is given by

[�a]A�B = �↵̄(2)'
2
0

2

✓
1� s(2)C

GMc

c2r

◆"
�

GMc

r3
x s(2)C

�
GMc

r3
xs(2)C cos (2!t+ 2�) (39)

+

✓
1� s(2)C

GMc

c2r

◆
!v sin (2!t+ 2�)

#

where �↵̄(2) =
⇣
↵̄(2)
A � ↵̄(2)

B

⌘
with ↵̄(2) given in Eq. (11).

The first line correspond to a di↵erential acceleration pro-
portional to the Newtonian acceleration. This term can
be identified from standard UFF measurements by using
the Eötvös parameter ⌘ defined by Eq. (37) with

⌘ = s(2)C �↵̄(2)'
2
0

2

✓
1� s(2)C

GMc

c2r

◆
. (40)

Atomic clocks on elliptic orbits?

See A. Hees et al, PRD, 2018
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2. Quadratic coupling

The signature produced by the scalar field in the case of
a quadratic coupling between the scalar field and matter
is richer, it reads

Y (t,x) = K +�(2)'
2
0

2

✓
1� s(2)A

GMA

c2r

◆2

(30)

+�(2)'
2
0

2
cos (2!t+ 2�)

✓
1� s(2)A

GMA

c2r

◆2

where ! = m'c2/~. This signature is quite unique and
is the combination of two distinct terms. The first one is
space-dependent and could be searched for by comparing
spatial and terrestrial clocks located at various positions,
and/or by monitoring the evolution of the frequency of
a given clock with respect to the position of the Earth
in the gravitional field of the Sun. The second term is
an oscillating term whose amplitude depends on the lo-
cation in the gravitational field. In particular, if one
considers two clocks located at the surface of the Earth
(r = R�), the oscillating part of the signal becomes (from
Eqs. (B21), (B26) and (B27c))

Ỹ (t) =
�(2)

↵̃(2)
�

c2R�
6GM�

'2
0 tanh

2

 s

3↵̃(2)
�

GM�
c2R�

!
(31)

⇥ cos (2!t+ 2�) .

B. Tests of the Universality of Free Fall

The motion of a test mass can be derived from the
action (6), or equivalently from the Lagrangian

LT = �mT (')c

r
�gµ⌫

dxµ

dt

dx⌫

dt
. (32)

In this section, we are interested in UFF experiments for
which the acceleration of two test masses located at the
same location are compared. Therefore, we are only in-
terested in the first order part of the acceleration that is
composition dependent. We can therefore use the follow-
ing approximation for the Lagrangian

LT = �mT (')c
2

r
1�

v2

c2
⇡ �mT (')c

2

✓
1�

v2

2c2

◆
,

(33)
where, as for the Klein-Gordon equation, we neglect
terms that are of the order of O (|hµ⌫ |). A simple Euler-
Lagrange derivation gives the first order contribution to
the violation of the UFF:

[aT ]EEP = �↵T (')
⇥
c2r'+ v'̇

⇤
, (34)

where ↵T is the coupling defined by Eq. (7). The di↵er-
ential acceleration between two bodies A and B located
at the same position is therefore given by

[�a]A�B = aA(t,x)� aB(t,x)

= � (↵A(')� ↵B('))
⇥
c2r'+ v'̇

⇤
. (35)

1. Linear coupling

In the case of a linear coupling, the di↵erential accel-
eration between two bodies A and B located in the same
location, in the gravitational field generated by a central
body C can be determined from Eq. (18) and is given by

[�a]A�B = �↵̄(1)'0

�
c2k � !v

�
sin (k.x� !t+ �)

��↵̄(1)s(1)C e�r/�'

✓
1 +

r

�'

◆
GMC

r3
x , (36)

where �↵̄(1) =
⇣
↵̄(1)
A � ↵̄(1)

B

⌘
with ↵̄(1) given in Eq. (11).

The first line represents an oscillating variation of the
di↵erential acceleration of the two bodies. This oscilla-
tion is induced by the oscillating DM. The amplitude of
this UFF violation is linearly proportional to the cou-

pling constant d(1)i . The second line is a regular fifth
force di↵erential acceleration that is due to the coupling
of the two bodies to the scalar field generated by the cen-
tral body. The amplitude of the violation of the UFF is

proportional to the square of the d(1)i coe�cients. This
term can be identified from standard UFF measurements
by using the Eötvös parameter ⌘ defined as

⌘ = 2
|aA � aB |

|aA + aB |
, (37)

by (see also [35])

⌘ = �↵̃(1)s(1)C e�r/�'

✓
1 +

r

�'

◆
. (38)

2. Quadratic coupling

The di↵erential acceleration between two bodies in the
case of a quadratic coupling can be determined from
Eq. (21) and is given by

[�a]A�B = �↵̄(2)'
2
0

2

✓
1� s(2)C

GMc

c2r

◆"
�

GMc

r3
x s(2)C

�
GMc

r3
xs(2)C cos (2!t+ 2�) (39)

+

✓
1� s(2)C

GMc

c2r

◆
!v sin (2!t+ 2�)

#

where �↵̄(2) =
⇣
↵̄(2)
A � ↵̄(2)

B

⌘
with ↵̄(2) given in Eq. (11).

The first line correspond to a di↵erential acceleration pro-
portional to the Newtonian acceleration. This term can
be identified from standard UFF measurements by using
the Eötvös parameter ⌘ defined by Eq. (37) with

⌘ = s(2)C �↵̄(2)'
2
0

2

✓
1� s(2)C

GMc

c2r

◆
. (40)
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2. Quadratic coupling

The signature produced by the scalar field in the case of
a quadratic coupling between the scalar field and matter
is richer, it reads

Y (t,x) = K +�(2)'
2
0

2

✓
1� s(2)A

GMA

c2r

◆2

(30)

+�(2)'
2
0

2
cos (2!t+ 2�)

✓
1� s(2)A

GMA

c2r

◆2

where ! = m'c2/~. This signature is quite unique and
is the combination of two distinct terms. The first one is
space-dependent and could be searched for by comparing
spatial and terrestrial clocks located at various positions,
and/or by monitoring the evolution of the frequency of
a given clock with respect to the position of the Earth
in the gravitional field of the Sun. The second term is
an oscillating term whose amplitude depends on the lo-
cation in the gravitational field. In particular, if one
considers two clocks located at the surface of the Earth
(r = R�), the oscillating part of the signal becomes (from
Eqs. (B21), (B26) and (B27c))

Ỹ (t) =
�(2)

↵̃(2)
�

c2R�
6GM�

'2
0 tanh

2

 s

3↵̃(2)
�

GM�
c2R�

!
(31)

⇥ cos (2!t+ 2�) .

B. Tests of the Universality of Free Fall

The motion of a test mass can be derived from the
action (6), or equivalently from the Lagrangian

LT = �mT (')c

r
�gµ⌫

dxµ

dt

dx⌫

dt
. (32)

In this section, we are interested in UFF experiments for
which the acceleration of two test masses located at the
same location are compared. Therefore, we are only in-
terested in the first order part of the acceleration that is
composition dependent. We can therefore use the follow-
ing approximation for the Lagrangian

LT = �mT (')c
2

r
1�

v2

c2
⇡ �mT (')c

2

✓
1�

v2

2c2

◆
,

(33)
where, as for the Klein-Gordon equation, we neglect
terms that are of the order of O (|hµ⌫ |). A simple Euler-
Lagrange derivation gives the first order contribution to
the violation of the UFF:

[aT ]EEP = �↵T (')
⇥
c2r'+ v'̇

⇤
, (34)

where ↵T is the coupling defined by Eq. (7). The di↵er-
ential acceleration between two bodies A and B located
at the same position is therefore given by

[�a]A�B = aA(t,x)� aB(t,x)

= � (↵A(')� ↵B('))
⇥
c2r'+ v'̇

⇤
. (35)

1. Linear coupling

In the case of a linear coupling, the di↵erential accel-
eration between two bodies A and B located in the same
location, in the gravitational field generated by a central
body C can be determined from Eq. (18) and is given by

[�a]A�B = �↵̄(1)'0

�
c2k � !v

�
sin (k.x� !t+ �)

��↵̄(1)s(1)C e�r/�'

✓
1 +

r

�'

◆
GMC

r3
x , (36)

where �↵̄(1) =
⇣
↵̄(1)
A � ↵̄(1)

B

⌘
with ↵̄(1) given in Eq. (11).

The first line represents an oscillating variation of the
di↵erential acceleration of the two bodies. This oscilla-
tion is induced by the oscillating DM. The amplitude of
this UFF violation is linearly proportional to the cou-

pling constant d(1)i . The second line is a regular fifth
force di↵erential acceleration that is due to the coupling
of the two bodies to the scalar field generated by the cen-
tral body. The amplitude of the violation of the UFF is

proportional to the square of the d(1)i coe�cients. This
term can be identified from standard UFF measurements
by using the Eötvös parameter ⌘ defined as

⌘ = 2
|aA � aB |

|aA + aB |
, (37)

by (see also [35])

⌘ = �↵̃(1)s(1)C e�r/�'

✓
1 +

r

�'

◆
. (38)

2. Quadratic coupling

The di↵erential acceleration between two bodies in the
case of a quadratic coupling can be determined from
Eq. (21) and is given by

[�a]A�B = �↵̄(2)'
2
0

2

✓
1� s(2)C

GMc

c2r

◆"
�

GMc

r3
x s(2)C

�
GMc

r3
xs(2)C cos (2!t+ 2�) (39)

+

✓
1� s(2)C

GMc

c2r

◆
!v sin (2!t+ 2�)

#

where �↵̄(2) =
⇣
↵̄(2)
A � ↵̄(2)

B

⌘
with ↵̄(2) given in Eq. (11).

The first line correspond to a di↵erential acceleration pro-
portional to the Newtonian acceleration. This term can
be identified from standard UFF measurements by using
the Eötvös parameter ⌘ defined by Eq. (37) with

⌘ = s(2)C �↵̄(2)'
2
0

2

✓
1� s(2)C

GMc

c2r

◆
. (40)
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2. Quadratic coupling

The signature produced by the scalar field in the case of
a quadratic coupling between the scalar field and matter
is richer, it reads

Y (t,x) = K +�(2)'
2
0

2

✓
1� s(2)A

GMA

c2r

◆2

(30)

+�(2)'
2
0

2
cos (2!t+ 2�)

✓
1� s(2)A

GMA

c2r

◆2

where ! = m'c2/~. This signature is quite unique and
is the combination of two distinct terms. The first one is
space-dependent and could be searched for by comparing
spatial and terrestrial clocks located at various positions,
and/or by monitoring the evolution of the frequency of
a given clock with respect to the position of the Earth
in the gravitional field of the Sun. The second term is
an oscillating term whose amplitude depends on the lo-
cation in the gravitational field. In particular, if one
considers two clocks located at the surface of the Earth
(r = R�), the oscillating part of the signal becomes (from
Eqs. (B21), (B26) and (B27c))

Ỹ (t) =
�(2)

↵̃(2)
�

c2R�
6GM�

'2
0 tanh

2

 s

3↵̃(2)
�

GM�
c2R�

!
(31)

⇥ cos (2!t+ 2�) .

B. Tests of the Universality of Free Fall

The motion of a test mass can be derived from the
action (6), or equivalently from the Lagrangian

LT = �mT (')c

r
�gµ⌫

dxµ

dt

dx⌫

dt
. (32)

In this section, we are interested in UFF experiments for
which the acceleration of two test masses located at the
same location are compared. Therefore, we are only in-
terested in the first order part of the acceleration that is
composition dependent. We can therefore use the follow-
ing approximation for the Lagrangian

LT = �mT (')c
2

r
1�

v2

c2
⇡ �mT (')c

2

✓
1�

v2

2c2

◆
,

(33)
where, as for the Klein-Gordon equation, we neglect
terms that are of the order of O (|hµ⌫ |). A simple Euler-
Lagrange derivation gives the first order contribution to
the violation of the UFF:

[aT ]EEP = �↵T (')
⇥
c2r'+ v'̇

⇤
, (34)

where ↵T is the coupling defined by Eq. (7). The di↵er-
ential acceleration between two bodies A and B located
at the same position is therefore given by

[�a]A�B = aA(t,x)� aB(t,x)

= � (↵A(')� ↵B('))
⇥
c2r'+ v'̇

⇤
. (35)

1. Linear coupling

In the case of a linear coupling, the di↵erential accel-
eration between two bodies A and B located in the same
location, in the gravitational field generated by a central
body C can be determined from Eq. (18) and is given by

[�a]A�B = �↵̄(1)'0

�
c2k � !v

�
sin (k.x� !t+ �)

��↵̄(1)s(1)C e�r/�'

✓
1 +

r

�'

◆
GMC

r3
x , (36)

where �↵̄(1) =
⇣
↵̄(1)
A � ↵̄(1)

B

⌘
with ↵̄(1) given in Eq. (11).

The first line represents an oscillating variation of the
di↵erential acceleration of the two bodies. This oscilla-
tion is induced by the oscillating DM. The amplitude of
this UFF violation is linearly proportional to the cou-

pling constant d(1)i . The second line is a regular fifth
force di↵erential acceleration that is due to the coupling
of the two bodies to the scalar field generated by the cen-
tral body. The amplitude of the violation of the UFF is

proportional to the square of the d(1)i coe�cients. This
term can be identified from standard UFF measurements
by using the Eötvös parameter ⌘ defined as

⌘ = 2
|aA � aB |

|aA + aB |
, (37)

by (see also [35])

⌘ = �↵̃(1)s(1)C e�r/�'

✓
1 +

r

�'

◆
. (38)

2. Quadratic coupling

The di↵erential acceleration between two bodies in the
case of a quadratic coupling can be determined from
Eq. (21) and is given by

[�a]A�B = �↵̄(2)'
2
0

2

✓
1� s(2)C

GMc

c2r

◆"
�

GMc

r3
x s(2)C

�
GMc

r3
xs(2)C cos (2!t+ 2�) (39)

+

✓
1� s(2)C

GMc

c2r

◆
!v sin (2!t+ 2�)

#

where �↵̄(2) =
⇣
↵̄(2)
A � ↵̄(2)

B

⌘
with ↵̄(2) given in Eq. (11).

The first line correspond to a di↵erential acceleration pro-
portional to the Newtonian acceleration. This term can
be identified from standard UFF measurements by using
the Eötvös parameter ⌘ defined by Eq. (37) with

⌘ = s(2)C �↵̄(2)'
2
0

2

✓
1� s(2)C

GMc

c2r

◆
. (40)

 that depends on r (directly 
related to Eöt-Wash and 
MICROSCOPE results)

⌘ 2 terms that oscillate, 
amplitude depends on position



Constraints on the quadratic couplings

25
see A. Hees et al, PRD, 2018

Impact of screening

Impact of amplification
Being in space is favorable ! Scalar field 

tends to vanish at Earth’s surface
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1) Improving standard tests of the Equivalence Principle 

2) consider other frameworks and use existing data to search for new 

signatures. Example: model of ultralight Dark Matter  

3) consider new regimes unexplored so far. Example: S-stars around our 

Galactic Center

Where to search for new physics?

work done in collaboration with the UCLA Galactic Center Group 
(A. Ghez, T. Do, et al)



GC observations probe another region 
of the parameters space

27

• strong field effects may show 
deviations from GR

• deviation “hidden” in some 
region of space-time 
(“screening mechanism”)

• is gravitation working as 
expected around BH?

ËË

ËË

ËËËË

ËË

¯̄

-5 0 5 10-10

-8

-6

-4

-2

0

2

log HMassêSolar MassL

lo
g
HP

ot
en

tia
lêc

2 L

S0-2 closest approach

LIGO GW150914

Light deflection by the Sun

Precession of Mercury

Hulse-Taylor pulsar

Microlensing

Strong Lensing
Galactic rotation

Terrestrial Labs

Figure inspired by D. Psaltis, 2004



Stars orbiting the GC have been 
observed since 1995

1- Galactic Center Group

3

Members:
Andrea Ghez, Tuan Du, Eric Becklin, Samantha Chappell, Devin 
Chu, Zhuo Chen, Anna Ciurlo, Arezu Dehghanfar, Laly 
Gallego-Cano, Abhimat Gautam, Siyao Jia , Aurélien Hees, 
Kelly Kosmo, Jessica Lu, Greg Martinez, Keith Matthews, Mark 
Morris, Rainer Schoedel, Shoko Sakai, Gunther Witzel

Instrumentation: 
W.M.Keck observatory

• Speckle and AO imaging
• Spectroscopy

• Keck Observatory:

• Speckle and Adaptive Optics  
imaging. Accuracy @0.15 mas

• Spectroscopic measurements.  
Accuracy @20 km/s 

• The motion of ~ 100ish stars is tracked:

• construction of an absolute reference 
frame

• the central arc second: Keplerian motion

• Similar observations have been taken @VLT

See Sakai et al, ApJ, 2019 
        Jia et al, ApJ, 2019





Can these observations be used to 
probe fundamental physics?

30

Is the Equivalence Principle valid 
around a SMBH?



Measurement of the relativistic redshift 
during S0-2/S2’s closest approach in 2018

31

• Relativistic redshift (eq. principle)

[RV ]rel =
v2

2c
+

GM

rc

peak @ ~ 200 km/s 

• S0-2/S2 was followed very closely at Keck and at the VLT in 2018



Measuring the redshift requires a careful analysis

• 45 astrometric measurements (from two instruments) and 115 
radial velocity (RV) measurements (from 6 instruments - 4 
telescopes: Keck, VLT, GEMINI and SUBARU) 

• Combined in an orbital fit that includes: SMBH mass, SMBH 
position/velocity, orbital parameters, + parameters for systematics 

• Thorough analysis of systematics:

• Additional systematic uncertainty

• Correlation within the astrometric dataset

• Offset between instruments

• Use of different telescope to check for possible systematics

• Measurement of RV standards to check for systematics

• … see  Do et al, Science, 2019



S0-2’s relativistic redshift is consistent with GR
found to be 20 km s−1 for the Keck and Gemini
observations.
The astrometric positions of S0-2 with re-

spect to Sgr A*were placed in a commonabsolute
astrometric reference frame by using a multistep

cross-matching and transformation process. We
adopted an improvedmethodology for obtaining
precise astrometry and a more accurate absolute
reference frame compared with that of previous
work (7). This resulted in an average astromet-

ric uncertainty for S0-2 of 1.1 milli–arc seconds
(mas) for speckle imaging and 0.26 mas for AO
imaging.
The astrometric and RV measurements are

combined in a global orbital model fitting using
a standard post-Newtonian approximation that
includes the first-order GR corrections on the
Newtonian equations ofmotion, the Römer time
delay due to variations in the light propagation
time between S0-2 and the observer, and the rela-
tivistic redshift. For the astrometric observables,
we ignore the negligible effect of light deflection
by the SMBHbut include a two-dimensional (2D)
linear drift of the gravitational center ofmass. This
drift accounts for systematic uncertainties in the
construction of the astrometric reference frame.
To our level of accuracy, the RV observable is (13)

RV ¼ v z0 þ VZ ;S0#2 þΥ
V 2
S0#2

2c
þ GM
cRS0#2

! "
ð1Þ

where c is the speed of light in a vacuum, v z0 is a
constant offset introduced to account for sys-
tematic uncertainties within our RV reduction,
VZ;S0#2 is the Newtonian line-of-sight velocity
of S0-2,V 2

S0#2=2c is the transverse Doppler shift
predicted by special relativity depending on
S0-2’s velocityVS0#2, andGM=cRS0#2 is the grav-
itational redshift predicted by GR incorporating
the SMBH gravitational parameterGM (gravita-
tional constant G and SMBHmassM) and the
distance,RS0#2, between S0-2 and the SMBH. U
is a scale parameter introduced to characterize
deviations from GR; its value is 0 in a purely
Newtonian model and 1 in GR (13). The model
has 14 parameters: 6 orbital parameters for S0-2,
the gravitational parameter of the SMBH (GM),
the distance to the GC R0, a 2D linear drift of the
SMBH parametrized by the 2D position (x 0, y 0)
and velocity ðv x 0 ;v y 0 Þ of the black hole from the

Do et al., Science 365, 664–668 (2019) 16 August 2019 3 of 5

Fig. 3. Measured deviation from Newtonian predictions. The fitted deviation from Newtonian
predictions, overlaid with the best-fitting orbit model (red line) corresponding to U = 0.88. The inset
shows the posterior probability distribution for U; 0.88 is the median value. The red shaded areas
show the model 68 and 95% confidence intervals. The observed RVs are shown as black circles, after
removing the Newtonian part of the model. Error bars indicate 1s uncertainties. For comparison,
we show the RV deviation expected for a purely relativistic signal (U = 1, dotted blue line) and for
a purely Newtonian model (U = 0, dashed blue line) for an orbit with the same orbital parameters.
Our measurement is consistent with the GR model at the 1s confidence level, whereas the Newtonian
model is excluded at >5s confidence.

Table 1. Estimation of the model parameters. Column four (Estimation) indicates the median of the marginalized 1D posterior. Column five (Statistical
uncertainty) indicates the half width of the 68% confidence interval centered on the median. Values for l denote the +1s and –1s uncertainties. Column six
(Systematic s from jackknife) indicates the 1s systematic uncertainty from the reference frame estimated from the jackknife analysis (13). M⊙, solar mass.

Parameter Description Maximum likelihood Estimation Statistical uncertainty Systematic s from jackknife

MBHð106M⊙Þ Black hole mass 3.984 3.975 0.058 0.026
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

R0 (kpc) Distance to GC 7.971 7.959 0.059 0.032
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

U Redshift parameter 0.80 0.88 0.16 0.047
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

x0 (mas) x dynamical center 0.99 1.22 0.32 0.51
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

y0 (mas) y dynamical center −0.85 −0.88 0.34 1.16
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

vx0 (mas/year) x velocity −0.060 −0.077 0.018 0.14
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

vy0 (mas/year) y velocity 0.221 0.226 0.019 0.066
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

vz0 (km/s) z velocity −3.6 −6.2 3.7 0.79
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

P (years) Period 16.041 16.042 0.0016 7.8 × 10−5
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

T0 (years) Closest approach 2018.3765 2018.3763 0.0004 1.9 × 10−5
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

e Eccentricity 0.886 0.8858 0.0004 2.8 × 10−5
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

i (degrees) Inclination 133.88 133.82 0.18 0.13
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

w (degrees) Argument of periapsis 66.03 66.11 0.24 0.077
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

W (degrees) Angle to the ascending node 227.40 227.49 0.29 0.11
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

NIRC2 offset (km/s) RV offset 80 81 19 0.8
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

L (mas) Astrometric correlation length 21 28 24:6
#13:6 11.8

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

p Astrometric mixing coefficient 0.47 0.55 0.13 0.11
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .
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   is a parameter that encodes a deviation from relativistic 
redshift (=1 in GR, =0 in Newton)

⌥ = 0.88± 0.17
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RV = [RV ]Newton +⌥
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+
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�

<latexit sha1_base64="9JKWZRVhhwZPYQibhUWT2z7FP7c="></latexit>

see  Do et al, Science, 2019

1" agreement with GR and Newton excluded @5"
• A similar result has been obtained by GRAVITY

see  GRAVITY coll. , A & A, 2018
⌥ = 0.9± 0.06(stat)± 0.15(syst)



First test of the equivalence principle around a 
BH

• This result is 4 orders of magnitude less stringent than solar 
system measurements but this is the first redshift test around a 
BH 

see  Do et al, Science, 2019 
        GRAVITY coll.,A & A, 2018

• Another way to test the equivalence Principle is to search for a 
variation of the constants of Nature around the SMBH 
→ particularly interesting considering the recent results 
reporting a varying ! around a white dwarf and with quasars



Spectroscopy measurements in the GC can be 
used to search for variations in !

35

Each measurement needs 
to have at least 2 lines 

with a different sensitivity 
to !.  

S0-2 is not appropriate 
but old-type stars are 

appropriate

$!/!

$!/!

$!/!

�

3

TABLE I. Atomic properties of the absorption lines used
in this analysis. The first block corresponds to lines observed
with the NIFS instrument while the second block corresponds
to lines observed with NIRSPEC. The frequencies ! are ex-
perimental values reported in [33]. The sensitivity to the fine
structure constant k↵ is computed from ab initio calculation
using the AMBIT software [43], see the discussion in the Ap-
pendix A.

Element Lower Upper ! (cm�1) k↵

14Si 3s23p4p 1
D2 3s23p5s 1

P
o
1 4681.6 0.012(9)

11Na 4s 2
S1/2 4p 2

P
o
1/2 4527.0 0.004(2)

22Ti 3d34s 5
P2 3d24s4p 5

D
o
2 4496.6 �0.34(10)

12Mg 3s4d 3
D3 3s6f 3

F 4 4383.3 �0.001(2)
12Mg 3s4d 3

D3 3s6f 1
F 3 4383.2 �0.001(2)

22Ti 3d34s 5
P2 3d24s4p 5

D
o
1 4454.3 �0.37(10)

39Y 4d25s 4
F7/2 4d5s5p 4

F
o
7/2 4434.6 �0.88(6)

20Ca 4s4d 3
D1 4s4f 3

F
o
2 4498.5 �0.03(1)

21Sc 3d24s 4
F3/2 3d4s4p 2

D
o
3/2 4576.9 �0.23(3)

39Fe 3d64s2 3
D3 3d64s4p 3

P
o
2 4575.1 0.56(28)

22Ti 3d34s 5
P2 3d24s4p 5

D
o
3 4565.5 �0.30(10)

22Ti 3d34s 5
P1 3d24s4p 5

D
o
2 4543.3 �0.31(9)

21Sc 3d24s 4
F5/2 3d4s4p 2

D
o
3/2 4539.2 �0.25(4)

21Sc 3d24s 4
F9/2 3d4s4p 4

D
o
7/2 4533.5 �0.29(4)

11Na 4s 2
S1/2 4p 2

P
o
3/2 4532.6 0.007(2)

priors are used for the sensitivity coe�cients k↵,j with
a mean value and an uncertainty quoted in Tab. I. We
use the MULTINEST sampler [? ? ] to sample the pos-
terior probability distribution function. For S0-6, S0-12,
S0-13 and S1-5, the two epochs are fitted simultaneously
and the velocity of the star is assumed to be the same
for both epochs. For S1-23, the two parts of the spectra
corresponding to the di↵erent filters are fitted simultane-
ously but the velocities are not assumed to be the same,
an o↵set is present due to a di↵erent wavelength solution
for both filters.

A figure of the posteriors for each individual star can
be found in Appendix D and the 68% confidence intervals
are reported in Tab. II. No significant deviation from 0
is reported for any of the stars considered in this anal-
ysis. The constraints derived from the NIRSPEC mea-
surements are one order of magnitude better than the
one from the NISF instrument, which is due to the bet-
ter spectral resolution of the instrument.

A fit combining all the the stars provides a constraint
of

�↵

↵
= (1.3± 5.7)⇥ 10�6

, (4)

between the GC and Earth. This constraint is at the
same level of magnitude as the ones obtained from quasar
observations and is the first constraint on a possible vari-
ation of ↵ around a BH.

In several alternative theories of gravitation, the fine
structure constant becomes dependent on the gravita-
tional potential (see e.g. [? ? ? ]) and it is useful to

TABLE II. 68% confidence interval for �↵/↵ and for z esti-
mated from di↵erent stars. An estimation of the gravitational
potential U at the location of the star is also provided (see
Appendix C). For S0-6, S0-12, S0-13 and S1-5, two measure-
ment epochs are combined with 5 absorption lines per epoch.
S1-23 has been observed with two di↵erent filters (each filter
has a di↵erent wavelength solution which reflects in an o↵set
in their estimated z value) providing 11 absorption lines.

Star �↵
↵ z.c [km/s] U/c

2

S0-6 (�0.6± 2.7)⇥ 10�4 72.6 ±10.0 2.4⇥ 10�6

S0-12 ( 0.3± 1.4)⇥ 10�4 �63.8 ±1.8 1.6⇥ 10�6

S0-13 ( 1.0± 3.1)⇥ 10�4 �72.1 ±3.3 9.4⇥ 10�7

S1-5 ( 5.2± 7.9)⇥ 10�5 �14.5 ±3.0 6.5⇥ 10�7

S1-23 ( 0.9± 5.8)⇥ 10�6 �311.4 ±1.1 4.6⇥ 10�7

288.1 ±0.7

consider the following parametrization

�↵

↵
= �↵

�U

c2
, (5)

where U is the Newtonian potential, c the speed of light
in a vacuum and where �↵ depends on the fundamental
parameters of the theory. An estimate of the gravita-
tional potential probed by the 5 stars considered in this
analysis is requirred in order to constrain the �↵ param-
eter. We infer the radial acceleration experienced by the
stars using 25 years of astrometric measurements of the
GC. Between 1995 and 2005, speckle imaging data pro-
vides astrometric di↵raction-limited measurements (�0 =
2.21µm, �� = 0.43µm) of the central 5” ⇥ 5” of the GC.
This dataset is presented in details in [26? ? ]. Between
2005 and 2018, adaptive optics (AO) imaging provides
high-resolution images (�0 = 2.12µm, �� = 0.35µm) of
the central 10”⇥ 10” of the GC. AO allows for more ef-
ficient observations at the di↵raction limit, resulting in
measurements typically one order of magnitude better
than speckle observations. This dataset is presented in
details in [26? ]. These astrometric measurements are
aligned in a common refrence frame defined by tiying in-
frared observations of seven SiO masers [? ? ? ] to their
radio counterpart [? ]. The procedure to construct the
reference frame is thoroughly detailed in [? ] and the
alignment procedure is detailed in [? ]. The resulting
2-D position measurements of the 5 stars considered in
our analysis are given in the Appendix C. A polynomial
fit of these measurements give an estimate of the 3D ra-
dial acceleration of these stars which is transformed into
an estimate of the gravitational potential using the the
SMBH mass M = 3.975 ⇥ 106M� reported in [? ] (see
Appendix C for more details). The estimate of the grav-
itational potential experienced by each star is reported
in Tab. II. A fit combining the measurements from the 5
stars and using the estimate from the gravitational po-
tential from Tab. II leads to

�↵ = 3.3± 12.4 , (6)

at 68% confidence level. No deviation from GR is re-
ported. This result is 8 orders of magnitude less con-

3

TABLE I. Atomic properties of the absorption lines used
in this analysis. The first block corresponds to lines observed
with the NIFS instrument while the second block corresponds
to lines observed with NIRSPEC. The frequencies ! are ex-
perimental values reported in [33]. The sensitivity to the fine
structure constant k↵ is computed from ab initio calculation
using the AMBIT software [43], see the discussion in the Ap-
pendix A.

Element Lower Upper ! (cm�1) k↵

14Si 3s23p4p 1
D2 3s23p5s 1

P
o
1 4681.6 0.012(9)

11Na 4s 2
S1/2 4p 2

P
o
1/2 4527.0 0.004(2)

22Ti 3d34s 5
P2 3d24s4p 5

D
o
2 4496.6 �0.34(10)

12Mg 3s4d 3
D3 3s6f 3

F 4 4383.3 �0.001(2)
12Mg 3s4d 3

D3 3s6f 1
F 3 4383.2 �0.001(2)

22Ti 3d34s 5
P2 3d24s4p 5

D
o
1 4454.3 �0.37(10)

39Y 4d25s 4
F7/2 4d5s5p 4

F
o
7/2 4434.6 �0.88(6)

20Ca 4s4d 3
D1 4s4f 3

F
o
2 4498.5 �0.03(1)

21Sc 3d24s 4
F3/2 3d4s4p 2

D
o
3/2 4576.9 �0.23(3)

39Fe 3d64s2 3
D3 3d64s4p 3

P
o
2 4575.1 0.56(28)

22Ti 3d34s 5
P2 3d24s4p 5

D
o
3 4565.5 �0.30(10)

22Ti 3d34s 5
P1 3d24s4p 5

D
o
2 4543.3 �0.31(9)

21Sc 3d24s 4
F5/2 3d4s4p 2

D
o
3/2 4539.2 �0.25(4)

21Sc 3d24s 4
F9/2 3d4s4p 4

D
o
7/2 4533.5 �0.29(4)

11Na 4s 2
S1/2 4p 2

P
o
3/2 4532.6 0.007(2)

priors are used for the sensitivity coe�cients k↵,j with
a mean value and an uncertainty quoted in Tab. I. We
use the MULTINEST sampler [? ? ] to sample the pos-
terior probability distribution function. For S0-6, S0-12,
S0-13 and S1-5, the two epochs are fitted simultaneously
and the velocity of the star is assumed to be the same
for both epochs. For S1-23, the two parts of the spectra
corresponding to the di↵erent filters are fitted simultane-
ously but the velocities are not assumed to be the same,
an o↵set is present due to a di↵erent wavelength solution
for both filters.

A figure of the posteriors for each individual star can
be found in Appendix D and the 68% confidence intervals
are reported in Tab. II. No significant deviation from 0
is reported for any of the stars considered in this anal-
ysis. The constraints derived from the NIRSPEC mea-
surements are one order of magnitude better than the
one from the NISF instrument, which is due to the bet-
ter spectral resolution of the instrument.

A fit combining all the the stars provides a constraint
of

�↵

↵
= (1.3± 5.7)⇥ 10�6

, (4)

between the GC and Earth. This constraint is at the
same level of magnitude as the ones obtained from quasar
observations and is the first constraint on a possible vari-
ation of ↵ around a BH.

In several alternative theories of gravitation, the fine
structure constant becomes dependent on the gravita-
tional potential (see e.g. [? ? ? ]) and it is useful to

TABLE II. 68% confidence interval for �↵/↵ and for z esti-
mated from di↵erent stars. An estimation of the gravitational
potential U at the location of the star is also provided (see
Appendix C). For S0-6, S0-12, S0-13 and S1-5, two measure-
ment epochs are combined with 5 absorption lines per epoch.
S1-23 has been observed with two di↵erent filters (each filter
has a di↵erent wavelength solution which reflects in an o↵set
in their estimated z value) providing 11 absorption lines.

Star �↵
↵ z.c [km/s] U/c

2

S0-6 (�0.6± 2.7)⇥ 10�4 72.6 ±10.0 2.4⇥ 10�6

S0-12 ( 0.3± 1.4)⇥ 10�4 �63.8 ±1.8 1.6⇥ 10�6

S0-13 ( 1.0± 3.1)⇥ 10�4 �72.1 ±3.3 9.4⇥ 10�7

S1-5 ( 5.2± 7.9)⇥ 10�5 �14.5 ±3.0 6.5⇥ 10�7

S1-23 ( 0.9± 5.8)⇥ 10�6 �311.4 ±1.1 4.6⇥ 10�7

288.1 ±0.7

consider the following parametrization

�↵

↵
= �↵

�U

c2
, (5)

where U is the Newtonian potential, c the speed of light
in a vacuum and where �↵ depends on the fundamental
parameters of the theory. An estimate of the gravita-
tional potential probed by the 5 stars considered in this
analysis is requirred in order to constrain the �↵ param-
eter. We infer the radial acceleration experienced by the
stars using 25 years of astrometric measurements of the
GC. Between 1995 and 2005, speckle imaging data pro-
vides astrometric di↵raction-limited measurements (�0 =
2.21µm, �� = 0.43µm) of the central 5” ⇥ 5” of the GC.
This dataset is presented in details in [26? ? ]. Between
2005 and 2018, adaptive optics (AO) imaging provides
high-resolution images (�0 = 2.12µm, �� = 0.35µm) of
the central 10”⇥ 10” of the GC. AO allows for more ef-
ficient observations at the di↵raction limit, resulting in
measurements typically one order of magnitude better
than speckle observations. This dataset is presented in
details in [26? ]. These astrometric measurements are
aligned in a common refrence frame defined by tiying in-
frared observations of seven SiO masers [? ? ? ] to their
radio counterpart [? ]. The procedure to construct the
reference frame is thoroughly detailed in [? ] and the
alignment procedure is detailed in [? ]. The resulting
2-D position measurements of the 5 stars considered in
our analysis are given in the Appendix C. A polynomial
fit of these measurements give an estimate of the 3D ra-
dial acceleration of these stars which is transformed into
an estimate of the gravitational potential using the the
SMBH mass M = 3.975 ⇥ 106M� reported in [? ] (see
Appendix C for more details). The estimate of the grav-
itational potential experienced by each star is reported
in Tab. II. A fit combining the measurements from the 5
stars and using the estimate from the gravitational po-
tential from Tab. II leads to

�↵ = 3.3± 12.4 , (6)

at 68% confidence level. No deviation from GR is re-
ported. This result is 8 orders of magnitude less con-

�0



Six old-type stars have been identified as promising

36

• Needs a lot of spectral lines (with different sensitivities to !): 
old-type stars

• Bright, to ensure a high SNR. Magnitude < 15

• Sufficiently in the central region: existence of measurements and 
probe of ! “close” to the BH

- S0-6   - Mag: 14.1

- S0-12 - Mag: 14.3

- S0-13 - Mag: 13.3

- S1-5   - Mag: 12.7

- S1-23 - Mag: 12.7

measured by NIFS in 2018

measured by NIRSPEC in 2016

Sgr A*

S0-6

S0-12

S0-13

S1-5
S1-23

see Hees et al, PRL, 2020



Conceptually easy to infer a mapping of ! in the GC

37

• For each spectrum (i.e. one star at one epoch ti), we extract N 
lines (j) independently

• Lines need to be isolated enough to be extracted alone: 15 lines 
identified

Does the fine-structure vary around the supermassive Black Hole from our Galactic

Center?

Bla bla

The idea of the project is to search for variations of the
fine-structure constant around the supermassive black
hole (SMBH) from our Galactic Center (GC). In order
to search for such a variation, we measure the di↵er-
ences between di↵erent spectral lines within the same
spectrum and compare those di↵erences with reference
ones measured in the lab on Earth. Each absorption line
is characterized by a frequency ⌫ or wavelength � and
the relative sensitivity k↵ of the transition frequency ⌫
to the fine-structure constant is defined as

d ln ⌫ = k↵d ln↵ . (1)

The spectroscopic observable is

��

�
=

�� �0

�0
=

�(z,↵)� �(z = 0,↵0)

�(z = 0,↵0)
, (2)

where � = �(z,↵) is the value of the wavelength of the
absorption line at the Galactic Center for a value of ↵
di↵erent from the one on Earth ↵0 and �0 is the value of
the wavelength for the same line measured in the lab. A
straightforward calculation shows that

��

�
= z � k↵

�↵

↵
(1 + z) ⇡ z � k↵

�↵

↵
, (3)

where z is the traditionnal Doppler (which includes the
Newtonian velocity along the line of sight but also the
relativistic corrections) while the second part of this ex-
pression encodes a possible variation of the fine structure
constant between Earth and the location of emission of
the radiation. For the last equality, we used the fact that
z << 1 (typically, the maximum value of z for S0-2 is
⇠ 10�2 while all the other stars have smaller z).

It is important to note that in a purely phenomenolog-
ical approach, k↵ actually depends on the actual units
used to make the atomic calculation. Therefore, any
physical result should only depend on di↵erences between
di↵erent k↵ coe�cients. This prevents us to use only one
single atomic absorption line and to monitor it as a func-
tion of z (like e.g. for S0-2). Instead, one should rely
on measurements of the di↵erence between two di↵erent
lines in the same spectrum.

Let us assume we measure the spectrum of one star at
di↵erent epochs ti, corresponding to di↵erent redshifts zi.
Within this spectrum, we measure Nlines absorption lines
��j/�j (with Nlines � 2), each of them corresponding
to a sensitivity coe�cient k↵,j . For each epoch, we can
use these Nlines measurements to estimate the redshift
zi and the corresponding �↵/↵ by solving the system of
equations

��j

�j

����
zi

= zi � k↵,j
�↵

↵
, (4)

by using a standard least-squares method. With this
method, the inferred value of �↵/↵ is independent from
a global shift of the values of k↵.
By considering di↵erent epochs and di↵erent stars, this

method will map �↵/↵ at the Galactic Center. In other
words, one measured spectrum for one star will provide
an estimate of �↵/↵ that can be interpreted as a func-
tion of the position x of the star, as a function of the time
t (time of emission of the electromagnetic radiation), as
a function of the gravitational potential at which the ra-
diation is emitted, etc . . .
Measurements: in this work, we use spectrum mea-

surements of 10 old-type stars. Old-type stars have
the advantage to present several clear absorption lines,
which allows us to increase the number (Nlines) of absorp-
tion lines considered in our analysis. Furthermore, the
lines observed in the spectrum of old-type stars are from
atomic transitions that present sensitivity coe�cients k↵
that are diversified. On the opposite, the number of lines
measurable in the spectrum of young-type stars like e.g.
S0-2 is limited and is only based on H and HeI lines that
have a very similar sensitivity to ↵. Amongst the stars
from our GC, we chose a subset of 10 old-type stars based
on the following arguments: (i) the star needs to be in
the NIFS field of view during the S0-2 measurements in
2018, (ii) the star needs to have at least a magnitude of
XX to have a fairly good SNR and (iii) su�ciently good
astrometric measurements of the star needs to be avail-
able in order to infer its distance to the SMBH. The stars
selected for this analysis are: S0-6, S0-12, S0-13, S0-17,
S0-18, S0-27, S0-28, S1-5, S1-10, S1-15.
Within the full spectrum measured, we identify 8 lines

that are su�ciently isolated and clean to be extracted
properly. The characteristic of these 8 lines are summa-
rized in Table I. In the end, for each of the 10 stars,
and for each of the X NIFS measurements, we extract
the ��/� for the 8 absorption lines described in Table I.
A table containing all the measurements is available in
Appendix.
Theoretical calculations of the sensitivity factor: a cru-

cial element for this analysis resides in the computation of
the k↵ sensitivity coe�cients. From a theoretical point
of view, it is possible to compute the energy level of a
transition ! from first principles. By varying the value
of the fine structure constant ↵ in this calculation, one
can get the q coe�cient defined as

q =
d!

dx

����
x=0

, (5)

where x = (↵/↵0)2 � 1 is the fractional change in ↵2.
The q-coe�cients are related to the sensitivity k↵ by

k↵ = 2
q

!0
. (6)

Quantity of  
interestMeasurement of the 

line j at epoch ti

Sensitivity of the line j to 
!: determined by solving 
the Schrödinger equation 
(very costly computation)

RV + relativistic 
redshift

• Fit with 2 parameters: zi and $!/!



No variations of ! detected around Sgr A*
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• Variation of the fine structure constant between the GC and 
Earth constrained �↵

↵
= (1.4± 5.8)⇥ 10�6

• Same order of magnitude as constraints from quasars

• NIRSPEC measurements are the ones the most constraining
see Hees et al, PRL, 2020



Constraint on variations of ! with respect to the 
gravitational potential

39

• A parametrization that appears naturally in some tensor-scalar theories 
of gravitation

• 1 order of magnitude less stringent than the white dwarf but  
for the first time around a BH

• Dedicated measurements can improve this result by 1 order of magnitude

� = 3± 12

gravitational potential

fundamental parameter

�↵

↵
= �

�U

c2
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see Hees et al, PRL, 2020



Where to search for deviations from 
GR?

1) consider new projects with a better accuracy to improve constraints on 

the “standard” frameworks

2) consider other frameworks and use existing data to search for new 

signatures

3) consider new regimes unexplored so far or new region in space-time

4) Conclusion



Conclusion
• Searching for violation of the EEP is one promising way to search for new 

physics: unification theories, Dark Matter/Dark Energy

• Challenge

- theory: construct alternative theories 
1) not suffering from theoretical pathology 
2) able to explain a wide set of observations at different scales 
3) that would solve some of the theoretical problems (quantum gravity, 
DM/DE…)

- observations:  
1) searching for “tiny” deviations (UFF with MICROSCOPE)  
2) for new signatures (new Dark Matter signatures)  
3) or in regimes unexplored so far (around a SMBH in our GC)

Improve our fundamental understanding of the gravitation 
interaction and of physics in general



Thank you for your attention
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Astronomy & cosmology
(gravitational waves, SNIa, CMB, 
structure formation, galactic dynamics, 
…)

Quantum 
Gravity

Unification
DM and DE

Local physics
(Solar System, lab tests, 
GNSS, … )

V
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n

Distance

sans matière noire
observations

High energy
(particle physics: CERN-
LHC, Fermilab, DESY, …)

Figure inspired by Altschul et al, Adv, in Space Res. 55, 501, 2015


