# Scale Relativity: A Fractal Matrix for Organization in Nature

# Laurent Nottale<sup>\*</sup>

CNRS LUTH, Observatoire de Paris, Université Paris Diderot, 92190 Meudon, France

Received 8 May 2007, Accepted 15 May 2007, Published 20 December 2007

Abstract: In this review paper, we recall the successive steps that we have followed in the construction of the theory of scale relativity. The aim of this theory is to derive the physical behavior of a nondifferentiable and fractal space-time and of its geodesics (to which waveparticles are identified), under the constraint of the principle of relativity of all scales in nature. The first step of this construction consists in deriving the fundamental laws of scale dependence (that describe the internal structures of the fractal geodesics) in terms of solutions of differential equations acting in the scale space. Various levels of these scale laws are considered, from the simplest scale invariant laws to the log-Lorentzian laws of special scale relativity. The second step consists in studying the effects of these internal fractal structures on the laws of motion. We find that their main consequence is the transformation of classical mechanics in a quantum-type mechanics. The basic quantum tools (complex, spinor and bi-spinor wave functions) naturally emerge in this approach as consequences of the nondifferentiability. Then the equations satisfied by these wave functions (which may themselves be fractal and nondifferentiable), namely, the Schrödinger, Klein-Gordon, Pauli and Dirac equations, are successively derived as integrals of the geodesics equations of a fractal space-time. Moreover, the Born and von Neumann postulates can be established in this framework. The third step consists in addressing the general scale relativity problem, namely, the emergence of fields as manifestations of the fractal geometry (which generalizes Einstein's identification of the gravitational field with the manifestations of the curved geometry). We recall that gauge transformations can be identified with transformations of the internal scale variables in a fractal space-time, allowing a geometric definition of the charges as conservative quantities issued from the symmetries of the underlying scale space, and a geometric construction of Abelian and non-Abelian gauge fields. All these steps are briefly illustrated by examples of application of the theory to various sciences, including the validation of some of its predictions, in particular in the domains of high energy physics, sciences of life and astrophysics

© Electronic Journal of Theoretical Physics. All rights reserved.

Keywords: Scale Relativity, Fractal Geometry, Fractal Matrix, Quantization of the Scale-space, Biophysics, Complex System PACS (2006): 02.40.k, 03.30.+p, 03.65.w, 04.20.q, 04.90.+e, 12.10.g, 05.45.Df, 05.45.a,

87.10.+e, 89.75.Fb

#### 1. Introduction

The theory of scale-relativity is an attempt to extend today's theories of relativity, by applying the principle of relativity not only to motion transformations, but also to scale transformations of the reference system. Recall that, in the formulation of Einstein [1], the principle of relativity consists in requiring that 'the laws of nature be valid in every systems of coordinates, whatever their state'. Since Galileo, this principle had

<sup>\*</sup> laurent.nottale@obspm.fr

been applied to the states of position (origin and orientation of axes) and of motion of the system of coordinates (velocity, acceleration). These states are characterized by their relativity, namely, they are never definable in a absolute way, but only in a relative way. This means that the state of any system (including reference systems) can be defined only with regard to another system.

We have suggested that the observation scale (i.e., in other words, the resolution at which a system is observed or experimented) should also be considered as characterizing the state of reference systems, in addition to position, orientation and motion. It is an experimental fact known for long that the scale of a system can only be defined in a relative way: namely, only scale ratios do have a physical meaning, never absolute scales. This led us to propose that the principle of relativity should be generalized in order to apply also to relative scale transformations of the reference system, i.e., dilations and contractions of space-time resolutions. Note that, in this new approach, one reinterprets the resolutions, not only as a property of the measuring device and / or of the measured system, but more generally as a property that is intrinsic to the geometry of space-time itself: in other word, space-time is considered to be fractal. But here, we connect the fractal geometry with relativity, so that the resolutions are assumed to characterize the state of scale of the reference system in the same way as velocity characterizes its state of movement. The principle of relativity of scale then consists in requiring that 'the fundamental laws of nature apply whatever the state of scale of the coordinate system'.

It is clear that the present state of fundamental physics is far from coming under such a principle. In particular, in today's view there are two physics, a quantum one toward the small scales and a classical one toward large scales. The principle of scale-relativity amounts to requiring a re-unification of these laws, by writing them under a unique more fundamental form, which become respectively the usual quantum laws and classical laws depending on the relative state of scale of the reference system.

There are other motivations for adding such a first principle to fundamental physics. It allows one to generalize the current description of the geometry of space-time. The present description (curved geometry) is usually reduced to at least two-time differentiable manifolds (even though singularities are possible at certain particular points and events). So a way of generalization of current physics consists in trying to abandon the hypothesis of differentiability of space-time coordinates. This means to consider general continuous manifolds, which may be differentiable or non-differentiable. These manifolds include as a sub-set the usual differentiable ones, and therefore all the Riemannian geometries that subtend Einstein's generalized relativity of motion. Then in such an approach, the standard classical physics will be naturally recovered, in limits which will be studied throughout the present contribution.

But new physics is also expected to emerge as a manifestation of the new nondifferentiable geometry. One can prove (as recalled in the present contribution) that a continuous and non-differentiable space is fractal, in Mandelbrot's general definition of this concept [2, 3], namely, the coordinates acquire an explicit dependence on resolutions and diverge when the resolution interval tends to zero [4, 6]. This leads one to apply the concept of fractality not only to objects in a given space, but to the geometry of space-time itself (which means to define it in an internal way though its metrics invariants). Hence the tool of fractals, whose universality has now been recognized in almost every sciences (see e.g. the volumes [8, 98], other volumes of these series and references therein) may also be destined for playing a central role in fundamental physics. Note however that (as will be recalled in this paper), nondifferentiable space-time do also have new properties that are irreducible to the sole fractality.

One of the first fundamental consequences of the non-differentiability and fractality of space-time is the non-differentiability and fractality of its geodesics, while one of the main feature of space-time theories is their ability to identify the trajectories of 'free' particles with the space-time geodesics. Now the introduction of non-differentiable trajectories in physics dates back to pioneering works by Feynman in the framework of quantum mechanics [9]. Namely, Feynman has demonstrated that the typical quantum mechanical paths that contribute in a dominant way to the path integral are fractal non-differentiable curves of fractal dimension 2 [10, 11].

In the fractal space-time approach, one is therefore naturally led to consider the reverse question: does quantum mechanics itself find its origin in the fractality and nondifferentiability of space-time? Such a suggestion, first made twenty years ago [12, 11], has been subsequently developed by several authors [13, 14, 15, 16, 17, 4, 5, 18].

The introduction of non-differentiable trajectories was also underlying the various attempts of construction of a stochastic mechanics [19, 20]. But stochastic mechanics is now known to have problems of self-consistency [21, 26], and, moreover, to be in contradiction with quantum mechanics [22]). The proposal that is developed here, even if it shares some common features with stochastic mechanics, due to the necessity to use a stochastic description as a consequence of the non-differentiability, is fundamentally different and is not subjected to the same difficulties [26].

Remark that, in the new approach, we do not have to assume that trajectories are fractal and non-differentiable, since this becomes a consequence of the fractality of spacetime itself. Indeed, one of the main advantages of a space-time theory is that the equation of motion of particles has not to be added to the field equations: it is a direct consequence of them, since the particles are expected to follow the space-time geodesics. As we shall see, the Schrödinger equation (and more generally the Klein-Gordon, Pauli and Dirac equations) are, in the scale-relativity approach, re-expressions of the equation of geodesics [4, 23, 24]. Note that we consider here only geodesical curves (of topological dimension 1), but it is also quite possible to be more general and to consider subspaces of larger topological dimensions (fractal strings [7], fractal membranes, etc...).

The present review paper is mainly devoted to the theoretical aspects of the scalerelativity approach. We shall first develop at various levels the description of the laws of scale that come under the principle of scale-relativity (Sections 3. and 4.). Examples of applications of these laws in various domains (astrophysics, high energy physics, sciences of life) will be briefly given, with references of more detailed studies for the interested readers.

Then we shall recall how the description of the effects on motion of the internal fractal and non-differentiable structures of 'particles' lead to write a geodesics equation that is integrated in terms of quantum mechanical equations (Sections 5.-6.). The Schrödinger equation is derived in the (motion) non-relativistic case, that corresponds to a space-time of which only the spatial part is fractal. Looking for the motion-relativistic case amounts to work in a full fractal space-time, in which the Klein-Gordon equation is derived. Finally the Pauli and Dirac equation are derived as integrals of geodesics equations when accounting for the breaking of the reflexion symmetry of space differential elements that is expected from non-differentiability.

Now, the three minimal conditions under which this result is obtained (infinity of trajectories, each trajectory is fractal, breaking of differential time reflexion invariance) may be achieved in more general systems than only the microscopic realm. As a consequence, fundamental laws that share some properties in common with the standard quantum mechanics of microphysics but not all, may apply to different realms. Some examples of applications of these new quantum-type mechanics (which are not based on the Planck constant  $\hbar$ , but on a new constant that can be macroscopic and specific of the system under consideration) in the domains of gravitation and of sciences of life will be given.

The next Section 7. is devoted to the account of the interpretation of the nature of gauge transformation and of gauge fields in the scale-relativity framework (only the simple case of a U(1) electromagnetic like gauge field will be considered). We attribute the emergence of such field to the effects of coupling between scale and motion. In other words, the internal resolutions becomes themselves 'fields' which are functions of the coordinates. Some applications in the domain of elementary particle physics will be briefly given.

We finally consider hints of a new tentative extension of the theory (Section 8.), in which quantum mechanical laws are written in the scale space. In this case the internal relative fractal structures become described by probability amplitudes, from which a probability density of their 'position' in scale space can be deduced. A new quantized conservative quantity, that we have called 'complexergy', is defined (it plays for scale laws the same role as played by energy for motion laws), whose increase corresponds to an increase of the number of hierarchically imbricated levels of organisations in the system under consideration.

# 2. Structure of the Theory

# 2.1 Successive levels of development of the theory

The theory of scale relativity is constructed by completing the standard laws of classical physics (laws of motion in space, i.e. of displacement in space-time) by new scale laws (in which the space-time resolutions are considered as variables intrinsic to the description). We hope such a stage of the theory to be only provisional, and the motion and scale laws to be treated on the same footing in the final theory. However, before reaching such a goal, one must realize that the various possible combinations of scale laws and motion laws already lead to a large number of sub-sets of the theory to be developed. Indeed, three domains of the theory are to be considered:

(1) *Scale-laws*: description of the internal fractal structures of trajectories in a nondifferential space-time at a given point / event;

(2) Induced effects of scale laws on the equations of motion: generation of quantum mechanics as mechanics in a nondifferentiable space-time;

(3) *Scale-motion coupling*: effects of dilations induced by displacements, that we interpret as gauge fields (only the case of the electromagnetic field has been considered up to now) [25, 23, 100].

Now, concerning the first step (1) alone, several levels of the description of scale laws can be considered. These levels are quite parallel to that of the historical development of the theory of motion laws:

(1.i) Galilean scale-relativity: standard laws of dilation, that have the structure of a Galileo group (fractal power law with constant fractal dimension). When the fractal dimension of trajectories is  $D_F = 2$ , the induced motion laws are that of standard quantum mechanics [4, 23].

(1.ii) Special scale-relativity: generalization of the laws of dilation to a Lorentzian form [16]. The fractal dimension itself becomes a variable, and plays the role of a fifth dimension, that we call 'djinn'. An impassable length-time scale, invariant under dilations, appears in the theory; it replaces the zero, owns all its physical properties (e.g., an infinite energy-momentum would be needed to reach it), and plays for scale laws the same role as played by the velocity of light for motion.

(1.iii) *Scale-dynamics*: while the first two cases correspond to "scale freedom", one can also consider distorsion from strict self-similary that would come from the effect of a "scale-force" or "scale-field" [26, 27].

(1.iv) General scale-relativity: in analogy with the field of gravitation being ultimately attributed to the geometry of space-time, a future more profound description of the scale-field could be done in terms of geometry of the five-dimensional space-time-djinn and its couplings with the standard classical space-time. (This case will not be fully considered in this paper: however, the third step involving scale-motion couplings and leading to a new interpretation of gauge fields is expected, in the end, to become part of a general theory of scale-relativity.).

(1.v) Quantum scale-relativity: the above cases assume differentiability of the scale transformations. If one assumes them to be continuous but, as we have assumed for space-time, non-differentiable, one is confronted for scale laws to the same conditions that lead to quantum mechanics in space-time. One may therefore attempt to construct a new quantum mechanics in scale-space, thus achieving a kind of 'third quantization'.

The possible complication of the theory becomes apparent when one realizes that these various levels of the description of scale laws lead to different levels of induced dynamics (2) and scale-motion coupling (3), and that other sublevels are to be considered,

depending on the status of motion laws (non-relativistic, special-relativistic, general-relativistic).

In the present contribution, we recall the various possible developments of scale laws (1.i-1.v). Then we consider the induced effects on motion (2) of the simplest self-similar scale laws (1.i), that lead to transform classical mechanics into a quantum mechanics. (For hints on possible generalizations, see [23]. The scale-motion coupling laws are analysed in two cases: Galilean scale laws (1.i) and their Lorentzian generalization (1.ii). Some examples of applications of the various levels of the theory in various sciences (gravitation, particle physics, sciences of life) are briefly considered at the end of each section.

# 2.2 First principles

Let us briefly recall the fundamental principles that underly, since the work of Einstein [1], the foundation of theories of relativity. We shall express them here under a general form that transcends particular theories of relativity, namely, they can be applied to any state of the reference system (origin, orientation, motion, scale,...). The basic principle is the principle of relativity, that requires that the laws of physics should be of such a nature that they apply to any reference system. In other words, it means that physical quantities are not defined in an absolute way, but are instead relative to the state of the reference system. It is subsequently implemented in physics by three related and interconnected principles and their related tools:

(1) The principle of covariance, that requires that the equations of physics keep their form under changes of the state of reference systems. As remarked by Weinberg [28], it should not be interpreted in terms of simply giving the most general (arbitrarily complicated) form to the equations, which would be meaningless. It rather means that, knowing that the fundamental equations of physics have a simple form in some particular coordinate systems, they will keep this simple form whatever the system. With this meaning in mind, two levels of covariance can be defined: (i) Strong covariance, according to which one recovers the simplest possible form of the equations, which is the Galilean form they have in the vacuum devoid of any force. For example, the equations of motion in general relativity take the free inertial form  $Du^{\mu} = 0$ , in terms of Einstein's covariant derivative, so they come under strong covariance. (ii) Weak covariance, according to which the equations keep a same, simple form under any coordinate transformation. A large part of the general relativity theory is only weakly covariant: for example, the Einstein's field equations have a source term, and the gravitational field (the Christoffel symbols) are not tensors.

(2) The equivalence principle is a more specific statement of the principe of relativity, when it is applied to a given physical domain. In general relativity, it states that a gravitational field is locally equivalent to a field of acceleration, i.e., it expresses that the very existence of gravitation is relative on the choice of the reference systems, and it specifies the nature of the coordinate systems that absorb it. In scale relativity, one may make a similar proposal and set generalized equivalence principles according to which the quantum behavior is locally equivalent to a fractal and non-differentiable motion, while the gauge fields are locally equivalent to expansion / contraction fields on the internal resolutions (scale variables).

(3) The geodesics principle states that the free trajectories are the geodesics of space-time. It plays a very important role in a geometric / relativity theory, since it means that the fundamental equation of dynamics is completely determined by the geometry of space-time, and therefore has not to be set as an independent equation. Moreover, in such a theory the action identifies (up to a constant) with the fundamental length-invariant, so that the stationary action principle and the geodesics principle become identical.

One of the main tools by which these principles are implemented is the covariant derivative. This tool includes in an internal way the effects of geometry through a new definition of the derivative, contrarily to the standard field approach whose effects are considered to be externally applied on the system. In general relativity, it amounts to substract the geometric effects to the total increase of a vector, leaving only the inertial part  $DA_{\mu} = dA_{\mu} - \Gamma^{\rho}_{\mu\nu}A_{\rho}dx^{\nu}$ . One of the most remarkable results of general relativity is that the three principles (strong covariance, equivalence and geodesics / least action principle) lead to the same inertial form for the motion equation,  $Du^{\mu} = 0$  (see e.g. [85]). As we shall recall in this paper, the theory of scale-relativity attempts to follow a similar line of thought, and to construct new covariant tools adapted to the new problem posed here, i.e., the description of a non-differentiable and fractal geometry coming under the principle of the relativity of scales.

# 3. On the Relation Between Nondifferentiability and Fractality

# 3.1 Beyond differentiability

One of the main questions that is asked concerning the emergence of fractals in natural and physical sciences is the reason for their universality [2, 3]. We mean here by 'universality' that an explicitly scale-dependent behavior (not only self-similarity) has been found in a wide class of very different situations in almost every sciences. While particular causes may be found for their origin by a detailed description of the various systems where they appear (chaotic dynamics, biological systems, life sciences social sciences, etc...) their universality nevertheless may call for a universal answer (i.e., for an identification of fundamental features which would be common to these various causes).

Our suggestion, which has been developed in [4, 23], is as follows. Since the time of Newton and Leibniz, the founders of the integro-differentiation calculus, one basic hypothesis which is put forward in our description of physical phenomena is that of differentiability. The strength of this hypothesis has been to allow physicists to write the equations of physics in terms of differential equations. However, there is neither a *a priori* principle nor definite experiments that impose the fundamental laws of physics to be differentiable. On the contrary, it has been shown by Feynman that typical quantum mechanical paths are non-differentiable [9]. The basic idea that underlines the theory of scale relativity is therefore to give up the hypothesis of differentiability of space-time. This does not mean to give up differentiability itself, but use a generalized description including differentiable and nondifferentiable systems. In mathematical words, we shall consider continuous functions of class C0, but we no longer assume as in standard physics that they are of class C1 or C2, although these cases will still be included in the description a s particular cases. In such a framework, the successes of present day differentiable physics could be understood as applying to domains where the approximation of differentiability (or integrability) was good enough, i.e. at scales such that the effects of nondifferentiability were smoothed out; but conversely, we expect the differential method to fail when confronted with truly nondifferentiable or nonintegrable phenomena, namely at very small and very large length scales (i.e., quantum physics and cosmology), and also for chaotic systems seen at very large time scales.

# 3.2 Continuity and nondifferentiability implies fractality

A new 'frontier' of mathematical physics amounts to construct a continuous but nondifferentiable physics. Set in such terms, the project may seem extraordinarily difficult. Fortunately, there is a fundamental key which will be of great help in this quest, namely, the concept of scale transformations. Indeed, the main consequence of continuity and nondifferentiability is explicit scale-dependence (and divergence) [4, 23, 26]. One can prove [4] that the length of a continuous and nowhere (or almost nowhere) differentiable curve is explicitly dependent on resolution  $\varepsilon$ , and, further, that  $\mathcal{L}(\varepsilon) \to \infty$  when  $\varepsilon \to 0$ , i.e. that this curve is fractal (in a general meaning). The scale divergence of continuous and almost nowhere-differentiable curves is a direct consequence of Lebesgue's theorem, which states that a curve of finite length is almost everywhere differentiable. Let us recall the demonstration of this fundamental property.

Consider a continuous but nondifferentiable function f(x) between two points  $A_0[x_0, f(x_0)]$ and  $A_{\Omega}[x_{\Omega}, f(x_{\Omega})]$ . Since f is non-differentiable, there exists a point  $A_1$  of coordinates  $[x_1, f(x_1)]$  with  $x_0 < x_1 < x_{\Omega}$ , such that  $A_1$  is not on the segment  $A_0A_{\Omega}$ . Then the total length  $\mathcal{L}_1 = \mathcal{L}(A_0A_1) + \mathcal{L}(A_1A_{\Omega}) > \mathcal{L}_0 = \mathcal{L}(A_0A_{\Omega})$ . We can now iterate the argument and find two coordinates  $x_{01}$  and  $x_{11}$  with  $x_0 < x_{01} < x_1$  and  $x_1 < x_{11} < x_{\Omega}$ , such that  $\mathcal{L}_2 = \mathcal{L}(A_0A_{01}) + \mathcal{L}(A_{01}A_1) + \mathcal{L}(A_1A_{11}) + \mathcal{L}(A_{11}A_{\Omega}) > \mathcal{L}_1 > \mathcal{L}_0$ . By iteration we finally construct successive approximations  $f_0, f_1, \dots, f_n$  of f(x) whose lengths  $\mathcal{L}_0, \mathcal{L}_1, \dots, \mathcal{L}_n$ increase monotonically when the 'resolution'  $r \approx (x_{\Omega} - x_0) \times 2^{-n}$  tends to zero. In other words, continuity and nondifferentiability implies a monotonous scale dependence of f.

From Lebesgue's theorem, that states that 'a curve of finite length is almost everywhere differentiable', see e.g. [29], one deduces that if f is continuous and almost everywhere nondifferentiable, then  $\mathcal{L}(\varepsilon) \to \infty$  when the resolution  $\varepsilon \to 0$ , i.e., f is *scaledivergent*. This theorem is also demonstrated in Ref. [4], p. 82, using non-standard analysis.

# 3.3 Explicit scale dependence on resolution

This result is the key for a description of nondifferentiable processes in terms of differential equations. We introduce explicitly the resolutions in the expressions of the main physical quantities, and, as a consequence, in the fundamental equations of physics. This means that a physical quantity f, usually expressed in terms of space-time variables x, i.e., f = f(x), can be now described as also depending on resolutions,  $f = f(x, \varepsilon)$ . In other words, rather than considering only the strictly nondifferentiable mathematical object f(x) = f(x, 0), we now consider its various versions at various scales obtained from smoothing it or averaging it at various resolutions.

However, this cannot be done simply by smoothing f(x) or averaging it at various resolutions by using a filter or a smoothing ball, since this would assume that the limiting function  $f(x) = \lim_{\varepsilon \to 0} f(x, \varepsilon)$  does exist and is already known. This would be in contradistinction with the non-reductionist view that underlies the present work, namely, that new information is expected to appear when one changes the scale. We shall show in the following that the true physical nature of the scale variables leads one to naturally represent them in terms of  $\ln \varepsilon$  rather than  $\epsilon$ . Under this form the fractal function reads  $f = f(x, \ln \varepsilon)$ , so that the limit function f(x) now reads  $f(x) = f(x, -\infty)$ . This exhibits the true nature of the zero point as actually being an infinity. Therefore, in the same way as one no longer considers, in the framework of space-time physics, that one may place oneself at infinity, we definitely consider that  $f(x) = f(x, -\infty)$  is devoid of physical meaning, and that only the transformation from one finite scale to another finite scale does have physical meaning.

This therefore leads us [4] to define a fractal function only in a (scale) relative way, namely, as is a function  $f(x, \varepsilon)$  of a variable x and of a resolution scale  $\varepsilon$  that satisfies the relations:

-Change of scale:

$$\forall x, \forall \varepsilon' > \varepsilon, \quad f(x, \varepsilon') = \int_{-\infty}^{+\infty} \Phi(x, y, \varepsilon') f(x, \varepsilon) dy, \tag{1}$$

where  $\Phi(x, y, \varepsilon')$  is a smoothing function at resolution  $\varepsilon'$ .

-Equality (equivalence class within resolution):

$$f \equiv g \Leftrightarrow \forall \varepsilon, \forall x, \exists x', |x - x'| < k\varepsilon, f(x, \varepsilon) = g(x', \varepsilon),$$
(2)

where k defines the accepted statistical level of agreement. For example, if the filter is a Gaussian of dispersion  $\varepsilon$ , the choice k = 3 corresponds to a  $3\sigma$  statistical agreement.

This can be also seen as a relative wavelet transformation, but using a filter that is not necessarily conservative. Such a point of view is particularly well adapted to applications in physics: any real measurement is always performed at finite resolution (see [4, 13] for additional comments on this point). While f(x, 0) is nondifferentiable,  $f(x, \varepsilon)$ , which we have called a 'fractal function' [4], is now differentiable for all  $\varepsilon \neq 0$ .

The problem of the physical description of the process where the function f intervenes is now shifted. In standard differentiable physics, it amounts to finding differential

equations implying the derivatives of f, namely  $\partial f/\partial x$ ,  $\partial^2 f/\partial x^2$ , that describe the laws of displacement and motion. The integro-differentiable method amounts to performing such a local description, then integrating to get the global properties of the system under consideration. Such a method has often been called 'reductionist', and it was indeed adapted to most classical problems where no new information appears at different scales.

But the situation is completely different for systems implying fractals and nondifferentiability at a fundamental level, like the space-time of microphysics itself as suggested here. At high energies, the properties of quarks, of nucleons, of the nucleus, of atoms are interconnected but not reducible one to the other. In living systems, the scales of DNA bases, chromosomes, nuclei, cells, tissues, organs, organisms, then social scales, do co-exist, are related one with another, but are certainly not reducible to one particular scale, even the smaller one. In such cases, new, original information may exist at different scales, and the project to reduce the behavior of a system at one scale (in general, the large one) from its description at another scale (the smallest, described by the limit  $\delta x \to 0$  in the framework of the standard differentiable tool) seems to lose its meaning and to be hopeless. Our suggestion consists precisely of giving up such a hope, and of introducing a new frame of thought where all scales co-exist simultaneously in a scalespace, but are connected together via scale-differential equations. As we shall see, the solutions of the scale equations that come under the principle of scale-relativity are able to describe not only continuous scaling behavior on some ranges of scales, but also the existence of sudden transitions at some particular scale.

Indeed, in non-differentiable physics,  $\partial f(x)/\partial x = \partial f(x,0)/\partial x$  does not exist any longer. But the physics of the given process will be completely described if we succeed in knowing  $f(x,\varepsilon)$  for all relevant values of  $\varepsilon$ , which *is* differentiable when  $\varepsilon \neq 0$ , and can be the solution of differential equations involving  $\partial f(x,\varepsilon)/\partial x$  but also  $\partial f(x,\varepsilon)/\partial \ln \varepsilon$ . More generally, if one seeks nonlinear laws, one expects the equations of physics to take the form of second order differential equations, which will then contain, in addition to the previous first derivatives, operators like  $\partial^2/\partial x^2$  (laws of motion),  $\partial^2/\partial (\ln \varepsilon)^2$  (laws of scale), but also  $\partial^2/\partial x \partial \ln \varepsilon$ , which corresponds to a coupling between motion laws and scale laws.

# 4. Scale Laws

## 4.1 Scale invariance and Galilean scale-relativity

Consider a non-differentiable (fractal) curvilinear coordinate  $\mathcal{L}(x,\varepsilon)$ , that depends on some parameter x and on the resolution  $\varepsilon$ . Such a coordinate generalizes to nondifferentiable and fractal space-times the concept of curvilinear coordinates introduced for curved Riemannian space-times in Einstein's general relativity [4].  $\mathcal{L}(x,\varepsilon)$ , being differentiable when  $\varepsilon \neq 0$ , can be the solution of differential equations involving the derivatives of  $\mathcal{L}$  with respect to both x and  $\varepsilon$ .

#### 4.1.1 Differential dilation operator

Let us apply an infinitesimal dilation  $\varepsilon \to \varepsilon' = \varepsilon(1 + d\rho)$  to the resolution. Being, at this stage, interested in pure scale laws, we omit the x dependence in order to simplify the notation and we obtain, to first order,

$$\mathcal{L}(\varepsilon') = \mathcal{L}(\varepsilon + \varepsilon \, d\rho) = \mathcal{L}(\varepsilon) + \frac{\partial \mathcal{L}(\varepsilon)}{\partial \varepsilon} \, \varepsilon \, d\rho = (1 + \tilde{D} \, d\rho) \, \mathcal{L}(\varepsilon), \tag{3}$$

where  $\tilde{D}$  is, by definition, the dilation operator. The identification of the two last members of this equation yields

$$\tilde{D} = \varepsilon \; \frac{\partial}{\partial \varepsilon} = \frac{\partial}{\partial \ln \varepsilon} \; . \tag{4}$$

This well-known form of the infinitesimal dilation operator, obtained above by the 'Gell-Mann-Levy method' (that allows one to find the currents corresponding to a given symmetry [32]), shows that the "natural" variable for the resolution is  $\ln \varepsilon$ , and that the expected new differential equations will indeed involve quantities as  $\partial \mathcal{L}(x,\varepsilon)/\partial \ln \varepsilon$ . The renormalization group equations, in the multi-scale-of-length approach proposed by Wilson [30, 31], already describe such a scale dependence. The scale-relativity approach allows one to suggest more general forms for these scale groups (and their symmetry breaking).

#### 4.1.2 Simplest differential scale law

The simplest renormalization group-like equation states that the variation of  $\mathcal{L}$  under an infinitesimal scale transformation  $d \ln \varepsilon$  depends only on  $\mathcal{L}$  itself. We thus write

$$\frac{\partial \mathcal{L}(x,\varepsilon)}{\partial \ln \varepsilon} = \beta(\mathcal{L}).$$
(5)

Still looking for the simplest form of such an equation, we expand  $\beta(\mathcal{L})$  in powers of  $\mathcal{L}$ . We obtain, to the first order, the linear equation (in which a and b are independent of  $\varepsilon$  at this level of the analysis, but may depend on x):

$$\frac{\partial \mathcal{L}(x,\varepsilon)}{\partial \ln \varepsilon} = a + b\mathcal{L} , \qquad (6)$$

of which the solution is (see Fig. 1)

$$\mathcal{L}(x,\varepsilon) = \mathcal{L}_0(x) \left[ 1 + \zeta(x) \left(\frac{\lambda}{\varepsilon}\right)^{-b} \right], \tag{7}$$

where  $\lambda^{-b}\zeta(x)$  is an integration constant and  $\mathcal{L}_0 = -a/b$ .

Let us now define, following Mandelbrot [2, 3], a scale exponent  $\delta = D_F - D_T$ , (where  $D_F$  is the fractal dimension, defined here in terms of covering dimension, and  $D_T$  the topological dimension) as:

$$\delta = \frac{d\ln \mathcal{L}}{d\ln(\lambda/\varepsilon)} \,. \tag{8}$$



Fig. 1 Scale dependence of the length and of the effective scale-dimension in the case of 'inertial' scale laws (which are solutions of the simplest, first order scale-differential equation): toward the small scale one gets a scale-invariant law with constant fractal dimension, while the explicit scale-dependence is lost at scales larger than some transition scale  $\lambda$ .

In the asymptotic regime  $\varepsilon \ll \lambda$ ,  $\delta = -b$  is constant, and one obtains a power-law dependence on resolution that reads

$$\mathcal{L}(x,\varepsilon) = \mathcal{L}_0(x) \left(\frac{\lambda}{\varepsilon}\right)^{\delta}.$$
(9)

Anticipating on the following, one can also define a variable 'effective' or 'local' scale exponent from the derivative of the complete solution (7), that jumps from zero to its constant asymptotic value at the transition scale  $\lambda$  (see Fig. 1 and the following figures):

$$\delta_{\text{eff}} = \frac{\delta}{1 + (\varepsilon/\lambda)^{\delta}}.$$
(10)

#### 4.1.3 Galilean relativity of scales

Let us now check that such a simple self-similar scaling law does come under the principle of relativity extended to scale transformations of the resolutions. The above quantities transform, under a scale transformation  $\varepsilon \to \varepsilon'$ , as

$$\ln \frac{\mathcal{L}(\varepsilon')}{\mathcal{L}_0} = \ln \frac{\mathcal{L}(\varepsilon)}{\mathcal{L}_0} + \delta(\varepsilon) \ln \frac{\varepsilon}{\varepsilon'} , \qquad (11)$$

$$\delta(\varepsilon') = \delta(\varepsilon). \tag{12}$$

These transformations have exactly the mathematical structure of the Galileo group (applied here to scale rather than motion), as confirmed by the dilation composition law,  $\varepsilon \to \varepsilon' \to \varepsilon''$ , which writes

$$\ln \frac{\varepsilon''}{\varepsilon} = \ln \frac{\varepsilon'}{\varepsilon} + \ln \frac{\varepsilon''}{\varepsilon'} , \qquad (13)$$

and is therefore similar to the law of composition of velocities. Since the Galileo group of motion transformations is known to be the simplest group that implements the principle of relativity, the same is true for scale transformations.

#### 4.1.4 Scale transition

However, it is important to note that Eq. (7) gives, in addition, a transition from a fractal to a non-fractal behavior at scales larger than some transition scale  $\lambda$ . In other words, contrarily to the case of motion laws, for which the invariance group is universal, the scale group symmetry is broken beyond some (relative) transition scale.

Indeed, Eq.(6) is more general that the mere renormalisation argument, under which the constant a would vanish. Two arguments lead us to keep this constant:

(i) A research of generality (we look for the most general among the simplest laws).

(ii) The fact that the new scale laws do not take the place of motion-displacement laws, but instead must be combined with them. Starting from a strictly scale-invariant law (a = 0), and adding a translation in standard position space ( $\mathcal{L} \to \mathcal{L} - \mathcal{L}_0$ ), we indeed recover the broken solution ( $a \neq 0$ , which is asymptotically scale-dependent (in a scale-invariant way) and independent of scale beyond some transition.

The scale symmetry is therefore spontaneously broken by the very existence of the standard space-time symmetries (here, the translations, that are part of the full Poincaré group of space-time transformations including also the rotations and the Lorentz boosts). The symmetry breaking is not achieved here by a suppression of one law to the profit of the other, but instead by a domination of each law (scale vs motion) over the other respectively toward the small and large scales. Since the transition is itself relative (on the state of motion of the reference system) this implies that one can jump from a behavior to the other by a change of the reference system. As we shall see in what follows, this transition plays an important role in the fractal space-time approach to quantum mechanics, since we identify it with the Einstein-de Broglie scale, and therefore the fractal-non fractal transition with the quantum-classical transition [4].

#### 4.1.5 Scale relativity versus scale invariance

Let us briefly be more specific about the way the scale-relativity viewpoint differs from 'scaling' or simple 'scale invariance'. In the standard concept of scale invariance, one considers scale transformations of the coordinate,

$$X \to X' = q \times X,\tag{14}$$

then one looks for the effect of such a transformation on some function f(X). It is scaling when

$$f(qX) = q^{\alpha} \times f(X) \tag{15}$$

The scale relativity approach involves a more profound level of description, since the coordinate X is now explicitly resolution-dependent, i.e.  $X = X(\varepsilon)$ . Therefore we now look for a scale transformation of the resolution,

$$\varepsilon \to \varepsilon' = \rho \varepsilon,$$
 (16)

which implies a scale transformation of the position variable

$$X(\rho\varepsilon) = \rho^{-\delta}X(\varepsilon). \tag{17}$$

But now the scale factor on the variable gets a physical meaning which goes beyond a trivial change of units. It corresponds to a coordinate measured on a fractal curve of fractal dimension  $D = 1 + \delta$  at two different resolutions. Finally, one can also consider again a scaling function of a fractal coordinate:

$$f(\rho^{-\delta}X) = \rho^{-\alpha\delta} \times f(X).$$
(18)

In the framework of the analogy with the laws of motion and displacement, the dilation (14) is the equivalent of a static translation x' = x + a. Indeed, it reads in logarithmic form

$$\ln \frac{X'}{\lambda} = \ln \frac{X}{\lambda} + \ln q, \tag{19}$$

Note that it can also be generalized to four different dilations on the four coordinates,  $\ln(X'_{\mu}/\lambda) = \ln(X_{\mu}/\lambda) + \ln q_{\mu}$ . One jumps from static translation x' = x + a to motion by introducing a time dependent translation a = -vt, so that one obtains the Galileo law of coordinate transformation, x' = x - vt. The passage from a simple dilation law  $\ln X' = \ln X + \ln q$  to the law of scale transformation of a fractal self-similar curve,  $\ln X' = \ln X - \delta \times \ln \rho$  is therefore of the same nature. In other words, fractals are to scale invariance what motion is to static translations.

These 'scale-translations' should not be forgotten when constructing the full scalerelativistic group of transformations (in similarity with the Poincaré group, that adds four space-time translations to the Lorentz group of rotation and motion in space (i.e., rotation in space-time).

It is also noticeable here that such a scale-relativity group will be different and larger than a conformal group, for the two reasons outlined in this section:

(i) The conformal group adds to the Poincaré group a global dilatation and an inversion (that leads to four special conformal transformations when combined with translations), yielding a 15 parameter group. But these transformations are applied to the coordinates without specification of their physical cause. In scale relativity, the cause is the fractality, i.e. the resolution dependence of the coordinates. For example, the symmetric element in a resolution transformation is  $\ln(\lambda/\varepsilon') = -\ln(\lambda/\varepsilon)$ , which is nothing but a resolution inversion  $\varepsilon' = \lambda^2/\varepsilon$ . A fractal coordinate which is resolution-dependent as a power law,  $L(\varepsilon) = (\lambda_0/\varepsilon)^{\delta}$ , is therefore itself transformed by an inversion, namely  $L(\varepsilon') = L_1/L(\varepsilon)$ , where  $L_1 = (\lambda_0/\lambda)^{\delta}$ .

(ii) Ultimately we need to define four independent resolution transformations on the four coordinates. Such a transformation does not preserve the angles and it therefore goes beyond the conformal group (see Sec. 4.3.6).

# 4.2 Special scale-relativity

## 4.2.1 Theory

The question that we shall now address is that of finding the laws of scale transformations that meet the principle of scale relativity. Up to now, we have characterized typical scale laws as the simplest possible laws, namely, those which are solutions of the simplest form of linear scale differential equations: this reasoning has provided us with the standard, power-law, fractal behavior with constant fractal dimension in the asymptotic domain. But are the simplest possible laws those chosen by nature? Experience in the construction of the former physical theories suggests that the correct and general laws are simplest among those which satisfy some fundamental principle, rather than those which are written in the simplest way: anyway, these last laws are often approximations of the correct, more general laws. Good examples of such relations between theories are given by Einstein's motion special relativity, of which the Galilean laws of inertial motion are low velocity approximations, and by Einstein's general relativity, which includes Newton's theory of gravitation as an approximation. In both cases, the correct laws are constructed from the requirement of covariance, rather than from the too simple requirement of invariance.

The theory of scale relativity [16, 4] proceeds along a similar reasoning. The principle of scale relativity may be implemented by requiring that the equations of physics be written in a covariant way under scale transformations of resolutions. Are the standard scale laws (those described by renormalization-group-like equations, or by a fractal powerlaw behavior) scale-covariant ? They are usually described (far from the transition to scale-independence) by asymptotic laws such as  $\mathcal{L} = \mathcal{L}_0(\lambda/\varepsilon)^{\delta}$ , with  $\delta$  a *constant* scaledimension (which may differ from the standard value  $\delta = 1$  by an anomalous dimension term [32]). This means that, as we have recalled hereabove, a scale transformation  $\varepsilon \to \varepsilon'$ can be written:

$$\ln \frac{\mathcal{L}(\varepsilon')}{\mathcal{L}_0} = \ln \frac{\mathcal{L}(\varepsilon)}{\mathcal{L}_0} + \mathbb{V} \,\delta(\varepsilon), \qquad (20)$$
$$\delta(\varepsilon') = \delta(\varepsilon),$$

where we have set:

$$\mathbb{V} = \ln(\varepsilon/\varepsilon'). \tag{21}$$

The choice of a logarithmic form for the writing of the scale transformation and the definition of the fundamental resolution parameter  $\mathbb{V}$  is justified by the expression of the dilatation operator  $\tilde{D} = \partial/\partial \ln \varepsilon$ . The relative character of  $\mathbb{V}$  is evident: in the same way that only velocity differences have a physical meaning (Galilean relativity of motion), only  $\mathbb{V}$  differences have a physical meaning (relativity of scales). We have then suggested [16] to characterize this relative resolution parameter  $\mathbb{V}$  as a 'state of scale' of the coordinate system, in analogy with Einstein's formulation of the principle of relativity [1], in which the relative velocity characterizes the state of motion of the reference system.

Now in such a frame of thought, the problem of finding the laws of linear transformation of fields in a scale transformation  $\mathbb{V} = \ln \rho$  ( $\varepsilon \to \varepsilon'$ ) amounts to finding four quantities,  $a(\mathbb{V}), b(\mathbb{V}), c(\mathbb{V})$ , and  $d(\mathbb{V})$ , such that

$$\ln \frac{\mathcal{L}'}{\mathcal{L}_0} = a(\mathbb{V}) \ln \frac{\mathcal{L}}{\mathcal{L}_0} + b(\mathbb{V}) \,\delta, \tag{22}$$
$$\delta' = c(\mathbb{V}) \ln \frac{\mathcal{L}}{\mathcal{L}_0} + d(\mathbb{V}) \,\delta.$$

Set in this way, it immediately appears that the current 'scale-invariant' scale transformation law of the standard form (Eq. 20), given by  $a = 1, b = \mathbb{V}, c = 0$  and d = 1, corresponds to the Galileo group.

This is also clear from the law of composition of dilatations,  $\varepsilon \to \varepsilon' \to \varepsilon''$ , which has a simple additive form,

$$\mathbb{V}'' = \mathbb{V} + \mathbb{V}'. \tag{23}$$

However the general solution to the 'special relativity problem' (namely, find a, b, c and d from the principle of relativity) is the Lorentz group [33]. In particular, we have proved [16] that, for two variables, only 3 axioms were needed (linearity, internal composition law and reflection invariance) Then we have suggested to replace the standard law of dilatation,  $\varepsilon \to \varepsilon' = \varrho \varepsilon$  by a new Lorentzian relation [16]. However, while the relativistic symmetry is universal in the case of the laws of motion, this is not true for the laws of scale. Indeed, physical laws are no longer dependent on resolution for scales larger than the classical-quantum transition (identified with the fractal-nonfractal transition in our approach) which has been analysed above. This implies that the dilatation law must remain Galilean above this transition scale.

For simplicity, we shall consider in what follows only the one-dimensional case. We define the resolution as  $\varepsilon = \delta x = c \delta t$ , and we set  $\lambda_0 = c \tau_{dB} = \hbar c/E$ . In its rest frame,  $\lambda_0$  is thus the Compton length of the system or particle considered, i.e., in the first place the Compton length of the electron (this will be better justified in Section 6). The new law of dilatation reads, for  $\varepsilon < \lambda_0$  and  $\varepsilon' < \lambda_0$ 

$$\ln \frac{\varepsilon'}{\lambda_0} = \frac{\ln(\varepsilon/\lambda_0) + \ln \varrho}{1 + \ln \varrho \ln(\varepsilon/\lambda_0) / \ln^2(\mathbf{\Lambda}/\lambda_0)}.$$
(24)

This relation introduces a fundamental length scale  $\Lambda$ , that we have identified (toward the small scales) with the Planck length (currently  $1.6160(11) \times 10^{-35}$  m),

$$\mathbf{\Lambda} = l_{\mathbb{P}} = (\hbar G/c^3)^{1/2}.$$
(25)

But, as one can see from Eq.(24), if one starts from the scale  $\varepsilon = \Lambda$  and apply any dilatation or contraction  $\rho$ , one gets back the scale  $\varepsilon' = \Lambda$ , whatever the initial value of  $\lambda_0$  (i.e., whatever the state of motion, since  $\lambda_0$  is Lorentz-covariant under velocity transformations). In other words,  $\Lambda$  is now interpreted as a limiting lower length-scale, impassable, invariant under dilatations and contractions. In the simplified case of a transformation from  $\mathcal{L}_0$  to  $\mathcal{L}$  (see [16, 4] for general expressions), the length measured along a fractal coordinate, that was previously scale-dependent as  $\ln(\mathcal{L}/\mathcal{L}_0) = \delta_0 \ln(\lambda_0/\varepsilon)$  for  $\varepsilon < \lambda_0$  becomes in the new framework (see Fig. 2)

$$\ln(\mathcal{L}/\mathcal{L}_0) = \frac{\delta_0 \ln(\lambda_0/\varepsilon)}{\sqrt{1 - \ln^2(\lambda_0/\varepsilon) / \ln^2(\lambda_0/\Lambda)}}.$$
(26)

The main new feature of scale relativity respectively to the previous fractal or scaleinvariant approaches is that the scale exponent  $\delta$  and the fractal dimension  $D_F = 1 + \delta$ , which were previously constant  $(D_F = 2, \delta = 1)$ , are now explicitly varying with scale (see Fig. 2), following the law (given once again in the simplified case when we start from the referece scale  $\mathcal{L}_0$ ):

$$\delta(\varepsilon) = \frac{\delta_0}{\sqrt{1 - \ln^2(\lambda_0/\varepsilon) / \ln^2(\lambda_0/\Lambda)}}.$$
(27)



Fig. 2 Scale dependence of the length and of the effective scale-dimension in the case of scalerelativistic Lorentzian scale laws.

These new laws corresponds to a Minkowskian scale metrics invariant that reads:

$$d\sigma^2 = d\delta^2 - \frac{(d\ln\mathcal{L})^2}{\mathbb{C}^2}.$$
(28)

For a more complete development of special relativity (including its implications as regards new conservative quantities), see Refs. [16, 4, 23].

#### 4.2.2 Applications

The theory of special scale-relativity has many consequences in two domains of physics (we shall not develop them further in the present contribution for lack of place: we refer the interested reader to the quoted references, in particular the two review papers [23, 35]).

(i) High energy and elementary particle physics [16, 4, 23, 34] (with applications to primeval cosmology [23, 35]). For example, one can apply this description to the 'internal' structures of the electron (identified with the fractal geodesics of a fractal space-time). This means that the fractal dimension jumps from  $D_F = 1$  to  $D_F = 2$  at the electron Compton scale  $\lambda_0 = \lambda_e = \hbar/m_e c$  (see the construction of quantum laws in what follows), then begins to vary with scale. Its variation is first very slow (quadratic in log of scale):

$$D_F(\varepsilon) = 2(1 + \frac{1}{4}\frac{\mathbb{V}^2}{\mathbb{C}_0^2} + ...),$$
(29)

where  $\mathbb{V} = \ln(\lambda_0/\varepsilon)$  and  $\mathbb{C}_0 = \ln(\lambda_0/l_{\mathbb{P}})$ ,  $l_{\mathbb{P}}$  being the Planck length-scale. Then it tends to infinity at very small scales when  $\mathbb{V} \to \mathbb{C}_0$ , i.e.,  $\varepsilon \to \mathbf{\Lambda} = l_{\mathbb{P}}$ .

The new status of the Planck length-scale (and time-scale), identified with a minimal scale, invariant under dilations and contractions, implies new relations between length-time scales and momentum-energy scales [4, 23]. These relations involve new log-Lorentz

factors that allow to solve some remaining problems of the standard model, such as the divergence problem of masses and charges, and the hierarchy problem between the GUT scale and the electroweak scale [23], and to suggest new methods for understanding the mass and charge spectrum of elementary particles [48, 23].

(ii) Cosmology [4, 23, 35]. We have suggested that log-Lorentz dilation transformations were also relevant at very large scales. In this case the invariant scale  $\Lambda$  becomes a maximal length-scale, invariant under dilations, that we have identified with the lengthscale  $\mathbb{L} = \Lambda^{-1/2}$  that can be constructed from the cosmological constant  $\Lambda$  (which is a curvature, i.e. the inverse of the square of a length).

Such an identification brings new light about the nature and the value of the cosmological constant. Indeed, its value, theoretically predicted in [4, 23],  $\Lambda_{\text{pred}} = (1.3628 \pm 0.0004) \times 10^{-56} \text{ cm}^{-2}$ , yields a scaled cosmological constant  $\Omega_{\Lambda}h^2 = 0.38874 \pm 0.00011$ , where  $h = H_0/H_{100}$  is the scaled Hubble constant. This prediction is supported by recent determinations from observational measurements of  $\Omega_{\Lambda}(\text{obs}) = 0.761 \pm 0.017$  and  $h = 0.730 \pm 0.019$  [36, 37, 38], so that  $\Omega_{\Lambda}h^2(\text{obs}) = (0.405 \pm 0.031)$ .

This new approach also leads to a description of the large-scale Universe in which the fractal dimension of space, and consequently that of the distribution of matter, is increasing with scale, following the law of Eq. 27. We have found [4, 23] that it should reach the value D = 3 at a scale of about 750 Mpc, implying a transition to uniformity at that scale.

Another application of these new laws to turbulence has also been suggested by Dubrulle and Graner [39], but with a different interpretation of the variables.

#### 4.3 Generalized scale laws

#### 4.3.1 Discrete scale invariance, complex dimension and log-periodic behavior

A correction to pure scale invariance is potentially important, namely the log-periodic correction to power laws that is provided, e.g., by complex exponents or complex fractal dimensions [7]. Sornette et al. (see [40] and references therein) have shown that such a behavior provides a very satisfactory and possibly predictive model of the time evolution of many critical systems, including earthquakes and market crashes [41]. More recently, it has been applied to the analysis of major event chronology of the evolutionary tree of life [42, 43], of human development [45] and of the main economic crisis of western and Precolumbian civilizations [43, 46].

Let us show how one can recover log-periodic corrections from requiring scale covariance of the scale differential equations [27]. Consider a scale-dependent function  $\mathcal{L}(\varepsilon)$ , (it may be for example the length measured along a fractal curve). In the applications to temporal evolution quoted above, the scale variable is identified with the time interval  $|t - t_c|$ , where  $t_c$  is the date of crisis. Assume that  $\mathcal{L}$  satisfies a renormalization-group-like first order differential equation,

$$\frac{d\mathcal{L}}{d\ln\varepsilon} - \nu\mathcal{L} = 0, \tag{30}$$

whose solution is a power law  $\mathcal{L}(\varepsilon) \propto \varepsilon^{\nu}$ . Now looking for corrections to this law, we remark that simply jumping to a complex value of the exponent  $\nu$  would lead to large log-periodic fluctuations rather than to a controlable correction to the power-law. So let us assume that the right-hand side of Eq. 30 actually differs from zero

$$\frac{d\mathcal{L}}{d\ln\varepsilon} - \nu\mathcal{L} = \chi. \tag{31}$$

We can now apply the scale-covariance principle and require that the new function  $\chi$  be solution of an equation which keeps the same form as the initial equation

$$\frac{d\chi}{d\ln\varepsilon} - \nu'\chi = 0. \tag{32}$$

Setting  $\nu' = \nu + \eta$ , we find that  $\mathcal{L}$  must be solution of a second-order equation

$$\frac{d^2 \mathcal{L}}{(d \ln \varepsilon)^2} - (2\nu + \eta) \frac{d\mathcal{L}}{d \ln \varepsilon} + \nu(\nu + \eta) \mathcal{L} = 0.$$
(33)

It writes  $\mathcal{L}(\varepsilon) = a\varepsilon^{\nu}(1 + b\varepsilon^{\eta})$ , and finally, the choice of an imaginary exponent  $\eta = i\omega$  yields a solution whose real part includes a log-periodic correction:

$$\mathcal{L}(\varepsilon) = a \,\varepsilon^{\nu} \,[1 + b \cos(\omega \ln \varepsilon)]. \tag{34}$$

Adding a constant term provides a transition to scale independence at large scales (see Fig. 3).



**Fig. 3** Scale dependence of the length and of the scale exponent in the case of a log-periodic behavior with fractal / nonfractal transition,  $\mathcal{L}(\varepsilon) = \mathcal{L}_0[1 + (\lambda/\varepsilon)^{\nu} e^{b \cos(\omega \ln(\varepsilon/\lambda))}].$ 

Let us now give another physically meaningful way to obtain an equivalent behavior, that does not make use of imaginary exponents. Define a log-periodic local scale exponent:

$$\delta = \frac{\partial \ln \mathcal{L}}{\partial \ln \varepsilon} = \nu - b\,\omega\sin(\omega\ln\varepsilon) \tag{35}$$

It leads after integration to a scale-divergence that reads

$$\mathcal{L}(\varepsilon) = a \,\varepsilon^{\nu} \, e^{b \cos(\omega \ln \varepsilon)} \tag{36}$$

whose first order expansion is (34). Such a law is a solution of a scale stationary wave equation:

$$\frac{\partial^2}{(\partial \ln \varepsilon)^2} \ln \left(\frac{\mathcal{L}}{\mathcal{L}_0}\right) + \omega^2 \ln \left(\frac{\mathcal{L}}{\mathcal{L}_0}\right) = 0, \tag{37}$$

where  $\mathcal{L}_0 = a \varepsilon^{\nu}$  is the strictly self-similar solution. Hence the log-periodic behavior can be viewed as a stationary wave in the scale-space (this prepares Sec. 8, in which we tentatively introduce a quantum wave scale equation). Note that these solutions can apply to fractal lengths only for  $b\omega < \nu$ , since the local scale exponent should remain positive: this behavior is typical of what is observed when measuring the resolutiondependent length of fractal curves of the von Koch type which are built by iteration and, strictly, have only discrete scale invariance instead of a full continuous scale invariance. But such laws also apply to other kind of variables (for example market indices or ion concentration near earthquake zones, see [40]) for which local decreases are relevant.



Fig. 4 Three typical examples of log-periodic chronological laws in species evolution (from Refs.[42, 43, 44]). Up: main trunk of the 'tree of life', from the apparition of life to homeothermy and viviparity (last two plotted points). The dates are best-fitted by an accelerating log-periodic law  $T_n = T_0 + (T_c - T_0) \times g^{-n}$ , with  $T_c = -30 \pm 60$  Myr and g = 1.83. Middle: comparison of the dates of the major leaps in the evolution of primates including the hominids (plus the two preceding main events: apparition of mammals and viviparity), with an accelerating log-periodic law. The last two dates of up figure are the first two of the middle figure (note the zoom by a factor 20 between the two figures). The best fit gives  $T_c = 2.0 \pm 0.4$  Myr and  $g = 1.78 \pm 0.01$ . For the 14 dates from the origin of life to the appearance of the Homo sapiens bauplan, one finds  $T_c = 2.1 \pm 1.0$  Myr and  $g = 1.76 \pm 0.01$ . The probability is less than  $10^{-4}$  to obtain such a fit by chance. Down: comparison with a decelerating log-periodic law of the dates of the major leaps in the evolution of echinoderms. The best fit yields  $T_c = -575 \pm 25$  Myr and  $g = 1.67 \pm 0.02$  (origin excluded). This means that the critical time from which the deceleration starts is their date of apparition (within uncertainties). All results are statistically highly significant (see the quoted references for details about the date and their analysis).

We give in Fig. 4 an example of application of such log-periodic laws to the analysis of the chronology of species evolution (see more detail in Refs. [42, 43, 44]). One finds either an acceleration toward a critical date  $T_c$  or a deceleration from a critical date,  $T_c$  depending on the considered lineage.

#### 4.3.2 Lagrangian approach to scale laws

The Lagrangian approach can be used in the scale space in order to obtain physically relevant generalizations of the above simplest (scale-invariant) laws. In this aim, we are led to reverse the definition and meaning of the variables. Namely, the scale exponent  $\delta$  becomes a primary variable that plays, for scale laws, the same role as played by time in motion laws. We have suggested to call 'djinn' this variable scale exponent (equal to the difference between a variable fractal dimension and the cosntant topological dimension).

The resolution,  $\varepsilon$ , can therefore be defined as a derived quantity in terms of the fractal coordinate  $\mathcal{L}$  and of the scale exponent or djinn,  $\delta$ 

$$\mathbb{V} = \ln\left(\frac{\lambda}{\varepsilon}\right) = \frac{d\ln\mathcal{L}}{d\delta} .$$
(38)

A scale Lagrange function  $\tilde{L}(\ln \mathcal{L}, \mathbb{V}, \delta)$  is introduced, from which a scale action is constructed

$$\tilde{S} = \int_{\delta_1}^{\delta_2} \tilde{L}(\ln \mathcal{L}, \mathbb{V}, \delta) \, d\delta.$$
(39)

The application of the action principle yields a scale Euler-Lagrange equation that writes  $\tilde{z}$ 

$$\frac{d}{d\delta}\frac{\partial \tilde{L}}{\partial \mathbb{V}} = \frac{\partial \tilde{L}}{\partial \ln \mathcal{L}} .$$
(40)

In analogy with the physics of motion, in the absence of any "scale-force" (i.e.,  $\partial \tilde{L}/\partial \ln \mathcal{L} = 0$ ), the Euler-Lagrange equation becomes

$$\partial L/\partial \mathbb{V} = \text{const} \Rightarrow \mathbb{V} = \text{const.}$$
 (41)

which is the equivalent for scale of what inertia is for motion. The simplest possible form for the Lagrange function is a quadratic dependence on the "scale velocity", (i.e.,  $\tilde{L} \propto \mathbb{V}^2$ ). The constancy of  $\mathbb{V} = \ln(\lambda/\varepsilon)$  means that it is independent of the djinn  $\delta$ . Equation (38) can therefore be integrated to give the usual power law behavior,  $\mathcal{L} = \mathcal{L}_0(\lambda/\varepsilon)^{\delta}$ . This reversed viewpoint has several advantages which allow a full implementation of the principle of scale relativity:

(i) The djinn  $\delta$  is given its actual status of a fifth dimension or "scale time" and the logarithm of the resolution,  $\mathbb{V}$ , its status of "scale velocity" (see Eq. 38). This is in accordance with its scale-relativistic definition, in which it characterizes the "state of scale" of the reference system, in the same way as the velocity v = dx/dt characterizes its state of motion.

(ii) This leaves open the possibility of generalizing our formalism to the case of four independent space-time resolutions,  $\mathbb{V}^{\mu} = \ln(\lambda^{\mu}/\varepsilon^{\mu}) = d \ln \mathcal{L}^{\mu}/d\delta$ . This amount to jump to a five-dimensional geometric description in terms of a space-time-djinn (at the level of the fractal fluctuations). Note in this respect that the genuine nature of resolutions is ultimately tensorial,  $\varepsilon^{\nu}_{\mu} = \varepsilon_{\mu}\varepsilon^{\nu} = \rho_{\mu\lambda}\varepsilon^{\nu}\varepsilon^{\lambda}$  and involves correlation coefficients, in analogy with variance-covariance matrices.

(iii) Scale laws more general than the simplest self-similar ones can be derived from more general scale Lagrangians [26], as we shall now see.

#### 4.3.3 Scale 'dynamics'

The whole of our previous discussion indicates to us that the scale invariant behavior corresponds to 'freedom' (i.e. scale forec-free behavior) in the framework of a scale physics. However, in the same way as there exists forces in nature that imply departure from inertial, rectilinear uniform motion, we expect most natural fractal systems to also present distorsions in their scale behavior respectively to pure scale invariance. This means taking non-linearity in scale into account. Such distorsions may be, as a first step, attributed to the effect of a scale "dynamics", i.e. of a "scale-field". (Caution: at this level of description, this is only an analog of dynamics, which acts on the scale axis, on the internal structures of the system under consideration, not in space-time. See what follows for the effects of coupling with space-time displacements).

In this case the Lagrange scale-equation takes the form of Newton's equation of dynamics:

$$F = \mu \frac{d^2 \ln \mathcal{L}}{d\delta^2},\tag{42}$$

where  $\mu$  is a 'scale-mass', which measures how the system resists to the 'scale-force', and where  $\Gamma = d^2 \ln \mathcal{L}/d\delta^2 = d \ln(\lambda/\varepsilon)/d\delta$  is the 'scale-acceleration'.

We shall now attempt to define physical, generic, scale-dynamical behaviors which could be common to very different systems. For various systems the scale-force may have very different origins, but in all cases where it has the same form (constant, harmonic oscillator, etc...), the same kind of scale behavior would be obtained. It is also worthwhile to remark that such a 'Newtonian' approach is itself considered to be only an intermediate step while waiting for a fully developped general scale-relativity. Thus the scale-forces are expected to be finally recovered as approximations of the manifestations of the geometry of the scale-space.

#### 4.3.4 Constant scale-force

Let us first consider the case of a constant scale-force. The potential is  $\varphi = F \ln \mathcal{L}$ , and Eq. 42 writes

$$\frac{d^2 \ln \mathcal{L}}{d\delta^2} = G,\tag{43}$$

where  $G = F/\mu = cst$ . It is easily integrated in terms of a parabolic solution (which is the equivalent for scale laws of parabolic motion in a constant field):

$$\mathbb{V} = \mathbb{V}_0 + G\delta \quad , \quad \ln \mathcal{L} = \ln \mathcal{L}_0 + \mathbb{V}_0 \delta + \frac{1}{2} G \, \delta^2.$$
(44)

However the physical meaning of this result is not clear under this form. This is due to the fact that, while in the case of motion laws we search for the evolution of the system with time, in the case of scale laws we search for the dependence of the system on resolution, which is the directly measured observable. We find, after redefinition of the integration constants,

$$\delta = \frac{1}{G} \ln \left( \frac{\lambda}{\varepsilon} \right) \quad , \quad \ln \left( \frac{\mathcal{L}}{\mathcal{L}_0} \right) = \frac{1}{2G} \ln^2 \left( \frac{\lambda}{\varepsilon} \right) . \tag{45}$$

This is easily generalized to include a transition to scale independence toward large scales by replacing  $\mathcal{L}$  by  $(\mathcal{L} - \mathcal{L}_0)$  in these equations (see Fig. 5).



Fig. 5 Scale dependence of the length and of the effective fractal dimension (minus the topological dimension) in the case of a constant 'scale-force', including a transition to scale independence at large scale.

The scale exponent  $\delta$  becomes a linear function of resolution (the same being true, as a consequence, of the fractal dimension  $D_F = 1 + \delta$ ), and the  $(\log \mathcal{L}, \log \varepsilon)$  relation is now parabolic instead of linear (see Fig. 5). There are several physical situations where, after careful examination of the data, the power-law models were clearly rejected since no constant slope could be defined in the  $(\log \mathcal{L}, \log \varepsilon)$  plane. In the several cases where a clear curvature appears in this plane (e.g., turbulence, sand piles, ...), the physics could come under such a 'scale-dynamical' description. In these cases it might be of interest to identify and study the scale-force responsible for the scale distorsion (i.e., for the deviation to standard scaling).

#### 4.3.5 Scale harmonic oscillator

Another interesting case is that of a repulsive harmonic oscillator potential,  $\varphi = -(k/2) \ln^2 \mathcal{L}$ , in the scale space. The scale differential equation reads in this case (we omit the reference scale  $\mathcal{L}_0$  in order to simplify the exposition):

$$\frac{d^2 \ln \mathcal{L}}{d\delta^2} = k \ln \mathcal{L}.$$
(46)

Setting  $k = 1/\delta_0^2$ , where  $\delta_0$  is constant, one of its solution reads

$$\ln \mathcal{L} = a \sinh\left(\frac{\delta}{\delta_0} + \alpha\right),\tag{47}$$

so that the scale velocity, which is its derivative with respect to  $\delta$ , reads

$$\mathbb{V} = \ln \frac{\lambda}{\varepsilon} = \frac{a}{\delta_0} \cosh\left(\frac{\delta}{\delta_0} + \alpha\right). \tag{48}$$

As in the previous section, we may now re-express  $\ln \mathcal{L}$  in function of the resolution thanks to the relation  $\cosh^2 x - \sinh^2 x = 1$ . We obtain

$$\frac{1}{\delta_0^2} \ln^2 \mathcal{L} - \ln^2 \frac{\lambda}{\varepsilon} = -\frac{a^2}{\delta_0^2}.$$
(49)

Finally, reintroducing a reference scale for  $\mathcal{L}$  and changing the name of the constants, the solution can be put under the form

$$\ln \frac{\mathcal{L}}{\mathcal{L}_0} = \delta_0 \sqrt{\ln^2 \frac{\lambda}{\varepsilon}} - \ln^2 \frac{\lambda}{\lambda_1}.$$
(50)

Note the correction to previous publications [27] in which we considered only a special solution which involved a relation between the constants  $\lambda$ ,  $\lambda_1$  and  $\delta_0$ . Actually the new scale of transition  $\lambda_1$  can be defined independently of the scale force-free transition  $\lambda$ . One sould also be aware not to confuse the asymptotic constant exponent  $\delta_0$  with the now variable exponent  $\delta$ .

For  $\varepsilon \ll \lambda$  it gives the standard Galilean-type case  $\mathcal{L} = \mathcal{L}_0(\lambda/\varepsilon)^{\delta_0}$ , i.e., constant fractal dimension  $D_F = 1 + \delta_0$ . But its intermediate-scale behavior is particularly interesting, since, from the viewpoint of the mathematical solution, resolutions larger than a scale  $\lambda_1$  are no longer possible. This transition of a new form therefore separates small scales from large scales, i.e., an "interior" (scales smaller than  $\lambda_1$ ) from an "exterior" (scales larger than  $\lambda_1$ ). It is characterized by an effective fractal dimension that becomes formally infinite. This behavior may reveal to be particularly interesting for applications to biology.

Here  $\lambda$  is the fractal / non-fractal transition scale for the asymptotic domain, i.e., it is the transition scale which would have been observed in the absence of the additional scale force (see Figure 6).



Fig. 6 Scale dependence of the length and of the scale exponent in the case of a harmonic oscillator scale-potential, with transition to scale independence at large scale.

Another possible interpretation of this scale harmonic oscillator model consists of considering the variable  $\varepsilon$  in the above equations as a distance r from a centre (i.e., a scaling coordinate instead as a scale-resolution). Then it describes a system in which the effective fractal dimension of trajectories diverges at some distance  $r = \lambda_{\text{max}}$  from the center, is larger than 1 in the inner region and becomes D = 1 (i.e., non-fractal) in the outer region. Since the increase of the fractal dimension of a curve corresponds to the increase of its 'thickness' [2, 3]), such a model can be interpreted as describing a system in which the inner and outer domains are separated by a wall.

We also hope such a behavior to provide a model of confinement in QCD. Indeed, the gauge symmetry group of QCD, SU(3), is the dynamical symmetry group of a 3dimensional isotropic harmonic oscillator, while gauge invariance can be re-interpreted in scale relativity as scale invariance on space-time resolutions (see following section). This suggestion is re-inforced by the following results and remarks:

(i) QCD is precisely characterized by the property of 'asymptotic freedom, which means that quarks become free at small scales while the strong coupling constant increases toward large scales. It may become formally infinite at the confinement scale.

(ii) There is increasing evidence for an internal fractal structure of the proton, more generally of hadrons [47].

(iii) Free u and d quark masses (i.e., the masses they would have in the absence of confinement) are far smaller than their effective mass in the proton and neutron. This means that their Compton length  $\lambda_c = \hbar/mc$  is larger than the confinement scale (of order 1 Fermi). This is exactly what is expected in the above model. Indeed, as we shall see in what follows, the fractal/non fractal transition is identified in rest frame with the Compton length of a particle.

(iv) A 3-dimensional sphere is scale space  $(\ln X, \ln Y, \ln Z)$  becomes, when viewed in terms of direct variables (X, Y, Z) and for large values of the variables, a triad (see Fig.7). Such a behavior may provide a model of color and quarks, in which the three quarks in hadrons would have no real separated existence, but could be identified with the three extremities of such a '3-tip string'. Their appearance could therefore be the mere result of a change of reference system (i.e., of relativity), provided the genuine physical variables for the description of intra-hadron physics be the scale variables  $(\ln X, \ln Y, \ln Z)$ , in terms of which there is pure isotropy on the scale-sphere, while our measurement devices work in terms of the (X, Y, Z) variables.



Fig. 7 'Three-tip string'. Three dimensional sphere in scale space,  $(\ln X)^2 + (\ln Y)^2 + (\ln Z)^2 = A^2$ , plotted in terms of direct variables (X, Y, Z), for A = 8.

#### 4.3.6 Toward a generalized theory of scale-relativity

The above approach in terms of 'scale dynamics' is actually intended to be a provisional description. Indeed, in analogy with Einstein's general relativity of motion, in which Newton's gravitational 'force' becomes a mere manifestation of space-time curvature, we hope that the scale dynamical forces introduced hereabove are only intermediate and practical concepts, which should ultimately be recovered as mere manifestation of the fractal geometry of space-time.

We shall be led in future developments of the theory to look for the general non-linear scale laws that satisfy the principle of scale relativity, and also to treat scale-laws and motion laws on the same footing. We have suggested that, in this purpose, a change of representation was necessary.

Namely, recall that our first proposal [13] was to work in a 'fractal space-time' representation, involving four coordinates that are explicit functions of the four space-time resolutions,  $\{X(\varepsilon_x), Y(\varepsilon_y), Z(\varepsilon_z), T(\varepsilon_t)\}$ . Since the resolutions are interpreted as characterizing the state of scale of the reference system, this eight variable representation can be viewed as the equivalent of a 'phase-space' representation. Now, much work remains to be done, since we have mainly considered, up to now, the simplified case of only one resolution variable. We shall be led in future works to define four different transformations on the four space-time resolutions.

Moreover, in this representation gauge transformations emerge as a manifestation of the coupling between scale and motion (see the following Section 7.). Namely, we have seen that the coordinates are generally split into two terms, a scale-dependent part and a scale-independent part that is identified with the classical non-fractal coordinates  $\{x, y, z, t\}$ . In other words, the classical differentiable space-time is recovered as a large-scale degeneracy of the microscopic fractal space-time. This allows one to consider resolutions that now vary with the classical coordinates, and therefore to have a more profound description in terms of fractal coordinates  $X^{\mu}[\varepsilon(x, y, z, t)]$ . As we shall see in a next section, such an approach leads to a new interpretation of gauge invariance and of gauge fields.

Now, in the case when the fractal dimension is no longer constant, we have proposed another representation in terms of a five-dimensional 'spacetime-djinn', in which the fractal dimension becomes itself a fifth dimension. Note that it is not the coordinates which are scale-dependent in an essential way, but only coordinate intervals: indeed, as emphasized previously, and as will be further developed in the following, they can be separated in two parts, a classical scale-independent part and a fractal fluctuation with vanishing mathematical expectation. Only the fractal fluctuation depends on scale. Therefore the spacetime-djinn combines space and time intervals with the djinn, i.e., it is defined in terms of the variables  $\{dX, dY, dZ, dT, \delta\}$ , while the clasical part of the spacetime remains four-dimensional and of (+, -, -, -) signature . The spacetime-djinn itself involves two levels of description:

(i) A 'Galilean' scale-relativity description, in which the djinn  $\delta$ , though possibly variable, remains a parameter which is separated from the four space-time coordinates, i.e.  $\{dX(\delta), dY(\delta), dZ(\delta), dT(\delta)\}$ . It allows one to implement the identification of resolutions with 'scale-velocities',

$$\ln\left(\frac{\lambda^{\mu}}{\varepsilon^{\mu}}\right) = \frac{d\ln|dX^{\mu}|}{d\delta}.$$
(51)

In this framework, the scale-motion coupling laws introduced to account for gauge transformations are recovered as second order derivatives involving the djinn and the coordinates  $(\partial^2/\partial \delta \partial x)$ , and they therefore appear on the same footing as motion accelerations  $(\partial^2/\partial t^2)$  and 'scale-accelerations'  $(\partial^2/\partial \delta^2)$ .

(ii) A fully covariant scale-relativistic description in terms of five fractal variables  $\chi^{\alpha}$ ,

with  $\alpha = 0$  to 4 and signature (+, -, -, -, -). Its simplified two-dimensional version has already been explicitly given in the above description of special-scale relativity, involving a log-Lorentzian law of dilation. In this representation, the four dilations on the four spacetime resolutions are identified with rotations in the spacetime-djinn, i.e., to log-Lorentz scale-boosts. In this respect the final group of relativity (motion + scale) is beyond the conformal group, since it contains independent dilations of the four coordinates (fractal parts), which do not conserve angles. It is expected to be at least a combination of the Poincaré group for the 4-dimensional standard space-time ('classical' variables) and of a group of generators  $\chi_{\alpha}\partial_{\beta}$  (including 'scale-rotations' ( $\chi_{\alpha}\partial_{\beta} - \chi_{\beta}\partial_{\alpha}$ )/2). Moreover, as already remarked, the true nature of the resolutions is tensorial instead of vectorial. All these points will be taken into account in the future developments of the theory [49].

# 5. Fractal Space and Induced Quantum-type Mechanics

# 5.1 Introduction

Let us now consider an essential part of the theory of scale relativity, namely, the description of the effects in standard space-time that are induced by the internal fractal structures in scale-space. The previous Sections were devoted to pure scale laws, i.e., to the description of the scale dependence of fractal trajectories at a given point of space-time. The question now addressed is: what are the consequences on motion of the internal fractal structures of space (more generally, of space-time)? This is a huge question that cannot be solved in one time. We therefore proceed by first studying the induced effects of the simplest scale laws (namely, self-similar laws of fractal dimension 2 for trajectories) under restricted conditions (only fractal space, then fractal space and time, breaking of symmetry on time, then also on space). As recalled in the following Sections, we successively recover in this way more and more profound levels of quantum mechanical laws: namely, non-relativistic quantum mechanics (Schrödinger equation), relativistic quantum mechanics without spin (Klein-Gordon equation) and for spinors (Dirac equation). More complicated situations (constant fractal dimension differing of 2, variable fractal dimension, special scale-relativistic log-Lorentzian behavior, etc...), that may lead to scale-relativistic corrections to standard quantum mechanics, have been tentatively considered in previous works [48, 23], but will not be recalled here.

# 5.2 Infinite number of geodesics

Strictly, the non-differentiability of the coordinates means that the velocity

$$V = \frac{dX}{dt} = \lim_{dt \to 0} \frac{X(t+dt) - X(t)}{dt}$$
(52)

is undefined. Namely, when dt tends to zero, either the ratio dX/dt tends to infinity, or it fluctuates without reaching any limit. However, as recalled in the introduction,

continuity and nondifferentiability imply an explicit dependence on scale of the various physical quantities. As a consequence, the velocity, V is itself re-defined as an explicitly resolution-dependent function V(t, dt).

However, this change of description is not yet sufficient. Indeed, one of the direct geometric consequences of the nondifferentiability and of the subsequent fractal character of space itself (not only of the trajectories) is that there is an infinity of fractal geodesics relating any couple of points of this fractal space [4, 71]. This can be easily understood already at the level of fractal surfaces, which can be described in terms of a fractal distribution of conic points of positive and negative infinite curvature (see [4], Sec. 3.6 and 3.10). The number of geodesics is therefore also infinite at the differential level, each "point" of the fractal space having an infinite diffusive effect on the paths. As a consequence, we are led to replace the velocity V(t, dt) on a particular geodesic by the velocity field V[x(t, dt), t, dt] of the whole infinite ensemble of geodesics. Moreover, this fundamental and irrepressible loss of information of purely geometric origin means the giving-up of determinism at the level of trajectories and leads to jump to a statistical and probabilistic description. But here, contrarily to the view of standard quantum mechanics, the statistical nature of the physical tool is not set as a foundation of physics, but derived from geometric properties.

In the simplest case, we expect this velocity field to be solution of a scale differential equation like Eq. 6, i.e.

$$V = v + w = v \left[ 1 + \zeta \left( \frac{\tau}{dt} \right)^{1 - 1/D_F} \right].$$
(53)

This means that the velocity is now the sum of two independent terms of different orders of differentiation, since their ratio v/w is, from the standard viewpoint, infinitesimal. In analogy with the real and imaginary parts of a complex number, we have suggested [67, 24] to call v the 'classical part' of the velocity and w its 'fractal part'. The new component w is an explicitely scale-dependent fractal fluctuation (which would be infinite from the standard point of view where one makes  $dt \to \infty$ ). The nondifferentiability of the space implies a fundamental loss of determinism of the paths in this space, in particular of the geodesics, so that we are led to describe this fractal fluctuation by a stochastic variable. It is normalized by chosing  $\tau$  in such a way that  $\langle \zeta \rangle = 0$  and  $\langle \zeta^2 \rangle = 1$ , where  $\zeta$  is now a purely mathematical dimensionless stochastic variable. The mean  $\langle \rangle$  is taken upon the probability distribution of this variable. But, as we shall see, the final result does not depend on this distribution so that we do not have to specify it. This means that this description includes far more general processes than Markov, Brownian-like or Wiener processes.

We have therefore suggested [13] that the description of a quantum mechanical particle, including its property of wave-particle duality, could be reduced to the geometric properties of the set of fractal geodesics that corresponds to a given state of this "particle". In such an interpretation, we do not have to endow the "particle" with internal properties such as mass, spin or charge, since the "particle" is not identified with a point mass which would follow the geodesics, but its "internal" properties can now be defined as global geometric properties of the fractal geodesics themselves. As a consequence, any measurement is interpreted as a sorting out (or selection) of the geodesics. For example, if the "particle" has been observed at a given position with a given resolution, this means that the geodesics which pass through this domain have been selected [4, 13].

# 5.3 'Classical part' and 'fractal part' of differentials

The transition scale appearing in Eq. (53) yields two distinct behaviors of the system (i.e., the 'particle', identified with an infinite family of geodesics of the fractal space) depending on the resolution at which it is considered. Equation (53) multiplied by dt gives the elementary displacement, dX, of the system as a sum of two infinitesimal terms of different orders

$$dX = dx + d\xi. \tag{54}$$

The variable dx is defined as the "classical" (or differentiable) part of the full deplacement dX. By 'classical', we do not mean that this is necessarily a variable of classical physics (for example, as we shall see hereafter, it will become two-valued due to nondifferentiability, which is clearly not a classical property). We mean here that it remains differentiable, and therefore come under classical differentiable equations.

Here  $d\xi$  represents the "fractal part" (or nondifferentiable part) of the elementary deplacement dX. As recalled at the beginning of this review paper, the nondifferentiability here does not mean that we cannot differentiate, since we have kept the continuity of space-time (so that we can define  $d\xi$ ), but that we can no longer calculate a derivative in the standard meaning (namely,  $d\xi/dt$  is infinite). Due to the definitive loss of information implied by the nondifferentiability, we have no other choice than to represent it in terms of a stochastic variable, as recalled in the previous section. We therefore write

$$dx = v \ dt,\tag{55}$$

$$d\xi = \eta \sqrt{2\mathcal{D}} (dt^2)^{1/2D_F}.$$
(56)

In what follows, we shall mainly consider the case of fractal dimension  $D_F = 2$ , which can be shown to play a critical role in the construction of the motion equation [23]. Moreover, it has been shown by Feynman [9] that the typical quantum mechanical paths, i.e., those that contribute most to the path integral, are of fractal dimension 2. In this case, the fractal fluctuation reads

$$d\xi = \eta \sqrt{2\mathcal{D}} \, dt^{1/2},\tag{57}$$

where  $2\mathcal{D} = \tau_0 = \tau v^2$ , and where  $\eta$  is a stochastic variable such that  $\langle \eta \rangle = 0$  and  $\langle \eta^2 \rangle = 1$ . Owing to Eq. (53), we identify  $\tau$  with the Einstein transition scale,  $\tau = \hbar/E = \hbar/\frac{1}{2}mv^2$  (in the non relativistic case). Therefore, as we shall see further on,  $2\mathcal{D} = \tau_0$  is a scalar quantity which can be identified with the Compton scale (up to fundamental constants),  $\hbar/mc$ , i.e., its physical meaning yields the mass of the particle itself.

#### 5.4 Discrete symmetry breaking

One of the most fundamental consequences of the nondifferentiable nature of space (more generally, of space-time) is the breaking of a new discrete symmetry, namely, of the reflection invariance on the differential element of (proper) time. As we shall see in what follows, it implies a two-valuedness of velocity which can be subsequently shown to be the origin of the complex nature of the quantum tool.

The derivative with respect to the time t of a differentiable function f can be written twofold

$$\frac{df}{dt} = \lim_{dt \to 0} \frac{f(t+dt) - f(t)}{dt} = \lim_{dt \to 0} \frac{f(t) - f(t-dt)}{dt} \,. \tag{58}$$

The two definitions are equivalent in the differentiable case. In the nondifferentiable situation, both definitions fail, since the limits are no longer defined. In the new framework of scale relativity, the physics is related to the behavior of the function during the "zoom" operation on the time resolution  $\delta t$ , identified with the differential element dt. The nondifferentiable function f(t) is replaced by an explicitly scale-dependent fractal function f(t, dt), which therefore becomes a function of two variables, t (in space-time) and dt (in scale space). Two functions  $f'_{+}$  and  $f'_{-}$  are therefore defined as explicit functions of the two variables t and dt

$$f'_{+}(t,dt) = \frac{f(t+dt,dt) - f(t,dt)}{dt}, \quad f'_{-}(t,dt) = \frac{f(t,dt) - f(t-dt,dt)}{dt}.$$
 (59)

One passes from one definition to the other by the transformation  $dt \leftrightarrow -dt$  (differential time reflection invariance), which actually was an implicit discrete symmetry of differentiable physics. When applied to fractal space coordinates x(t, dt), these definitions yield, in the non-differentiable domain, two velocity fields instead of one, that are fractal functions of the resolution,  $V_+[x(t, dt), t, dt]$  and  $V_-[x(t, dt), t, dt]$ .

These two fractal velocity fields may in turn be decomposed in terms of their classical and fractal parts, namely,

$$V_{+}[x(t,dt),t,dt] = v_{+}[x(t),t] + w_{+}[x(t,dt),t,dt],$$
(60)

$$V_{-}[x(t,dt),t,dt] = v_{-}[x(t),t] + w_{-}[x(t,dt),t,dt].$$
(61)

The  $V_+$  and  $V_-$  fractal functions are a priori different functions, and the same is therefore true of their classical parts  $v_+$  and  $v_-$  (which are scale-independent standard fluid mechanics-like velocity fields). While, in standard classical mechanics, the concept of velocity was one-valued, we must therefore introduce, for the case of a non-differentiable space, two velocity fields instead of one, even when going back to the classical domain. In recent papers, Ord [50] also insists on the importance of introducing 'entwined paths' for understanding quantum mechanics (but without giving a mechanism for their emergence).

A simple and natural way to account for this doubling consists in using complex numbers and the complex product. As we recall hereafter, this is the origin of the complex nature of the wave function of quantum mechanics, since this wave function can be identified with the exponential of the complex action that is naturally introduced in this framework. We shall now demonstrate that the choice of complex numbers for representing the two-valuedness of the velocity is a simplifying and "covariant" choice (in the sense of the principle of covariance, according to which the simplest possible form of the equations of physics should be conserved under all transformations of coordinates).

# 5.5 Covariant total derivative operator

We are now lead to describe the elementary displacements for both processes,  $dX_{\pm}$ , as the sum of a classical part,  $dx_{\pm} = v_{\pm} dt$ , and of a stochastic fluctuation about this classical part,  $d\xi_{\pm}$ , which is, by definition, of zero mean,  $\langle d\xi_{\pm} \rangle = 0$ , namely,

$$dX_{+}(t) = v_{+} dt + d\xi_{+}(t),$$
  

$$dX_{-}(t) = v_{-} dt + d\xi_{-}(t).$$
(62)

More generally, one may define two classical derivative operators,  $d_+/dt$  and  $d_-/dt$ , which yield the twin classical velocities when they are applied to the position vector x,

$$\frac{d_+}{dt}x(t) = v_+ , \qquad \frac{d_-}{dt}x(t) = v_- .$$
 (63)

As regards the fluctuations, the generalization to three dimensions of the fractal behavior of Eq. (56) reads (when  $D_F = 2$ )

$$\langle d\xi_{\pm i} d\xi_{\pm j} \rangle = \pm 2 \mathcal{D} \,\delta_{ij} dt \qquad i, j = x, y, z, \tag{64}$$

since the  $d\xi(t)$ 's are of null classical part and assumed to be mutually independent. The Krönecker symbol  $\delta_{ij}$ , in Eq. (64), indeed means that the mean crossed product  $\langle d\xi_{\pm i} d\xi_{\pm j} \rangle$ , with  $i \neq j$ , is null.

#### 5.5.1 Origin of complex numbers in quantum mechanics

We now know that each component of the velocity field takes two values instead of one. This means that each component of the velocity becomes a vector in a two-dimensional space, or, in other words, that the velocity becomes a two-index tensor. The generalization of the sum of these quantities is straighforward, but one also needs to define a generalized product.

The problem can be put in a general way: it amounts to find a generalization of the standard product that keeps its fundamental physical properties.

From the mathematical point of view, we are here exactly confronted to the wellknown problem of the doubling of algebra (see, e.g., Ref. [79]). Indeed, the effect of the symmetry breaking  $dt \leftrightarrow -dt$  (or  $ds \leftrightarrow -ds$ ) is to replace the algebra  $\mathcal{A}$  in which the classical physical quantities are defined, by a direct sum of two exemplaries of  $\mathcal{A}$ , i.e., the space of the pairs (a, b) where a and b belong to  $\mathcal{A}$ . The new vectorial space  $\mathcal{A}^2$  must be supplied with a product in order to become itself an algebra (of doubled dimension). The same problem is asked again when one takes also into account the symmetry breakings  $dx^{\mu} \leftrightarrow -dx^{\mu}$  and  $x^{\mu} \leftrightarrow -x^{\mu}$  (see [67]): this leads to new algebra doublings. The mathematical solution to this problem is well-known: the standard algebra doubling amounts to supply  $\mathcal{A}^2$  with the complex product. Then the doubling  $\mathbb{R}^2$  of  $\mathbb{R}$  is the algebra  $\mathbb{C}$  of complex numbers, the doubling  $\mathbb{C}^2$  of  $\mathbb{C}$  is the algebra  $\mathbb{H}$  of quaternions, the doubling  $\mathbb{H}^2$  of quaternions is the algebra of Graves-Cayley octonions. The problem with algebra doubling is that the iterative doubling leads to a progressive deterioration of the algebraic properties. Namely, one loses the order relation of reals in the complex plane, while the quaternion algebra is non-commutative, and the octonion algebra is also non-associative. But an important positive result for physical applications is that the doubling of a metric algebra is a metric algebra [79].

These mathematical theorems fully justify the use of complex numbers, then of quaternions, in order to describe the successive doublings due to discrete symmetry breakings at the infinitesimal level, which are themselves more and more profound consequences of space-time non-differentiability [24, 82].

However, we give in what follows complementary arguments of a physical nature, which show that the use of the complex product in the first algebra doubling  $\mathbb{R} \to \mathbb{C}$  have a simplifying and covariant effect [24, 82] (we use here the word "covariant" in the original meaning given to it by Einstein [1], namely, the requirement of the form invariance of fundamental equations).

In order to simplify the argument, let us consider the generalization of scalar quantities, for which the product law is the standard product in  $\mathbb{R}$ .

The first constraint is that the new product must remain an internal composition law. We also make the simplifying assumption that it remains linear in terms of each of the components of the two quantities to be multiplied. A general bilinear product  $c = a \times b$  reads

$$c^k = a^i \,\omega^k_{ij} \, b^j, \tag{65}$$

and it is therefore defined by eight numbers  $\omega_{ij}^k$  in the case (considered here) of a two-valuedness of the quantities a, b, c.

The second physical constraint is the requirement to recover the classical variables and the classical product at the classical limit. The mathematical equivalent of this constraint is the requirement that  $\mathcal{A}$  still be a sub-algebra of  $\mathcal{A}^2$ . Therefore we identify  $a_0 \in \mathcal{A}$  with  $(a_0, 0)$  and we set  $(0, 1) = \alpha$ . This allows us to write the new two-dimensional vectors in the simplified form  $a = a_0 + a_1 \alpha$ , so that the product now writes

$$c = (a_0 + a_1\alpha)(b_0 + b_1\alpha) = a_0b_0 + a_1b_1\alpha^2 + (a_0b_1 + a_1b_0)\alpha.$$
(66)

The problem is now reduced to find  $\alpha^2$ , which is now defined by only two coefficients

$$\alpha^2 = \omega_0 + \omega_1 \alpha. \tag{67}$$

Let us now come back to the beginning of our construction. We have introduced two elementary displacements, each of them made of two terms, a classical part and a fractal part (see Eq. (62))

$$dX_{+}(t) = v_{+} dt + d\xi_{+}(t),$$
  

$$dX_{-}(t) = v_{-} dt + d\xi_{-}(t).$$
(68)

Let us first consider the two values of the 'classical' part of the velocity. Instead of considering them as a vector of a new plane,  $(v_+, v_-)$ , we shall use the above construction for defining them as a number of the doubled algebra [68]. Namely, we first replace  $(v_+, v_-)$  by the equivalent twin velocity field  $[(v_+ + v_-)/2, (v_+ - v_-)/2]$ , then we define the number:

$$\mathcal{V} = \left(\frac{v_+ + v_-}{2} - \alpha \, \frac{v_+ - v_-}{2}\right). \tag{69}$$

This choice is motivated by the requirement that, at the classical limit when  $v = v_+ = v_-$ , the real part identifies with the classical velocity v and the new 'imaginary' part vanishes. The same operation can be made for the fractal parts. One can define velocity fluctuations  $w_+ = d\xi_+/dt$  and  $w_- = d\xi_-/dt$ , so that we define a new number of the doubled algebra,

$$\mathcal{W} = \left(\frac{w_{+} + w_{-}}{2} - \alpha \, \frac{w_{+} - w_{-}}{2}\right) \,. \tag{70}$$

Finally the total velocity (classical part and fractal fluctuation) reads:

$$\mathcal{V} + \mathcal{W} = \left(\frac{v_+ + v_-}{2} - \alpha \, \frac{v_+ - v_-}{2}\right) + \left(\frac{w_+ + w_-}{2} - \alpha \, \frac{w_+ - w_-}{2}\right) \,. \tag{71}$$

We shall see in what follows that a Lagrange function can be introduced in terms of the new two-valued tool, that leads to a conserved form for the Euler-Lagrange equations. In the end, as we shall see, the Schrödinger equation is obtained as their integral. Now, from the covariance principle, the classical Lagrange function in the Newtonian case should strictly be written as

$$\mathcal{L} = \frac{1}{2}m < (\mathcal{V} + \mathcal{W})^2 > = \frac{1}{2}m \left( \langle \mathcal{V}^2 \rangle + \langle \mathcal{W}^2 \rangle \right).$$
(72)

Now we have  $\langle W \rangle = 0$  by definition, and  $\langle V.W \rangle = 0$  because they are mutually independent. But what about  $\langle W^2 \rangle$ ? The presence of this term would greatly complicate all the subsequent developments toward the Schrödinger equation, since it would imply a fundamental divergence of non-relativistic quantum mechanics. Let us expand it:

$$4 < \mathcal{W}^2 > = < [(w_+ + w_-) - \alpha (w_+ - w_-)]^2 > = < (w_+^2 + w_-^2)(1 + \alpha^2) - 2\alpha (w_+^2 - w_-^2) + 2w_+ w_- (1 - \alpha^2) > .$$
(73)

Since  $\langle w_+^2 \rangle = \langle w_-^2 \rangle$  and  $\langle w_+.w_- \rangle = 0$  (they are mutually independent), we finally find that  $\langle W^2 \rangle$  can vanish only provided

$$\alpha^2 = -1,\tag{74}$$

namely,  $\alpha = \pm i$ , the imaginary unit.

Therefore we have shown that the choice of the complex product in the algebra doubling plays an essential physical role, since it allows to suppress what would be additional infinite terms in the final equations of motion [24, 82]. The two solutions +i and -i have equal physical meaning, since the final equation of Schrödinger (demonstrated in the following) and the wave function are physically invariant under the transformation  $i \rightarrow -i$  provided it is applied to both of them, as is well known in standard quantum mechanics.

#### 5.5.2 Complex velocity field

We now combine the two derivatives to define a complex classical derivative operator, that allows us to recover local differential time reversibility in terms of the new complex process [4]:

$$\frac{d}{dt} = \frac{1}{2} \left( \frac{d_+}{dt} + \frac{d_-}{dt} \right) - \frac{i}{2} \left( \frac{d_+}{dt} - \frac{d_-}{dt} \right) . \tag{75}$$

Applying this operator to the position vector yields a complex classical velocity field

$$\mathcal{V} = \frac{\hat{d}}{dt}x(t) = V - iU = \frac{v_+ + v_-}{2} - i \frac{v_+ - v_-}{2}.$$
(76)

The minus sign in front of the imaginary term is chosen here in order to obtain the Schrödinger equation in terms of the wave function  $\psi$  (which will be constructed in what follows). The reverse choice would give the Schrödinger equation for the complex conjugate of the wave function  $\psi^{\dagger}$ , and would be therefore physically equivalent.

The real part, V, of the complex velocity,  $\mathcal{V}$ , represents the standard classical velocity, while its imaginary part, -U, is a new quantity arising from non-differentiability. At the usual classical limit,  $v_+ = v_- = v$ , so that V = v and U = 0.

#### 5.5.3 Complex time-derivative operator

Contrary to what happens in the differentiable case, the total derivative with respect to time of a fractal function f(x(t), t) of integer fractal dimension contains finite terms up to higher order [69]

$$\frac{df}{dt} = \frac{\partial f}{\partial t} + \frac{\partial f}{\partial x_i}\frac{dX_i}{dt} + \frac{1}{2}\frac{\partial^2 f}{\partial x_i \partial x_j}\frac{dX_i dX_j}{dt} + \frac{1}{6}\frac{\partial^3 f}{\partial x_i \partial x_j \partial x_k}\frac{dX_i dX_j dX_k}{dt} + \dots$$
(77)

Note that it has been shown by Kolwankar and Gangal [70] that, if the fractal dimension is not an integer, a fractional Taylor expansion can also be defined, using the local fractional derivative (however, see [71] about the physical relevance of this tool and [72] for another proposal).

In our case, a finite contribution only proceeds from terms of  $D_F$ -order, while lesserorder terms yield an infinite contribution and higher-order ones are negligible. Therefore, in the special case of a fractal dimension  $D_F = 2$ , the total derivative writes

$$\frac{df}{dt} = \frac{\partial f}{\partial t} + \frac{\partial f}{\partial x_i} \frac{dX_i}{dt} + \frac{1}{2} \frac{\partial^2 f}{\partial x_i \partial x_j} \frac{dX_i dX_j}{dt}.$$
(78)

Let us now consider the classical part of this expression. By definition,  $\langle dX \rangle = dx$ , so that the second term is reduced to  $v.\nabla f$ . Now concerning the term  $dX_i dX_j/dt$ , it is usually infinitesimal, but here its classical part reduces to  $\langle d\xi_i d\xi_j \rangle /dt$ . Therefore, thanks to Eq. (64), the last term of the classical part of Eq. (78) amounts to a Laplacian, and we obtain

$$\frac{d_{\pm}f}{dt} = \left(\frac{\partial}{\partial t} + v_{\pm} \cdot \nabla \pm \mathcal{D}\Delta\right) f \ . \tag{79}$$

Substituting Eqs. (79) into Eq. (75), we finally obtain the expression for the complex time derivative operator [4]

$$\frac{\widehat{d}}{dt} = \frac{\partial}{\partial t} + \mathcal{V}.\nabla - i\mathcal{D}\Delta .$$
(80)

This is one of the main results of the theory of scale relativity. Indeed, the passage from standard classical (i.e., almost everywhere differentiable) mechanics to the new nondifferentiable theory can now be implemented by replacing the standard time derivative d/dt by the new complex operator  $\hat{d}/dt$  (being cautious with the fact that it involves a combination of first order and second order derivatives, in particular when using the Leibniz rule for products or composed functions [74, 83]). In other words, this means that  $\hat{d}/dt$  plays the role of a "covariant derivative operator", namely, we shall write in its term the fundamental equations of physics under the same form they had in the differentiable case.

It should be remarked, before going on with this construction, that we use here the word 'covariant' in analogy with the covariant derivative  $D_j A^k = \partial_j A^k + \Gamma_{jl}^k A^l$  replacing  $\partial_j A^k$  in Einstein's general relativity. But one shoud be cautious with this analogy, since the two situations are different. Indeed, the problem posed in the construction of general relativity was that of a new geometry, in a framework where the differential calculus was not affected. Therefore the Einstein covariant derivative amounts to substracting the new geometric effect  $-\Gamma_{jl}^k A^l$  in order to recover the mere inertial motion, for which the Galilean law of motion  $Du^k/ds = 0$  naturally holds [85]. Here there is an additional difficulty: the new effects come not only from the geometry (see Sec. 7. for a scale-covariant derivative acting in the same way as that of general relativity) but also from the non-differentiability and its consequences on the differential calculus.

Therefore the true status of the new derivative is actually an extension of the concept of total derivative. Already in standard physics, the passage from the free Galileo-Newton's equation to its Euler form was a case of conservation of the form of equations in a more complicated situation, namely,  $d/dt \rightarrow d/dt = \partial/\partial t + v \cdot \nabla$  when  $v(t) \rightarrow v[x(t), t]$ . In the fractal and nondifferentiable situation considered here, the three consequences of nondifferentiability (infinity of geodesics, fractality and two-valuedness of derivative) lead to three new terms in the total derivative operator, namely  $V \cdot \nabla$ ,  $-iU \cdot \nabla$  and  $-i\mathcal{D}\Delta$ .

## 5.6 Covariant mechanics induced by scale laws

Let us now summarize the main steps by which one may generalize the standard classical mechanics using this covariance. We are now looking to motion in the standard space. In what follows, we consider only the 'classical parts' of the variables, which are differentiable and independent of resolutions. However, we shall subsequently show that the same result (i.e., construction of a complex wave function that is solution of a Schrödinger equation) can also be obtained by taking the full velocity field, including the fractal nondifferentiable part.

The effects of the internal nondifferentiable structures are now contained in the covariant derivative. Following the standard construction of the laws of mechanics, we assume that the classical part of the mechanical system under consideration can be characterized by a Lagrange function that keeps the usual form but now in terms of the complex velocity,  $\mathcal{L}(x, \mathcal{V}, t)$ , from which an action  $\mathcal{S}$  is defined

$$S = \int_{t_1}^{t_2} \mathcal{L}(x, \mathcal{V}, t) dt, \qquad (81)$$

which is therefore now complex since  $\mathcal{V}$  is itself complex.

In this expression, we have assume that the (+) and (-) velocity fields can be combined in the expression of the Lagrange function in terms of the complex velocity. We have already given arguments, in the previous section, according to which the choice made in the construction of the complex velocity is a simplifying and covariant choice. We shall now prove that the action can indeed be put in a general way under the above form, and that it allows us to conserve the standard form of the Euler-Lagrange equations (i.e., to write generalized covariant Euler-Lagrange equations).

In a general way, the Lagrange function is expected to be a function of the variables xand of their time derivatives  $\dot{x}$ . We have found that the number of velocity components  $\dot{x}$  is doubled, so that we are led to write

$$\mathcal{L} = \mathcal{L}(x, \dot{x}_+, \dot{x}_-, t). \tag{82}$$

In terms of this Lagrange function, the action principle reads

$$\delta S = \delta \int_{t_1}^{t_2} \mathcal{L}(x, \dot{x}_+, \dot{x}_-, t) \, dt = 0.$$
(83)

It becomes

$$\int_{t_1}^{t_2} \left( \frac{\partial \mathcal{L}}{\partial x} \,\delta x + \frac{\partial \mathcal{L}}{\partial \dot{x}_+} \,\delta \dot{x}_+ + \frac{\partial \mathcal{L}}{\partial \dot{x}_-} \,\delta \dot{x}_- \right) \,dt = 0.$$
(84)

Now, the Lagrange function of Eq. (81), re-expressed in terms of  $\dot{x}_+$  and  $\dot{x}_-$ , reads

$$\mathcal{L} = \mathcal{L}\left(x, \frac{1-i}{2}\dot{x}_{+} + \frac{1+i}{2}\dot{x}_{-}, t\right),\tag{85}$$

and it is therefore an equivalent function of  $\dot{x}_+$  and  $\dot{x}_-$  considered as independent variables. Therefore we obtain

$$\frac{\partial \mathcal{L}}{\partial \dot{x}_{+}} = \frac{1-i}{2} \frac{\partial \mathcal{L}}{\partial \mathcal{V}} \quad ; \quad \frac{\partial \mathcal{L}}{\partial \dot{x}_{-}} = \frac{1+i}{2} \frac{\partial \mathcal{L}}{\partial \mathcal{V}}, \tag{86}$$
while the new covariant time derivative operator writes

$$\frac{d}{dt} = \frac{1-i}{2} \frac{d_+}{dt} + \frac{1+i}{2} \frac{d_-}{dt} \,. \tag{87}$$

Since  $\delta \dot{x}_+ = d_+(\delta x)/dt$  and  $\delta \dot{x}_- = d_-(\delta x)/dt$ , the action principle takes the form

$$\int_{t_1}^{t_2} \left( \frac{\partial \mathcal{L}}{\partial x} \,\delta x + \frac{\partial \mathcal{L}}{\partial \mathcal{V}} \,\left[ \frac{1-i}{2} \,\frac{d_+}{dt} + \frac{1+i}{2} \,\frac{d_-}{dt} \right] \,\delta x \right) \,dt = 0, \tag{88}$$

i.e.,

$$\int_{t_1}^{t_2} \left( \frac{\partial \mathcal{L}}{\partial x} \, \delta x + \frac{\partial \mathcal{L}}{\partial \mathcal{V}} \, \frac{\widehat{d}}{dt} \, \delta x \right) \, dt = 0. \tag{89}$$

This is the form one would have obtained directly from Eq. (81).

The subsequent demonstration of the Lagrange equations from the stationary action principle relies on an integration by part. This integration by part cannot be performed in the usual way without a specific analysis, because it involves the new covariant derivative.

The first point to be considered is that such an operation involves the Leibniz rule for the covariant derivative operator  $\hat{d}/dt$ . Since  $\hat{d}/dt = \partial/dt + \mathcal{V} \cdot \nabla - i\mathcal{D}\Delta$ , it is a linear combination of first and second order derivatives, so that the same is true of its Leibniz rule, namely, it is a linear combination of the first order and second order Leibniz rules. This implies the appearance of an additional term in the expression for the derivative of a product (see [74, 83] and Sec. 6.1.2), namely

$$\frac{\widehat{d}}{dt}\left(\frac{\partial L}{\partial \mathcal{V}} \cdot \delta x\right) = \frac{\widehat{d}}{dt}\left(\frac{\partial L}{\partial \mathcal{V}}\right) \cdot \delta x + \frac{\partial L}{\partial \mathcal{V}} \cdot \frac{\widehat{d}}{dt}\delta x - 2i\mathcal{D}\nabla\left(\frac{\partial L}{\partial \mathcal{V}}\right) \cdot \nabla\delta x.$$
(90)

Since  $\delta x(t)$  is not a function of x, the additional term vanishes. Therefore the above integral becomes

$$\int_{t_1}^{t_2} \left[ \left( \frac{\partial L}{\partial x} - \frac{\widehat{d}}{dt} \frac{\partial L}{\partial \mathcal{V}} \right) \delta x + \frac{\widehat{d}}{dt} \left( \frac{\partial L}{\partial \mathcal{V}} \cdot \delta x \right) \right] dt = 0.$$
(91)

The second point is concerned with the integration of the covariant derivative itself. We define a new integral as being the inverse operation of the covariant derivation, i.e.,

$$\int \widehat{df} = f \tag{92}$$

in terms of which one obtains

$$\int_{t_1}^{t_2} \widehat{d}\left(\frac{\partial L}{\partial \mathcal{V}} \cdot \delta x\right) = \left[\frac{\partial L}{\partial \mathcal{V}} \cdot \delta x\right]_{t_1}^{t_2} = 0, \tag{93}$$

since  $\delta x(t_1) = \delta x(t_2) = 0$  by definition of the variation principle. Therefore the action integral becomes

$$\int_{t_1}^{t_2} \left( \frac{\partial L}{\partial x} - \frac{\hat{d}}{dt} \frac{\partial L}{\partial \mathcal{V}} \right) \, \delta x \, dt = 0.$$
(94)

And finally we obtain generalized Euler-Lagrange equations that read

$$\frac{\widehat{d}}{dt}\frac{\partial L}{\partial \mathcal{V}} = \frac{\partial L}{\partial x}.$$
(95)

Therefore, thanks to the transformation  $d/dt \rightarrow \hat{d}/dt$ , they take exactly their standard classical form. This result reinforces the identification of our tool with a "quantum-covariant" representation, since, as we have shown in previous works and as we recall in what follows, this Euler-Lagrange equation can be integrated under the form of a Schrödinger equation.

In analogy with the standard cosntruction of classical mechanics and by extension of it, one can now define from the homogeneity of position space a generalized complex momentum given by

$$\mathcal{P} = \frac{\partial \mathcal{L}}{\partial \mathcal{V}}.$$
(96)

If we now consider the action as a functional of the upper limit of integration in Eq. (81), the variation of the action from a trajectory to another nearby trajectory yields a generalization of another well-known relation of standard mechanics, namely,

$$\mathcal{P} = \nabla \mathcal{S}.\tag{97}$$

As concerns the generalized energy, its expression involves an additional term [74, 51], namely, it write for a Newtonian Lagrange function and in the absence of exterior potential,

$$\mathcal{E} = \frac{1}{2}m(\mathcal{V}^2 - 2i\,\mathcal{D}\,\mathrm{div}\mathcal{V}) \tag{98}$$

(see the four-dimensional generalisation of this expression and a discussion of its origin in Sec. 6.1.2).

# 5.7 Newton-Schrödinger Equation

#### 5.7.1 Geodesics equation

Let us now specialize our study, and consider Newtonian mechanics, i.e., the general case when the structuring external scalar field is described by a potential energy  $\Phi$ . The Lagrange function of a closed system,  $L = \frac{1}{2}mv^2 - \Phi$ , is generalized as  $\mathcal{L}(x, \mathcal{V}, t) = \frac{1}{2}m\mathcal{V}^2 - \Phi$ .

The Euler-Lagrange equations keep the form of Newton's fundamental equation of dynamics

$$m\frac{\widehat{d}}{dt}\mathcal{V} = -\nabla\Phi,\tag{99}$$

which is now written in terms of complex variables and complex time derivative operator.

In the case when there is no external field, and also when the field can itself be constructed from a covariant geometric process, like gravitation in general relativity [1] and now gauge fields in scale relativity [49], the covariance is explicit and complete, so that Eq. (99) takes the simple form of Galileo's equation of inertial motion, i.e., of a geodesics equation,

$$\frac{d}{dt}\mathcal{V} = 0. \tag{100}$$

This is analog to Einstein's general relativity, where the equivalence principle of gravitation and inertia leads to a strong covariance principle, expressed by the fact that one may always find a coordinate system in which the metric is locally Minkowskian. This means that, in this coordinate system, the covariant equation of motion of a free particle is that of inertial motion  $Du_{\mu} = 0$  in terms of the general-relativistic covariant derivative D and four-vector  $u_{\mu}$ . The expansion of the covariant derivative subsequently transforms this free-motion equation in a geodesic equation in a curved space-time, whose manifestation is the gravitational field. The same form can be obtained from the equivalence principle, from the strong covariance principle, and from the least-action principle, that becomes a geodesics principle in a relativity theory thanks to the identification of the action with the invariant proper time (see e.g. [85]).

The covariance induced by scale effects leads to an analogous transformation of the equation of motions, which, as we shall now show below, become after integration the Schrödinger equation, (then the Klein-Gordon and Dirac equations in the motionrelativistic case), which we can therefore consider as the integral of a geodesic equation.

In both cases, with or without external field, the complex momentum  $\mathcal{P}$  reads

$$\mathcal{P} = m\mathcal{V},\tag{101}$$

so that, from Eq. (97), the complex velocity field  $\mathcal{V}$  is potential, namely it is the gradient of the complex action,

$$\mathcal{V} = \nabla \mathcal{S}/m. \tag{102}$$

#### 5.7.2 Complex wave function

We now introduce a complex wave function  $\psi$  which is nothing but another expression for the complex action S

$$\psi = e^{i\mathcal{S}/\mathcal{S}_0}.\tag{103}$$

We stress on the fact that, since  $S = S_R - iS_I$  is complex, despite its apparent form, this  $\psi$  function has a phase  $\theta = S_R/S_0$  and a modulus,  $|\psi| = \exp(S_I/S_0)$ . The factor  $S_0$  has the dimension of an action (i.e., of an angular momentum) and must be introduced for dimensional reasons. We show in what follows, that, when this formalism is applied to microphysics, i.e., to the standard molecular and atomic physics,  $S_0$  is nothing but the fundamental constant  $\hbar$ . From Eq. (102), we find that the function  $\psi$  is related to the complex velocity field as follows

$$\mathcal{V} = -i \,\frac{\mathcal{S}_0}{m} \,\nabla(\ln\psi). \tag{104}$$

#### 5.7.3 Schrödinger equation

We have now at our disposal all the mathematical tools needed to write the fundamental equation of dynamics of Eq. (99) in terms of the new quantity  $\psi$ . It takes the form

$$i\mathcal{S}_0\frac{\widehat{d}}{dt}(\nabla\ln\psi) = \nabla\Phi.$$
(105)

Now one should be aware that  $\hat{d}$  and  $\nabla$  do not commute. However, as we shall see in the following,  $\hat{d}(\nabla \ln \psi)/dt$  is nevertheless a gradient in the general case.

Replacing  $\hat{d}/dt$  by its expression, given by Eq. (80), yields

$$\nabla \Phi = i \mathcal{S}_0 \left( \frac{\partial}{\partial t} + \mathcal{V} \cdot \nabla - i \mathcal{D} \Delta \right) (\nabla \ln \psi), \tag{106}$$

and replacing once again  $\mathcal{V}$  by its expression in Eq. (104), we obtain

$$\nabla \Phi = i\mathcal{S}_0 \left[ \frac{\partial}{\partial t} \nabla \ln \psi - i \left\{ \frac{\mathcal{S}_0}{m} (\nabla \ln \psi . \nabla) (\nabla \ln \psi) + \mathcal{D} \Delta (\nabla \ln \psi) \right\} \right].$$
(107)

Consider now the remarkable identity [4]

$$(\nabla \ln f)^2 + \Delta \ln f = \frac{\Delta f}{f} , \qquad (108)$$

which proceeds from the following tensorial derivation

$$\partial_{\mu}\partial^{\mu}\ln f + \partial_{\mu}\ln f\partial^{\mu}\ln f = \partial_{\mu}\frac{\partial^{\mu}f}{f} + \frac{\partial_{\mu}f}{f}\frac{\partial^{\mu}f}{f}$$
$$= \frac{f\partial_{\mu}\partial^{\mu}f - \partial_{\mu}f\partial^{\mu}f}{f^{2}} + \frac{\partial_{\mu}f\partial^{\mu}f}{f^{2}}$$
$$= \frac{\partial_{\mu}\partial^{\mu}f}{f}.$$
(109)

When we apply this identity to  $\psi$  and take its gradient, we obtain

$$\nabla\left(\frac{\Delta\psi}{\psi}\right) = \nabla[(\nabla\ln\psi)^2 + \Delta\ln\psi].$$
(110)

The second term in the right-hand side of this expression can be transformed, using the fact that  $\nabla$  and  $\Delta$  commute, i.e.,

$$\nabla \Delta = \Delta \nabla. \tag{111}$$

The first term can also be transformed thanks to another remarkable identity

$$\nabla(\nabla f)^2 = 2(\nabla f \cdot \nabla)(\nabla f), \qquad (112)$$

that we apply to  $f = \ln \psi$ . We finally obtain [4]

$$\nabla\left(\frac{\Delta\psi}{\psi}\right) = 2(\nabla\ln\psi.\nabla)(\nabla\ln\psi) + \Delta(\nabla\ln\psi).$$
(113)

This identity can be still generalized thanks to the fact that  $\psi$  appears only through its logarithm in the right-hand side of the above equation. By replacing in it  $\psi$  by  $\psi^{\alpha}$ , we obtain the general remarkable identity

$$\frac{1}{\alpha} \nabla \left( \frac{\Delta \psi^{\alpha}}{\psi^{\alpha}} \right) = 2\alpha \left( \nabla \ln \psi . \nabla \right) (\nabla \ln \psi) + \Delta (\nabla \ln \psi), \tag{114}$$

We recognize, in the right-hand side of this equation, the two terms of Eq. (107), which were respectively in factor of  $S_0/m$  and  $\mathcal{D}$ . Therefore, by taking for  $\alpha$  the value

$$\alpha = \frac{S_0}{2m\mathcal{D}},\tag{115}$$

the whole motion equation becomes a gradient,

$$\nabla \Phi = 2m\mathcal{D}\left\{i\frac{\partial}{\partial t}\nabla \ln\psi^{\alpha} + \mathcal{D}\nabla\left(\frac{\Delta\psi^{\alpha}}{\psi^{\alpha}}\right)\right\}.$$
(116)

and it can therefore be generally integrated, in terms of the new function

$$\psi^{\alpha} = \left(e^{i\mathcal{S}/\mathcal{S}_0}\right)^{\alpha} = e^{i\mathcal{S}/2m\mathcal{D}}.$$
(117)

One would have obtained the same result by directly setting  $S_0 = 2m\mathcal{D}$  in the initial definition of  $\psi$  [4], but in the above proof it is obtained without making any particular choice. This relation is more general than in standard quantum mechanics, in which  $S_0$  is restricted to the only value  $S_0 = \hbar$ . Eq. (115) is actually a generalization of the Compton relation (see next section): this means that the function  $\psi$  becomes a wave function only provided it is accompanied by a Compton-de Broglie relation. Without this relation, the equation of motion would remain of third order, with no general prime integral.

Indeed, the simplification brought by this relation is twofold: (i) several complicated terms are compacted into a simple one; (ii) the final remaining term is a gradient, which means that the fundamental equation of dynamics can now be integrated in a universal way. The function  $\psi$  in Eq. (103) is therefore defined as

$$\psi = e^{i\mathcal{S}/2m\mathcal{D}},\tag{118}$$

and it is solution of the fundamental equation of dynamics, Eq. (99), which now takes the form

$$\frac{\widehat{d}}{dt}\mathcal{V} = -2\mathcal{D}\nabla\left\{i\frac{\partial}{\partial t}\ln\psi + \mathcal{D}\frac{\Delta\psi}{\psi}\right\} = -\nabla\Phi/m.$$
(119)

Integrating this equation finally yields a generalized Shrödinger equation,

$$\mathcal{D}^2 \Delta \psi + i \mathcal{D} \frac{\partial}{\partial t} \psi - \frac{\Phi}{2m} \psi = 0, \qquad (120)$$

up to an arbitrary phase factor which may be set to zero by a suitable choice of the  $\psi$  phase. The standard Schrödinger equation of quantum mechanics is recovered in the special case  $\hbar = 2m\mathcal{D}$ . Therefore the Schrödinger equation is the new form taken by the

Hamilton-Jacobi / energy equation (see [51] on this point) after change of variable from the complex action to the function  $\psi$ .

Arrived at that point, several steps have been already made toward the final identification of the function  $\psi$  with a wave function. It is complex, solution of a Schrödinger equation, so that its linearity is also ensured. Namely, if  $\psi_1$  and  $\psi_2$  are solutions,  $a_1\psi_1 + a_2\psi_2$ is also a solution. Let us complete the proof by giving new insights about other basic postulates of quantum mechanics.

### 5.7.4 Compton length

In the case of standard quantum mechanics, as applied to microphysics, the relation obtained above,

$$\mathcal{S}_0 = 2m\mathcal{D},\tag{121}$$

means that there is a natural link between the Compton relation and the Schrödinger equation. In this case, indeed,  $S_0$  is nothing but the fundamental action constant  $\hbar$ , while  $\mathcal{D}$  defines the fractal/non-fractal transition (i.e., the transition from explicit scaledependence to scale-independence in the rest frame),  $\lambda_c = 2\mathcal{D}/c$ . Therefore, the relation  $S_0 = 2m\mathcal{D}$  becomes a relation between the mass and the fractal (scale dependence) to nonfractal (scale independence) transition in the scale space, that reads

$$\lambda_c = \frac{\hbar}{mc} \,. \tag{122}$$

We recognize here the definition of the Compton length. Its profound meaning amounts to define the inertial mass (up to the fundamental constants  $\hbar$  and c, which can both be identified to 1 in the special scale and motion relativity theory). Therefore, in the scale relativity framework, a geometric meaning can be given to mass, in terms of the transition scale from fractality (at small scales) to scale-independence (at large scales) in rest frame. We note that this length-scale is to be understood as a structure of scale-space, not of standard space. The de Broglie length can now be easily recovered. Indeed, the fractal fluctuation is a differential elements of order 1/2, i.e., it reads  $\langle d\xi^2 \rangle = \hbar dt/m$  in function of dt, and then  $\langle d\xi^2 \rangle = \lambda_x dx$  in function of the space differential elements, which is of the same order as dt. The identification of these two relations implies  $\lambda_x = \hbar/mv$ , which is the non-relativistic expression for the de Broglie length.

We recover, in the case  $\hbar = 2m\mathcal{D}$ , the standard form of Schrödinger's equation

$$\frac{\hbar^2}{2m}\Delta\psi + i\hbar\frac{\partial}{\partial t}\psi = \Phi\psi.$$
(123)

### 5.7.5 Born and von Neumann postulates

We have given above two representations of the fundamental equations of dynamics in a fractal and locally irreversible context. The first representation is the equation of geodesics that is written in terms of the complex velocity field,  $\mathcal{V} = V - iU$ . The second representation is the Schrödinger equation, whose solution is a wave function  $\psi$ . Both representations are related by the transformation

$$\mathcal{V} = -2i\mathcal{D}\nabla\ln\psi. \tag{124}$$

Let us decompose the wave function in terms of a modulus  $|\psi| = \sqrt{P}$  and of a phase  $\theta$ , namely, we write the wave function under the form  $\psi = \sqrt{P} \times e^{i\theta}$ . We shall now build a mixed representation, in terms of the real part of the complex velocity field, V, and of the square of the modulus of the wave function, P. This fluid-like representation allows one to come back to the initial scale-relativistic view of the motion as following a fluid of fractal geodesics. We shall indeed obtain, as we shall now see, a fluid mechanics-type description of the classical part of the velocity field V, but with an added quantum potential which profoundly changes the meaning and behaviour of this description.

By separating the real and imaginary parts of the Schrödinger equation and by making the change of variables from  $\psi$  to (P, V), we obtain respectively a generalized Euler-like equation and a continuity-like equation [56]

$$\left(\frac{\partial}{\partial t} + V \cdot \nabla\right) V = -\nabla \left(\frac{\Phi}{m} - 2\mathcal{D}^2 \frac{\Delta\sqrt{P}}{\sqrt{P}}\right),\tag{125}$$

$$\frac{\partial P}{\partial t} + \operatorname{div}(PV) = 0. \tag{126}$$

This system of equations is equivalent to the classical system of equations of fluid mechanics (with no pressure and no vorticity), except for the change from a density of matter to a density of probability, and for the appearance of an extra potential energy term Qthat reads

$$Q = -2m\mathcal{D}^2 \frac{\Delta\sqrt{P}}{\sqrt{P}}.$$
(127)

The existence of this potential energy is, in the scale relativity approach, a very manifestation of the geometry of space, namely, of its nondifferentiability and fractality, in similarity with Newton's potential being a manifestation of curvature in Einstein's general relativity. It is a generalization of the quantum potential of standard quantum mechanics [87, 88]. However, its nature was misunderstood in this framework, since the variables V and P were constructed from the wave function, which is set as one of the axiom of quantum mechanics, in the same way as the Schrödinger equation itself. On the contrary, in the scale relativity theory, we know from the very beginning of the construction that V represents the velocity field of the fractal geodesics, and the Schrödinger equation is derived from the very equation of these geodesics.

The von Neumann postulate, according to which just after the measurement, the system is in the state given by the measurement result, and Born's postulate, according to which the square of the modulus of the wave function  $P = |\psi|^2$  gives the probability of presence of the particle, can now be inferred from the scale relativity construction.

Indeed, we have identified the wave-particle with the various geometric properties of a subset of the fractal geodesics of a non-differentiable space-time. In such an interpretation, a measurement (and more generally any knowledge about the system) amounts to a selection of the sub-sample of the geodesics family in which are kept only the geodesics having the geometric properties corresponding to the measurement result. Therefore, just after the measurement, the system is in the state given by the measurement result, in accordance with von Neumann's postulate of quantum mechanics.

As a consequence, the probability for the particle to be found at a given position must be proportional to the density of the geodesics fluid. We already know its velocity field, whose real part is given by V, identified, at the classical limit, with a classical velocity field. The geodesics density  $\rho$  has not yet been introduced at this level of the construction (contrarily to most stochastic approaches where it is introduced from the very beginning and is used to define averages, which leads to contradictions with quantum mechanics [21, 22]). In order to calculate it, we remark that it is expected to be a solution of a fluid-like Euler and continuity system of equations, namely,

$$\left(\frac{\partial}{\partial t} + V \cdot \nabla\right) V = -\nabla \left(\frac{\Phi}{m} + Q\right),\tag{128}$$

$$\frac{\partial \rho}{\partial t} + \operatorname{div}(\varrho V) = 0, \qquad (129)$$

where  $\Phi$  describes an external scalar potential possibly acting on the fluid, and Q is the potential that is expected to appear as a manifestation of the fractal geometry of space (in analogy with the appearance of the Newtonian potential as a manifestation of the curved geometry in general relativity). This is a system of four equations (since Eq. (128) is vectorial and is therefore made of three equations) for four unknowns,  $(\varrho, V_x, V_y, V_z)$ , that would be therefore completely determined by such a system.

Now these equations are exactly the same as equations (125, 126), except for the replacement of the square of the modulus of the wave function P by the fluid density  $\rho$ . Therefore this result allows one to univoquely identify  $P = |\psi|^2$  with the probability density of the geodesics, i.e., with the probability of presence of the particle [24, 82]. Moreover, one identifies the non-classical term Q with the new potential which is expected to emerge from the fractal geometry. Numerical simulations in which the expected probability density can be obtained directly from the distribution of geodesics without writing the Schrödinger equation, have confirmed this result [89].

### 5.7.6 Generalization to nondifferentiable wave function

In the above derivation of the Schrödinger equation, only the classical part of the velocity was taken into account when defining the wave function. However, the full velocity field of the fractal space-time geodesics actually contains a formally infinite term, which manifests the nondifferentiability of space-time. We shall now show that this nondifferentiability of space-time is expected to manifest itself in terms of a possible nondifferentiability of wave functions. Such a result agrees with Berry's [90] and Hall's [91] similar finding obtained in the framework of standard quantum mechanics.

Recall that each of the two fractal velocity fields can be decomposed in terms of a

classical (differentiable) part and a fractal (nondifferentiable) part,

$$V_{+} = v_{+} + w_{+}, \quad V_{-} = v_{-} + w_{-}.$$
(130)

Then the two velocity fields can be combined in terms of a complex velocity, that we write under the form

$$\widetilde{\mathcal{V}} = \mathcal{V} + \mathcal{W} = \left(\frac{v_+ + v_-}{2} - i\frac{v_+ - v_-}{2}\right) + \left(\frac{w_+ + w_-}{2} - i\frac{w_+ - w_-}{2}\right), \quad (131)$$

which now includes the classical and the fractal parts. Although the fractal part is infinite, and therefore undefined from the viewpoint of standard methods, in the scale relativity framework it can be defined as an explicit function of the scale variable dt, namely,  $\mathcal{W} = \mathcal{W}[x(t, dt), t, dt]$ , which becomes infinite only in the limit  $dt \to 0$ , i.e.,  $\ln dt \to -\infty$ .

Let us now consider the full complex action in the Newtonian case, now defined in terms of the classical part and of the fractal (divergent) part of the velocity,

$$d\widetilde{\mathcal{S}} = \frac{1}{2}m(\mathcal{V} + \mathcal{W})^2 dt, \qquad (132)$$

which is equal to the previous mean action  $dS = \frac{1}{2}m\mathcal{V}^2 dt$  plus terms of zero stochastic average (see Sec. 5.5.1).

We now define a complete wavefunction  $\widetilde{\psi}$  from this full action  $\widetilde{S}$ ,

$$\widetilde{\psi} = e^{i\widetilde{\mathcal{S}}/2m\mathcal{D}},\tag{133}$$

and the relation of the complete complex velocity to the complete wavefunction therefore reads

$$\widetilde{\mathcal{V}} = \mathcal{V} + \mathcal{W} = \nabla \widetilde{\mathcal{S}}/m = -2i\mathcal{D}\nabla \ln \widetilde{\psi}.$$
(134)

In the scale relativity approach this equation keeps a mathematical and physical meaning in terms of fractal functions which are explicitly dependent on the scale interval dt and divergent only when  $dt \to 0$ . In other words, the wavefunction  $\tilde{\psi}$  defined hereabove can now be nondifferentiable.

We shall now prove that this nondifferentiable wavefunction nevertheless remains solution of a Schrödinger equation.

Let us write the fractal parts of the velocities under the form:

$$w_{+} = \eta_{+} \sqrt{\frac{2\mathcal{D}}{dt}}, \quad w_{-} = \eta_{-} \sqrt{\frac{2\mathcal{D}}{dt}},$$
(135)

where  $\eta_+$  and  $\eta_-$  are stochastic variables such that  $\langle \eta_+ \rangle = \langle \eta_- \rangle = 0$  and  $\langle \eta_+^2 \rangle = \langle \eta_-^2 \rangle = 1$ .

The two (+) and (-) derivatives read

$$\frac{d_+f}{dt} = \frac{\partial f}{\partial t} + (v_+ + w_+)\nabla f + \mathcal{D}\,\eta_+^2\,\Delta f + \dots,\tag{136}$$

$$\frac{d_-f}{dt} = \frac{\partial f}{\partial t} + (v_- + w_-)\nabla f - \mathcal{D}\,\eta_-^2 \Delta f + \dots, \tag{137}$$

where the next terms are infinitesimals. Let us now define the following complex stochastic variables:

$$\tilde{\eta} = \frac{\eta_+ + \eta_-}{2} - i \, \frac{\eta_+ - \eta_-}{2},\tag{138}$$

$$1 + \tilde{\zeta} = \frac{\eta_+^2 + \eta_-^2}{2} + i \, \frac{\eta_+^2 - \eta_-^2}{2},\tag{139}$$

which are such that  $\langle \tilde{\eta} \rangle = 0$  and  $\langle \tilde{\zeta} \rangle = 0$ . We can now combine the two derivatives in terms of a further generalized complex covariant derivative

$$\frac{\widehat{d}}{dt} = \frac{\partial}{\partial t} + (\mathcal{V} + \mathcal{W}) \cdot \nabla - i\mathcal{D}(1 + \widetilde{\zeta})\Delta$$
(140)

plus infinitesimal terms that vanish when  $dt \rightarrow 0$ . It reads

$$\frac{\widehat{d}}{dt} = \left[\frac{\partial}{\partial t} + \mathcal{V}.\nabla - i\mathcal{D}\Delta\right] + \sqrt{\frac{2\mathcal{D}}{dt}}\,\widetilde{\eta}.\nabla - i\mathcal{D}\,\widetilde{\zeta}\,\Delta.$$
(141)

We therefore recover the previous mean covariant derivative plus two additional stochastic terms of zero mean, the first being  $\mathcal{W}.\nabla$ , which is infinite at the limit  $dt \to 0$ , and the second  $-i\mathcal{D}\,\tilde{\zeta}\,\Delta$ , in which  $\tilde{\zeta}$  remains finite. The first of these terms was already introduced in Ref. [68], while the second was neglected since their ratio is an infinitesimal of order  $dt^{1/2}$ .

We are now able, using this covariant derivative, to write a complete free equation of motion in terms of a geodesics equation that keeps the form of the free Galilean inertial motion equation [68],

$$\frac{\widehat{d}}{dt}\widetilde{\mathcal{V}} = 0. \tag{142}$$

In the presence of a potential  $\phi$ , it can be easily generalized in terms of a covariant equation which keeps the form of Newton's fundamental equation of dynamics,

$$\frac{\widehat{d}}{dt}\widetilde{\mathcal{V}} = -\frac{\nabla\phi}{m}.$$
(143)

After expansion of this equation, new terms of zero stochastic mean are now added [68] with respect to the previous incomplete form of the equation  $\hat{d}\mathcal{V}/dt = -\nabla\phi/m$  [4], namely it reads

$$\frac{\widehat{d}\mathcal{V}}{dt} + \left(\frac{\partial\mathcal{W}}{\partial t} + \nabla(\mathcal{V}.\mathcal{W}) + \mathcal{W}.\nabla\mathcal{W} - i\mathcal{D}\Delta\mathcal{W}\right) - i\mathcal{D}\,\widetilde{\zeta}\,\Delta(\mathcal{V} + \mathcal{W}) = -\frac{\nabla\phi}{m}.\tag{144}$$

Starting from the full geodesics equation (142), and more generally from Eq. (143), we now expand the covariant derivative and we find

$$\left(\frac{\partial}{\partial t} + \widetilde{\mathcal{V}}.\nabla - i\mathcal{D}(1+\widetilde{\zeta})\Delta\right)\widetilde{\mathcal{V}} = -\frac{\nabla\phi}{m},\tag{145}$$

of which equation (144) is an expansion. Now, as we have seen, the stochastic term  $\tilde{\zeta}\Delta\tilde{\mathcal{V}}$  is infinitesimal with respect to the other stochastic term  $\tilde{\mathcal{W}}.\nabla\tilde{\mathcal{V}}$ , so that we can neglect it as we did in Ref. [68]. Now introducing the full wavefunction  $\tilde{\psi}$  in this equation thanks to equation (134), we obtain

$$\left(\frac{\partial}{\partial t} + (-2i\mathcal{D}\nabla\ln\widetilde{\psi}).\nabla - i\mathcal{D}\Delta\right)(-2i\mathcal{D}\nabla\ln\widetilde{\psi}) = -\frac{\nabla\phi}{m}.$$
(146)

In the standard framework, the very writing of this equation would be forbidden since  $\tilde{\psi}$  is nondifferentiable and therefore its derivatives are formally infinite. But, as recalled above, the fundamental tool used in the scale-relativity approach, which was definitely constructed to solve this kind of problems (at the level of fractal space-time coordinates), can now be used in a similar manner at the level of the wavefunction. Namely, in terms of a wavefunction  $\tilde{\psi}(x, t, dt)$ , the various terms of equation (146) remain finite for all values of  $dt \neq 0$ . We are therefore in the same conditions as in previous calculations involving a differentiable wave function [4, 24], so that it can finally be integrated in terms of a generalized Schrödinger equation that keeps the same form as in the differentiable wave function case, namely,

$$\mathcal{D}^2 \Delta \widetilde{\psi} + i \mathcal{D} \, \frac{\partial \widetilde{\psi}}{\partial t} - \frac{\phi}{2m} \widetilde{\psi} = 0. \tag{147}$$

This generalized Schrödinger equation now has nondifferentiable solutions, which come, in our framework, as a direct manifestation of the nondifferentiability of space. The research in laboratory experiments of such a behavior constitutes an interesting new challenge for quantum physics .

## 5.7.7 Schrödinger form of other fundamental equations of physics

The general method described above can be applied to any physical situation where the three basic conditions (namely, infinity of trajectories, each trajectory is a fractal curve of fractal dimension 2, breaking of differential time reflexion invariance) are achieved in an exact or in an approximative way. Several fundamental equations of classical physics can be transformed to take a generalized Schrödinger form under these conditions. Namely, we have applied this new macroscopic quantization method to the equation of motion in the presence of an electromagnetic field (see Sec. 7.), the Euler and Navier-Stokes equations in the case of potential motion and for incompressible and isentropic fluids, the equation of the rotational motion of solids, the motion equation of dissipative systems, field equations (scalar field for one space variable). We refer the interested reader to Ref. [26] for more detail.

# 5.8 Application to gravitational structuring

# 5.8.1 Curved and fractal space

Some applications of the scale relativity theory to the problem of the formation and evolution of gravitational structures have been presented in several previous works [4, 23, 52, 26, 53, 54, 55, 56]. A recent review paper about the comparison between the theoretically predicted structures and observational data, from the scale of planetary systems to extragalactic scales, has been given in Ref. [57]. We shall only briefly sum up here the principles and methods used in such an attempt, then quote some of the main results obtained.

In its present acceptance, gravitation is understood as the various manifestations of the geometry of space-time at large scales. Up to now, in the framework of Einstein's theory, this geometry was considered to be Riemannian, i.e. curved. However, in the new framework of scale relativity, the geometry of space-time is assumed to be characterized not only by curvature, but also by fractality beyond a new relative time-scale and/or space-scale of transition, which is an horizon of predictibility for the classical deterministic description. As we have seen in a previous section, fractality manifests itself, in the simplest case, in terms of the appearance of a new scalar field. We have suggested that this new field leads to spontaneous self-organization and may also be able to explain [34, 57], without additional matter, the various astrophysical effects which have been, up to now, tentatively attributed to unseen "dark" matter .

### 5.8.2 Gravitational Schrödinger equation

We shall briefly consider in what follows only the Newtonian limit. In this case the equation of geodesics, which can be constructed by combining the general motion-relativistic and scale-relativistic covariant derivatives, keeps the form of Newton's fundamental equation of dynamics in a gravitational field, namely,

$$\frac{\bar{D}\mathcal{V}}{dt} = \frac{\widehat{d}\mathcal{V}}{dt} + \nabla\left(\frac{\phi}{m}\right) = 0, \qquad (148)$$

where  $\phi$  is the Newtonian potential energy. As demonstrated hereabove, once written in terms of  $\psi$ , this equation can be integrated to yield a gravitational Newton-Schrödinger equation :

$$\mathcal{D}^2 \Delta \psi + i \mathcal{D} \frac{\partial}{\partial t} \psi = \frac{\phi}{2m} \psi.$$
(149)

Since the imaginary part of this equation is the equation of continuity, and basing ourselves on our description of the motion in terms of an infinite family of geodesics,  $P = |\psi|^2$  can be interpreted as giving the probability density of the particle position.

Note however that the situation and therefore the interpretation are different here from the application of the theory to the standard quantum mechanics of the microphysical domain. The two main differences are:

(i) While in the microscopic realm elementary "particles" can be defined as the geodesics themselves (their defining properties such as mass, spin or charge being defined as internal geometric properties, see [23, 67]), in the macroscopic realm there does exist actual particles that follow the geodesics as trajectories.

(ii) While differentiability is definitively lost toward the small scales in the microphysical domain, the macroscopic quantum theory is valid only beyond some time-scale transition (and/or space-scale transition) which is an horizon of predictibility. Therefore in this last case there is an underlying classical theory, which means that the quantum macroscopic approach is a new kind of hidden variable theory [26].

Even though it takes this Schrödinger-like form, equation (149) is still in essence an equation of gravitation, so that it must keep the fundamental properties it owns in Newton's and Einstein's theories. Namely, it must agree with the equivalence principle [52, 58], i.e., it is independent of the mass of the test-particle. In the Kepler central potential case ( $\phi = -GMm/r$ ), GM provides the natural length-unit of the system under consideration. As a consequence, the parameter  $\mathcal{D}$  takes the form

$$\mathcal{D} = \frac{GM}{2w},\tag{150}$$

where w is a fundamental constant that has the dimension of a velocity. The Agnese constant  $\alpha_g = w/c$  actually plays the role of a macroscopic gravitational coupling constant [58, 56]).

### 5.8.3 Formation and evolution of gravitational structures

Let us now compare our approach with the standard theory of gravitational structure formation and evolution. Instead of the Euler-Newton equation and of the continuity equation which are used in the standard approach, we write a mere Newton-Schrödinger equation. In both cases, the Newton potential is given by the Poisson equation. Two situations can be considered: (i) when the 'orbitals', which are solutions of the motion equation, can be considered as filled with the particles (e.g., planetesimals, planet embryos or protoplanets in the case of planetary systems formation, interstellar gas and dust in the case of star formation, etc...), the mass density  $\rho$  is proportional to the probability density  $P = |\psi|^2$ : this situation is relevant in particular for addressing problems of structure formation; (ii) another possible situation concerns test bodies which are not in large enough number to contribute to the matter density, but whose motion is nevertheless submitted to the Newton-Schrödinger equation: this case may be relevant for the anomalous dynamical effects which have up to now been attributed to the unseen so-called "dark" matter.

As previously shown, by separating the imaginary and real parts of the Schrödinger equation we obtain respectively a continuity equation and a generalized Euler-Newton equation, in terms of a Newtonian potential energy  $\phi$  that is solution of a Poisson equation, namely,

$$m\left(\frac{\partial}{\partial t} + V \cdot \nabla\right)V = -\nabla(\phi + Q), \quad \frac{\partial P}{\partial t} + \operatorname{div}(PV) = 0,$$
 (151)

$$\Delta \phi = 4\pi G \rho \, m. \tag{152}$$

In the case when there is a large number of particles each subjected to the probability density P, one has  $P \propto \rho$ , and this system of equations becomes equivalent to the classical system used in the standard approach to gravitational structure formation, except for the appearance of the extra potential energy term  $Q = -2m\mathcal{D}^2\Delta\sqrt{P}/\sqrt{P}$ .

In the case (i) where actual particles achieve the probability density distribution (structure formation), we have  $\rho = \rho_0 P$ ; then the Poisson equation (i.e., the field equation) becomes  $\Delta \phi = 4\pi G m \rho_0 |\psi|^2$  and it is therefore strongly coupled with the Schrödinger equation. An equation for matter alone can finally be written [26] (which has automatically its equivalent in an equation for the potential alone),

$$\Delta\left(\frac{\mathcal{D}^2\Delta\psi + i\mathcal{D}\partial\psi/\partial t}{\psi}\right) - 2\pi G\rho_0|\psi|^2 = 0.$$
(153)

This is a Hartree equation of the kind which is encountered in the description of superconductivity. We expect its solutions to provide us with general theoretical predictions for the structures (in position and velocity space) of self-gravitating systems at multiple scales [57]. This expectation is already supported by the observed agreement of several solutions with astrophysical observational data [4, 52, 56, 53, 54, 59, 60, 55].



Fig. 8 IR-dust density observed during the solar eclipse of January 1967 (adapted from Mac-Queen [63]). The scale-relativity approach leads to a hierarchical description of the Solar System, which is described by imbricated sub-systems that are solutions of gravitational Schrödinger equations. While the inner solar system is organized on a constant  $w_0 = 144$  km/s, we expect the existence of an intramercurial subsystem organized on the basis of a new constant  $w = 3 \times 144 = 432$  km/s. The Sun radius is in precise agreement with the peak of the fundamental level of this sequence: namely, one finds  $n_{\odot} = 0.99$  with  $R_{\odot} = 0.00465$  AU, that corresponds to a Keplerian velocity of 437.1 km/s. The next probability density peaks are predicted to lie at distances  $4.09 R_{\odot}$ , and  $9.20 R_{\odot} = 0.043$  AU, which correspond respectively to Keplerian velocities of 432/2 = 216 km/s and 432/3 = 144 km/s. Since 1966, there has been several claims of detection during solar eclipses of IR thermal emission peaks from possible circumsolar dust rings which lie precisely at the predicted distances [57]. Several exoplanets have now been also found at similar relative distances a/M from their star (see Fig. 10).

Indeed, the theory has been able to predict in a quantitative way a large number of new effects in the astrophysical domain of gravitational structure formation and evolution. Moreover, these predictions have been successfully checked in various systems on a large range of scales and in terms of a common fundamental gravitational coupling constant whose value averaged on these systems was found to be  $w_0 = c \alpha_g = 144.7 \pm 0.7$  km/s (or its multiple or sub-multiples) [52].

New structures have been theoretically predicted, then checked by the observational data in a statistically significant way, for our solar system, including distances of planets [4, 53, 62] (Fig. 10) and satellites [55], sungrazer comet perihelions [57], transient dust



Fig. 9 Distribution of the semi-major axis of Kuiper belt objects (KBO) and scattered Kuiper belt objects (SKBO), compared with the theoretical predictions of probability density peaks for the outer solar system (arrows) [57]. The whole inner solar system (whose density peak lies at the Earth distance, that corresponds to  $n_i = 5$ ) can be identified with the fundamental  $n_e = 1$  orbital of the outer solar system [53]. Therefore the outer solar system is expected to be organized according to a constant  $w_e = 144/5 = 28.8$  km/s. The existence of probability density peaks for the Kuiper belt small planets at  $\approx 40, 55, 70, 90$  AU, etc..., has been theoretically predicted before the discovery of these objects [64].



Fig. 10 Observed distribution of the semi-major axes of recently discovered exoplanets and inner solar system planets, compared with the theoretical prediction from the scale-relativity / Schrödinger approach. Note that these predictions [4, 64] have been made before the first discovery of exoplanets. One expects the occurrence of peaks of probability density for semimajor axes  $a_n = GM(n/w_0)^2$ , where n is integer, M is the star mass and  $w_0 = 144.7 \pm 0.7$  km/s is a gravitational coupling constant (see [4, 52, 56]). For example, the velocity of Mercury is 48=144/3 km/s, of Venus 36=144/4 km/s, of the Earth 29=144/5 km/s and of Mars 24=144/6 km/s. The data supports the theoretical prediction in a statistically significant way (the probability to obtain such an agreement by chance is  $P = 4 \times 10^{-5}$ ).

around the sun [57] (Fig. 8), space debris distribution around the Earth [57], obliquities and inclinations of planets and satellites [59], distances of small planets in the Kuiper belt, including a prediction of the new distant objects like Sedna [57, 62] (Fig. 9), exoplanets semi-major axes [52, 56] (Fig. 10) and eccentricities [61, 62] (Fig. 11), including planets around pulsars (for which a high precision is reached) [52, 60], double stars [54], planetary nebula [57] (Fig. 12), binary galaxies [23] (Fig. 13), our local group of galaxies [57], clusters



Fig. 11 Observed distribution of the eccentricities of exoplanets. The theory predicts that the product of the eccentricity e by the quantity  $\tilde{n} = 4.83(a/M)^{1/2}$ , where a is the semi-major axis and M the parent star mass, should cluster around integers. The data support this theoretical prediction at a probability level  $P = 10^{-4}$  [61, 57].

of galaxies and large scale structures of the universe [54, 57].

A full account of this new domain would be too long to be included in the present contribution. We give here only few typical examples of these effects (see figures and their captions) and we refer the interested reader to the review paper Ref. [57] for more detail.



Fig. 12 Example of morphologies predicted from solution of a macroscopic Schrödinger equation that describes an accretion or ejection process with respect to a central object. This problem is similar to that of scattering in elementary particle physics (spherical ingoing or outgoing wave). Such morphologies are typical of those observed in 'planetary nebula', which are, despite their names, outer shells ejected by stars (see [57]).



Fig. 13 Deprojection of the intervelocity distribution of galaxy pairs [23, 57] from the Schneider-Salpeter catalog with precision redshifts [65]. The main probability peak is found to lie at 144 km/s (plus secondary peaks at 72=144/2 km/s and 24=144/6 km/s), in agreement with the exoplanet and inner solar system structuration (see Fig. 10).

#### 5.8.4 Possible solution to the "dark matter" problem

In the case (ii) of isolated test particles, the density of matter  $\rho$  may be nearly zero while the probability density P does exist, but only as a virtual quantity that determines the potential Q, without being effectively achieved by matter. In this situation, even though there is no or few matter at the point considered (except the test particle that is assumed to have a very low contribution), the effects of the potential Q are real (since it is the result of the structure of the geodesics fluid). This situation is quite similar to the Newton potential in vacuum around a mass.

We have therefore suggested [34, 57, 35] that this extra scalar field, which is a manifestation of the fractality of space, may be responsible for the various dynamical and lensing effects which are usually attributed to unseen "dark matter". Recall that up to now two hypotheses have been formulated in order to account for these effects (which are far larger than those due to visible matter): (i) The existence of a very large amount of unseen matter in the Universe which, despite intense and continuous efforts, has nevertheless escaped detection. (ii) A modification of Newton's law of force: but such an ad hoc hypothesis seems very difficult to reconcile with its geometric origin in general relativity, which lets no latitude for modification. In the scale-relativity proposal, there is no need for additional matter, and Newton's potential is unchanged since it remains linked to curvature, but there is an additional potential linked to fractality.

This interpretation is supported by the fact that, for a stationary solution of the gravitational Schrödinger equation, one obtains the general relation

$$\frac{\phi+Q}{m} = \frac{E}{m} = \text{cst},\tag{154}$$

where E/m can take only quantized values (which are related to the fundamental gravitational coupling [58],  $\alpha_g = w/c$ ).

This result can be applied, as an example, to the motion of bodies in the outer regions of spiral galaxies. In these regions there is practically no longer any visible matter, so that the Newtonian potential (in the absence of additional dark matter) is Keplerian. While the standard Newtonian theory predicts for the velocity of the halo bodies  $v \propto \phi^{1/2}$ , i.e.  $v \propto r^{-1/2}$ , one predict in the new framework  $v \propto |(\phi+Q)/m|^{1/2}$ , i.e., v = constant. More specifically, assuming that the gravitational Schrödinger equation is solved for the halo objects in terms of the fundamental level wave function, one finds  $Q_{pred} = -(GMm/2r_B)(1-2r_B/r)$ , where  $r_B = GM/w_0^2$ . This is exactly the result which is systematically observed in spiral galaxies (i.e., flat rotation curves) and which has motivated (among other effects) the assumption of the existence of dark matter. In other words, we suggest that the effects tentatively attributed to unseen matter are simply the result of the geometry of space-time. In this proposal, space-time is not only curved but also fractal beyond some given relative time-scale and space-scales. While the curvature manifests itself in terms of the Newton potential, we tentatively suggest that fractality could manifest itself in terms of the new scalar potential Q, and then finally in terms of the anomalous dynamics and lensing effects.

# 5.9 Application to sciences of life

Self-similar fractal laws have already been used as models for the description of a large number of biological systems (lungs, blood network, brain, cells, vegetals, etc..., see e.g. [98, 8], previous volumes, and references therein).

The scale-relativistic tools may also be relevant for a description of behaviors and properties which are typical of living systems. Some examples have been given in [97, 42, 43, 44] (and are briefly recalled in the present review), concerning halieutics, morphogenesis, log-periodic branching laws and cell "membrane" models. As we shall see in what follows, scale relativity may also provide a physical and geometric framework for the description of additional properties such as formation, duplication, morphogenesis and imbrication of hierarchical levels of organization. This approach does not mean to dismiss the importance of chemical and biological laws in the determination of living systems, but on the contrary to attempt to establish a geometric foundation that could underlie them. Under such a view-point, biochemical processes would arise as a manifestation 'tool' of fundamental laws issued from first principles.

## 5.9.1 Morphogenesis

The Schrödinger equation can be viewed as a fundamental equation of morphogenesis [83]. It has not been yet considered as such, because its unique domain of application was, up to now, the microscopic (molecular, atomic, nuclear and elementary particle) domain, in which the available information was mainly about energy and momentum. Such a situation is now changing thanks to field effect microscopy and atom laser trapping, which begin to allow the observation of quantum-induced geometric shapes at small scales.

However, scale-relativity extends the potential domain of application of Schrödingerlike equations to every systems in which the three conditions (infinite or very large number of trajectories, fractal dimension 2 of individual trajectories, local irreversibility) are fulfilled. Macroscopic Schrödinger equations can be derived, which are not based on Planck's constant  $\hbar$ , but on constants that are specific of each system (and may emerge from their self-organization). We have suggested that such an approach applies to gravitational structures at large scales. One may in particular recover in this way complicated shapes such as those of planetary nebulae [57], that had up to now no detailed quantitative or predictive explanation.

Now the three above conditions seems to be particularly well adapted to the description of living systems. Let us give a simple example of such an application.

In living systems, morphologies are acquired through growth processes. One can attempt to describe such a growth in terms of an infinite family of virtual, fractal and locally irreversible, trajectories. Their equation can therefore be written under the form (99), then it can be integrated in a Schrödinger equation (120).

We now look for solutions describing a growth from a center. This problem is formally identical to the problem of planetary nebulae (which are stars that eject their outer shells), and, in the quantum point of view, to the problem of particle scattering. The solutions looked for correspond to the case of the outgoing spherical probability wave.

Depending on the potential, on the boundary conditions and on the symmetry conditions, a very large family of solutions can be obtained. Let us consider here only the simplest ones, i.e., central potential and spherical symmetry. The probability density distribution of the various possible values of the angles are given in this case by the spherical harmonics,

$$P(\theta,\varphi) = |Y_{lm}(\theta,\varphi)|^2.$$
(155)

These functions show peaks of probability for some angles, depending on the quantized values of the square of angular momentum  $L^2$  (measured by the quantum number l) and of its projection  $L_z$  on axis z (measured by the quantum number m).

Finally a more probable morphology is obtained by 'sending' matter at angles of maximal probability. The solutions obtained in this way, show floral 'tulip'-like shape (see Fig. 12 and Refs. [97, 83]). Now the spherical symmetry is broken in the case of living systems. One jumps to cylindrical symmetry: this leads in the simplest case to introduce a periodic quantization of angle  $\theta$  (measured by an additional quantum number k), that gives rise to a separation of discretized petals. Moreover there is a discrete symmetry breaking along axis z linked to orientation (separation of 'up' and 'down' due to gravity, growth from a stem). This results in floral shapes such as given in Fig. 14.



Fig. 14 Morphogenesis of flower-like structure, solution of a growth process equation that takes the form of a Schrödinger equation under fractal conditions (l = 5, m = 0). The 'petals' and 'sepals' and 'stamen' are traced along angles of maximal probability density. A constant force of 'tension' has been added, involving an additional curvature of petals, and a quantization of the angle  $\theta$  that gives an integer number of petals (here, k = 5).

## 5.9.2 Formation, duplication and bifurcation

A fondamentally new feature of the scale relativity approach concerning problems of formation is that the Schrödinger form taken by the geodesics equation can be interpreted as a general tendency for systems to which it applies to make structures, i.e., to selforganize [26]. In the framework of a classical deterministic approach, the question of the formation of a system is always posed in terms of initial conditions. In the new framework, structures are formed whatever the initial conditions, in correspondance with the field, the boundary conditions and the symmetries, and in function of the values of the various conservative quantities that characterize the system.



Fig. 15 Model of formation of a structure from a background medium. The global harmonic oscillator potential defined by the background induces the formation of a local structure (see a 3D representation in Fig. 16), in such a way that the average density remains constant (i.e., the matter of the structure is taken from the medium).

A typical example is given by the formation of gravitational structures from a background medium of strictly constant density (Fig. 15). This problem has no classical solution: no structure can form and grow in the absence of large initial fluctuations. On the contrary, in the present quantum-like approach, the stationary Schrödinger equation for an harmonic oscillator potential (which is the form taken by the gravitational potential in this case) does have confined stationary solutions. The 'fundamental level' solution  $(n = 0 \text{ is made of one object with Gaussian distribution (see Fig. 15), the second level$ <math>(n = 1) is a pair of objects (see Fig. 16), then one obtains chains, trapezes, etc... for higher levels. It is remarkable that, whatever the scales (stars, clusters of stars, galaxies, clusters of galaxies) the zones of formation show in a systematic way this kind of double, aligned or trapeze-like structures [57].

Now these solutions may also be meaningful in other domains than gravitation, because the harmonic oscillator potential is encountered in a wide range of conditions. It is the general force that appears when a system is displaced from its equilibrium conditions, and, moreover, it describes an elementary clock. For these reasons, it is well adapted to an attempt of description of living systems, at first in a rough way [43].

Firstly, such an approach could allow one to ask the question of the origin of life in a renewed way. This problem is the analog of the 'vacuum' (lowest energy) solutions, i.e. of the passage from a non-structured medium to the simplest, fundamental level structures. Provided the description of the prebiotic medium comes under the three above conditions (complete information loss on angles, position and time), we suggest that it could be subjected to a Schrödinger equation (with a coefficient  $\mathcal{D}$  self-generated by the system itself). Such a possibility is supported by the symplectic formal structure of thermodynamics [66], in which the state equations are analogous to Hamilton-Jacobi equations. One can therefore contemplate the possibility of a future 'quantization' of thermodynamics, and then of the chemistry of solutions. In such a framework, the fundamental equations would describe a universal tendency to make structures. Moreover, a first result naturally emerges: due to the quantization of energy, we expect the primordial structures to appear at a given non-zero energy, without any intermediate step. But clearly much pluridisciplinary work is needed in order to implement such a working program.



Fig. 16 Model of duplication. The stationary solutions of the Schrödinger equation in a 3D harmonic oscillator potential can take only discretized morphologies in correspondence with the quantized value of the energy. Provided the energy increases from the one-object case ( $E_0 = 3\mathcal{D}\omega$ ), no stable solution can exist before it reaches the second quantized level at  $E_1 = 5\mathcal{D}\omega$ . The solutions of the time-dependent equation show that the system jumps from the one object to the two-object morphology.

Secondly, the analogy can be pushed farther, since the passage from the fundamental level to the first excited level now provides us with a (rough) model of duplication [83] (see Figs. 16 and 17). Once again, the quantization implies that, in case of energy increase, the system will not increase its size, but will instead be lead to jump from a one-object structure to a two-object structure, with no stable intermediate step between the two stationary solutions n = 0 and n = 1. Moreover, if one comes back to the level of description of individual trajectories, one finds that from each point of the initial one body-structure there exist trajectories that go to the two final structures. We expect, in this framework, that duplication needs a discretized and precisely fixed jump in energy.

Such a model can also be applied to the description of a branching process (Fig. 17), e.g. in the case of a tree growth when the previous structure remains instead of disappearing as in cell duplication.

Note finally that, though such a model is still too rough to claim that it describes biological systems, it may already be improved by incorporating in it other results that are quoted elsewhere in this paper, in particular (i) the model of membrane through fractal dimension variable with the distance to a center (Sec. 4.3.5); (ii) the model of multiple hierarchical levels of organization depending on 'complexergy' (Sec. 8.4).



Fig. 17 Model of branching / bifurcation. Successive solutions of the time-dependent 2D Schrödinger equation in an harmonic oscillator potential are plotted as isodensities. The energy varies from the fundamental level (n = 0) to the first excited level (n = 1), and as a consequence the system jumps from a one-object to a two-object morphology.

# 6. Fractal Space-time and Relativistic Quantum Mechanics

# 6.1 Klein-Gordon equation

## 6.1.1 Theory

Let us now come back to standard quantum mechanics, but in the motion-relativistic case (i.e., underlying classical Minkowski space-time). We shall recall here how one can get the free and electromagnetic Klein-Gordon equations, as already presented in [25, 23].

Most elements of our approach as described hereabove remain correct, with the time differential element dt replaced by the proper time differential element ds. Now not only space, but the full space-time continuum is considered to be nondifferentiable, and therefore fractal. We chose a classical metric of signature (+, -, -, -). The elementary displacement along geodesics now writes (in the standard case  $D_F = 2$ )

$$dX^{\mu}_{\pm} = dx^{\mu}_{\pm} + d\xi^{\mu}_{\pm}.$$
 (156)

Due to the breaking of the reflection symmetry  $(ds \leftrightarrow -ds)$  issued from nondifferentiability, we still define two 'classical' derivatives,  $d_+/ds$  and  $d_-/ds$ , which, once applied to  $x^{\mu}$ , yield two classical four-velocities,

$$\frac{d_+}{ds}x^{\mu}(s) = v_+^{\mu} \quad ; \quad \frac{d_-}{ds}x^{\mu}(s) = v_-^{\mu}. \tag{157}$$

These two derivatives can be combined in terms of a complex derivative operator

$$\frac{\hat{d}}{ds} = \frac{(d_+ + d_-) - i (d_+ - d_-)}{2ds},\tag{158}$$

which, when applied to the position vector, yields a complex 4-velocity

$$\mathcal{V}^{\mu} = \frac{\widehat{d}}{ds} x^{\mu} = V^{\mu} - i \ U^{\mu} = \frac{v_{+}^{\mu} + v_{-}^{\mu}}{2} - i \ \frac{v_{+}^{\mu} - v_{-}^{\mu}}{2}.$$
 (159)

We are lead to a stochastic description, due to the infinity and indefinite character (in the limit  $ds \to 0$ ) of geodesics in a fractal space-time. This forces us to consider the question of the definition of a Lorentz-covariant stochasticity in space-time. This problem has been addressed by several authors, in particular in order to apply its solutions to a relativistic generalization of Nelson's stochastic quantum mechanics. These solutions are also relevant here, though our framework is fundamentally different. Namely, two fluctuation fields,  $d\xi^{\mu}_{\pm}(s)$ , are defined, which have zero expectation ( $\langle d\xi^{\mu}_{\pm} \rangle = 0$ ), are mutually independent and such that

$$\langle d\xi^{\mu}_{\pm} d\xi^{\nu}_{\pm} \rangle = \mp \lambda \, \eta^{\mu\nu} ds. \tag{160}$$

The constant  $\lambda$  is another writing for the coefficient  $2\mathcal{D} = \lambda c$ , with  $\mathcal{D} = \hbar/2m$  in the standard quantum case. In other words, it is the generalized Compton length of the particle. This process makes sense only in  $\mathbb{R}^4$ , i.e. the "metric"  $\eta^{\mu\nu}$  should be positive definite. Indeed, the fractal fluctuations are of the same nature as uncertainties and 'errors', so that the space and the time fluctuations add quadratically. The sign corresponds to a choice of space-like fluctuations.

Dohrn and Guerra [76] introduce the above "Brownian metric" and a kinetic metric  $g_{\mu\nu}$ , and obtain a compatibility condition between them which reads  $g_{\mu\nu}\eta^{\mu\alpha}\eta^{\nu\beta} = g^{\alpha\beta}$ . An equivalent method was developed by Zastawniak [77], who introduces, in addition to the covariant drifts  $v^{\mu}_{+}$  and  $v^{\mu}_{-}$ , new drifts  $b^{\mu}_{+}$  and  $b^{\mu}_{-}$  (note that our notations are different from his). Serva [78] gives up Markov processes and considers a covariant process which belongs to a larger class, known as "Bernstein processes".

All these proposals are equivalent, and amount to transforming a Laplacian operator in  $\mathbb{R}^4$  into a Dalembertian. Namely, the two (+) and (-) differentials of a function f[x(s), s] can be written, still assuming a Minkowskian metric for classical space-time, as

$$\frac{d_{\pm}f}{ds} = \left(\frac{\partial}{\partial s} + v_{\pm}^{\mu}\partial_{\mu} \mp \frac{1}{2}\lambda\,\partial^{\mu}\partial_{\mu}\right)f.$$
(161)

In what follows, we shall only consider s-stationary functions, i.e., that are not explicitly dependent on the proper time s. In this case the covariant time derivative operator reduces to

$$\frac{\widehat{d}}{ds} = \left(\mathcal{V}^{\mu} + \frac{1}{2}i\,\lambda\,\partial^{\mu}\right)\partial_{\mu}.\tag{162}$$

Let us assume that the system under consideration can be characterized by an action S, which is complex because the four-velocity is now complex. The same reasoning as in classical mechanics leads us to write  $dS = -mc \mathcal{V}_{\mu} dx^{\mu}$  (see [74] for another equivalent choice). The least-action principle applied on this action yields the equations of motion of a free particle, that takes the form of a geodesics equation,  $d\mathcal{V}_{\alpha}/ds = 0$ . Such a form is also directly obtained from the 'strong covariance' principle and the generalized equivalence principle. We can also write the variation of the action as a functional of coordinates. We obtain the usual result (but here generalized to complex quantities),

$$\delta \mathcal{S} = -mc \,\mathcal{V}_{\mu} \delta x^{\mu} \,\Rightarrow\, \mathcal{P}_{\mu} = mc \,\mathcal{V}_{\mu} = -\partial_{\mu} \mathcal{S}, \tag{163}$$

where  $\mathcal{P}_{\mu}$  is now a complex four-momentum. As in the nonrelativistic case, the wave function is introduced as being nothing but a reexpression of the action, namely,

$$\psi = e^{i\mathcal{S}/mc\lambda} \Rightarrow \mathcal{V}_{\mu} = i\lambda \,\partial_{\mu}(\ln\psi), \tag{164}$$

so that the equations of motion become

$$\widehat{d}\mathcal{V}_{\alpha}/ds = i\lambda\left(\mathcal{V}^{\mu} + \frac{1}{2}i\lambda\partial^{\mu}\right)\partial_{\mu}\mathcal{V}_{\alpha} = 0 \Rightarrow \left(\partial^{\mu}\ln\psi + \frac{1}{2}\partial^{\mu}\right)\partial_{\mu}\partial_{\alpha}\ln\psi = 0.$$
(165)

Now, by using the remarkable identity (109) established in [4], it reads:

$$\partial_{\alpha}(\partial_{\mu}\partial^{\mu}\ln\psi + \partial_{\mu}\ln\psi\partial^{\mu}\ln\psi) = \partial_{\alpha}\left(\frac{\partial_{\mu}\partial^{\mu}\psi}{\psi}\right) = 0.$$
(166)

So the equation of motion can finally be integrated in terms of the Klein-Gordon equation for a free particle,

$$\lambda^2 \partial^\mu \partial_\mu \psi = \psi, \tag{167}$$

where  $\lambda = \hbar/mc$  is the Compton length of the particle. The integration constant is chosen so as to ensure the identification of  $\rho = |\psi|^2$  with a probability density for the particle and to recover the nonrelativistic limit.

As shown by Zastawniak [77] and as can be easily recovered from the definition (159), the quadratic invariant of special motion-relativity,  $v^{\mu}v_{\mu} = 1$ , is naturally generalized as

$$\mathcal{V}^{\mu}\mathcal{V}^{\dagger}_{\mu} = 1, \tag{168}$$

where  $\mathcal{V}^{\dagger}_{\mu}$  is the complex conjugate of  $\mathcal{V}_{\mu}$ . This ensures the covariance (i.e. the invariance of the form of equations) of the theory at this level.

## 6.1.2 Quadratic invariant, Leibniz rule and complex velocity operator

It has been shown by Pissondes [74] that the square of the complex four-velocity field is no longer equal to unity, since it is now complex. Its expression can be derived directly from (166) after accounting for the Klein-Gordon equation. One obtains the generalized energy (or quadratic invariant) equation

$$\mathcal{V}_{\mu}\mathcal{V}^{\mu} + i\lambda\,\partial_{\mu}\mathcal{V}^{\mu} = 1. \tag{169}$$

Now taking the gradient of this equation, one obtains

$$\partial_{\alpha}(\mathcal{V}_{\mu}\mathcal{V}^{\mu} + i\lambda\,\partial_{\mu}\mathcal{V}^{\mu}) = 0 \Rightarrow \left(\mathcal{V}^{\mu} + \frac{1}{2}i\lambda\,\partial^{\mu}\right)\partial_{\alpha}\mathcal{V}_{\mu} = 0, \tag{170}$$

which is equivalent to Eq. (165) in the case of free motion, since in the absence of external field one gets  $\partial_{\alpha} \mathcal{V}_{\mu} = \partial_{\mu} \mathcal{V}_{\alpha}$ .

Clearly, the new form of the quadratic invariant comes only under 'weak covariance'. One can therefore address the problem of implementing the strong covariance (i.e., of keeping the free, Galilean form of the equations of physics even in the new, more complicated situation) at all levels of the description [74]. The additional terms in the various equations find their origin in the very definition of the 'quantum-covariant' total derivative operator. Indeed, it contains derivatives of first order (namely,  $\mathcal{V}^{\mu}\partial_{\mu}$ ), but also derivatives of second order  $(\partial^{\mu}\partial_{\mu})$ . Therefore, when one is led to compute quantities like  $\hat{d}(fg)/dt = 0$ , the Leibniz rule to be used becomes a linear combination of the first order and second order Leibniz rules. There is no problem provided one always come back to the definition of the covariant total derivative. (Some inconsistency would appear only if one, in contradiction with this definition, wanted to use only the first order Leibniz rule d(fg) = fdg + gdf). Indeed, one finds

$$\frac{\widehat{d}}{ds}(fg) = f \frac{\widehat{d}g}{ds} + g \frac{\widehat{d}f}{ds} + i\lambda \,\partial^{\mu} f \,\partial_{\mu} g.$$
(171)

Let us define a tool [83] to solve this problem, equivalent but more simple than that of Ref. [74], since it has the advantage to depend only on one function. We define a complex velocity operator:

$$\widehat{\mathcal{V}}_{\mu} = \mathcal{V}^{\mu} + i \, \frac{\lambda}{2} \, \partial^{\mu}, \tag{172}$$

so that the covariant derivative can now be written in terms of an operator product that keeps the standard, first order form:

$$\frac{\widehat{d}}{ds} = \widehat{\mathcal{V}^{\mu}} \,\partial_{\mu} \,. \tag{173}$$

More generally, one defines the operator

$$\widehat{\frac{dg}{ds}} = \frac{\widehat{dg}}{ds} + i\frac{\lambda}{2} \ \partial^{\mu}g \ \partial_{\mu} \,. \tag{174}$$

The covariant derivative of a product now reads

$$\frac{\widehat{d}(fg)}{ds} = \frac{\widehat{\widehat{d}f}}{ds} g + \frac{\widehat{\widehat{d}g}}{ds} f, \qquad (175)$$

i.e., one recovers the form of the first order Leibniz rule. Since  $\hat{f}g \neq \hat{g}f$ , one is led to define a symmetrized product [74]. One defines  $\dot{f} = \hat{d}f/ds$ , then

$$\dot{f} \otimes \dot{g} = \hat{f}\dot{g} + \hat{g}\dot{f} - \dot{f}\dot{g}.$$
(176)

This product is now commutative,  $\dot{f} \otimes \dot{g} = \dot{g} \otimes \dot{f}$ , and in its terms the standard strongly covariant form for the square of the velocity is recovered, namely,

$$\mathcal{V}^{\mu} \otimes \mathcal{V}_{\mu} = 1. \tag{177}$$

The introduction of such a tool, that may appear formal in the case of free motion, becomes particularly useful in the presence of an electromagnetic field. This point will be further developed in Sect. 7.. We shall show that the introduction of a new level of complexity in the description of a relativistic fractal space-time, namely, the account of resolutions that become functions of coordinates, leads to a new geometric theory of gauge fields, in the Abelian [25] and non-Abelian case [49]. We find that the complex velocity is given in the electromagnetic U(1) case by the expression

$$\mathcal{V}^{\mu} = i\lambda D^{\mu} \ln \psi = i\lambda \partial^{\mu} \ln \psi - \frac{e}{mc^2} A^{\mu}, \qquad (178)$$

where  $A^{\mu}$  is defined as a 'field' of dilations of internal resolutions that can be identified with an electromagnetic field four-potential.

Inserting this expression in Eq. (170) yields the standard Klein-Gordon equation with electromagnetic field,  $[i\hbar\partial_{\mu} - (e/c)A_{\mu}][i\hbar\partial^{\mu} - (e/c)A^{\mu}]\psi = m^2c^2\psi$  [74].

# 6.2 Dirac Equation

#### 6.2.1 Reflection symmetry breaking of spatial differential element

One of the main result of the scale-relativity theory is its ability to provide a physical origin for the complex nature of the wave function in quantum mechanics. Indeed, we have seen that in its framework, it is a direct consequence of the nondifferentiable geometry of space-time, which involves a symmetry breaking of the reflection invariance  $dt \leftrightarrow -dt$ , and therefore a two-valuedness of the classical velocity vector.

Going to motion-relativistic quantum mechanics amounts to introduce not only a fractal space, but a fractal space-time. The invariant parameter becomes in this case the proper time s instead of the time t. As a consequence the complex nature of the four-dimensional wave function in the Klein-Gordon equation comes from the discrete symmetry breaking  $ds \leftrightarrow -ds$ .

However, this is not the last word of the new structures implied by the nondifferentiability. The total derivative of a physical quantity also involves partial derivatives with respect to the space variables,  $\partial/\partial x^{\mu}$ . Once again, from the very definition of derivatives, the discrete symmetry under the reflection  $dx^{\mu} \leftrightarrow -dx^{\mu}$  should also broken at a more profound level of description. Therefore, we expect the possible appearance of a new two-valuedness of the generalized velocity field [24].

At this level one should also account for parity violation. Finally, we have suggested that the three discrete symmetry breakings

$$ds \leftrightarrow -ds \qquad dx^{\mu} \leftrightarrow -dx^{\mu} \qquad x^{\mu} \leftrightarrow -x^{\mu}$$

can be accounted for by the introduction of a bi-quaternionic velocity. It has been subsequently shown by Célérier [67, 24] that one can derive in this way the Dirac equation, namely as an integral of a geodesics equation. This demonstration is summarized in what follows. In other words, this means that this new two-valuedness is at the origin of the bi-spinor nature of the electron wave function.

#### 6.2.2 Spinors as bi-quaternionic wave-function

Since  $\mathcal{V}^{\mu}$  is now bi-quaternionic, the Lagrange function is also bi-quaternionic and, therefore, the same is true of the action. Moreover, it has been shown [67] that, for s-stationary processes, the bi-quaternionic generalisation of the quantum-covariant derivative keeps the same form as in the complex number case, namely,

$$\frac{\widehat{d}}{ds} = \mathcal{V}^{\nu}\partial_{\nu} + i\frac{\lambda}{2}\partial^{\nu}\partial_{\nu} . \qquad (179)$$

A generalized equivalence principle, as well as a strong covariance principle, allows us to write the equation of motion under a free-motion form, i.e., under the form of a differential geodesics equation,

$$\frac{\widehat{d}\mathcal{V}_{\mu}}{ds} = 0, \tag{180}$$

where  $\mathcal{V}_{\mu}$  is the bi-quaternionic four-velocity, e.g., the covariant counterpart of  $\mathcal{V}^{\mu}$ .

The elementary variation of the action, considered as a functional of the coordinates, keeps its usual form,

$$\delta \mathcal{S} = -mc \,\mathcal{V}_{\mu} \,\delta x^{\mu}.\tag{181}$$

We thus obtain the bi-quaternionic four-momentum, as

$$\mathcal{P}_{\mu} = mc\mathcal{V}_{\mu} = -\partial_{\mu}\mathcal{S}.$$
(182)

We are now able to introduce the wave function. We define it as a re-expression of the bi-quaternionic action by

$$\psi^{-1}\partial_{\mu}\psi = \frac{i}{cS_{0}}\partial_{\mu}\mathcal{S},\tag{183}$$

using, in the left-hand side, the quaternionic product. The bi-quaternionic four-velocity is derived from Eq. (182), as

$$\mathcal{V}_{\mu} = i \, \frac{S_0}{m} \, \psi^{-1} \partial_{\mu} \psi. \tag{184}$$

Finally, the isomorphism which can be established between the quaternionic and spinorial algebrae through the multiplication rules applying to the Pauli spin matrices allows us to identify the wave function  $\psi$  to a Dirac bispinor. Indeed, spinors and quaternions are both a representation of the SL(2,C) group. This identification is reinforced by the result [67, 24] that follows, according to which the geodesics equation written in terms of bi-quaternions is naturally integrated under the form of the Dirac equation.

### 6.2.3 Free-particle bi-quaternionic Klein-Gordon equation

The equation of motion, Eq. (180), writes

$$\left(\mathcal{V}^{\nu}\partial_{\nu} + i\frac{\lambda}{2}\partial^{\nu}\partial_{\nu}\right)\mathcal{V}_{\mu} = 0.$$
(185)

We replace  $\mathcal{V}_{\mu}$ , (respectively  $\mathcal{V}^{\nu}$ ), by their expressions given in Eq. (184) and we obtain

$$i\frac{S_0}{m}\left(i\frac{S_0}{m}\psi^{-1}\partial^{\nu}\psi\partial_{\nu}+i\frac{\lambda}{2}\partial^{\nu}\partial_{\nu}\right)\left(\psi^{-1}\partial_{\mu}\psi\right)=0.$$
(186)

The choice  $S_0 = m\lambda$  allows us to simplify this equation and we get

$$\psi^{-1}\partial^{\nu}\psi \ \partial_{\nu}(\psi^{-1}\partial_{\mu}\psi) + \frac{1}{2}\partial^{\nu}\partial_{\nu}(\psi^{-1}\partial_{\mu}\psi) = 0.$$
(187)

The definition of the inverse of a quaternion

$$\psi\psi^{-1} = \psi^{-1}\psi = 1, \tag{188}$$

implies that  $\psi$  and  $\psi^{-1}$  commute. But this is not necessarily the case for  $\psi$  and  $\partial_{\mu}\psi^{-1}$  nor for  $\psi^{-1}$  and  $\partial_{\mu}\psi$  and their contravariant counterparts. However, when we derive Eq. (188) with respect to the coordinates, we obtain

$$\psi \,\partial_{\mu}\psi^{-1} = -(\partial_{\mu}\psi)\psi^{-1},$$
  

$$\psi^{-1}\partial_{\mu}\psi = -(\partial_{\mu}\psi^{-1})\psi,$$
(189)

and identical formulae for the contravariant analogues.

Developing Eq. (187), using Eq. (189) and the property  $\partial^{\nu}\partial_{\nu}\partial_{\mu} = \partial_{\mu}\partial^{\nu}\partial_{\nu}$ , we obtain, after some calculations,

$$\partial_{\mu}[(\partial^{\nu}\partial_{\nu}\psi)\psi^{-1}] = 0, \qquad (190)$$

which can be integrated as

$$\partial^{\nu}\partial_{\nu}\psi + C\psi = 0. \tag{191}$$

We therefore recognize the Klein-Gordon equation for a free particle with a mass m, after the identification  $C = m^2 c^2/\hbar^2 = 1/\lambda^2$ . But in this equation  $\psi$  is now a biquaternion, i.e. a Dirac bispinor.

### 6.2.4 Dirac and Pauli equations

We now use a long-known property of the quaternionic formalism, which allows to obtain the Dirac equation for a free particle as a mere square root of the Klein-Gordon operator (see [67, 24] and references therein).

The Klein-Gordon equation can be developed as

$$\frac{1}{c^2}\frac{\partial^2\psi}{\partial t^2} = \frac{\partial^2\psi}{\partial x^2} + \frac{\partial^2\psi}{\partial y^2} + \frac{\partial^2\psi}{\partial z^2} - \frac{m^2c^2}{\hbar^2}\psi.$$
(192)

After some calculations [24], it can be spontaneously factorized as the square of a noncovariant Dirac equation for a free fermion, which reads in terms of the Dirac  $\alpha$  and  $\beta$ matrices (see e.g. [86])

$$\frac{1}{c}\frac{\partial\psi}{\partial t} = -\alpha^k \frac{\partial\psi}{\partial x^k} - i\frac{mc}{\hbar}\beta\psi.$$
(193)

The covariant form, in the Dirac representation, can be easily recovered from this expression [67, 24]. Finally it is easy to derive the Pauli equation, since it is known that it can be obtained as a non-relativistic approximation of the Dirac equation [86]. Two of the components of the Dirac bi-spinor become negligible when  $v \ll c$ , so that they become Pauli spinors (i.e., in our representation the bi-quaternions are reduced to quaternions) and the Dirac equation is transformed in a Schödinger equation for these spinors with a magnetic dipole additional term. Such an equation is but the Pauli equation. Therefore the Pauli equation is understood in the scale-relativity framework as a manifestation of the fractality of space (but not time), while the symmetry breaking of space differential elements is nevertheless at work [92].

# 7. Gauge Theories and Scale Relativity

# 7.1 Introduction

Let us now review another important field of application of the fractal space-time / scale relativity theory. In the previous sections, we have (i) developed the scale laws, internal to a given space-time point, that can be constructed from first physical principles; (ii) studied the consequences on motion of the simplest of these laws.

In that description the resolution variables  $\ln(\lambda/\varepsilon)$  can take all the values of the scalespace, but, as a first step, they do not themselves vary in function of other variables. Then we have considered the new situation of 'scale dynamics', in which 'scale-accelerations' are defined, so that the resolutions may vary with the djinn (variable fractal dimension).

We shall now consider the case when the  $\varepsilon$  variables become functions of the coordinates,  $\varepsilon = \varepsilon(x, y, z, t)$ . This means that the resolutions become themselves a field. Such a case can be described as a coupling between motion and scales, but it also comes under a future 'general scale-relativitistic' description in which scale and motion will be treated on the same footing. As we shall now recall, this approach provides us with a new interpretation of gauge transformations and therefore with a geometric interpretation of the nature of gauge fields [25, 23, 84].

In the present standard physical theory, one still does not really understand the nature of the electric charge and of the electromagnetic field. As recalled by Landau ([85], Chap. 16), in the classical theory the very existence of the charge e and of the electromagnetic four-potential  $A_{\mu}$  are ultimately derived from experimental data. Moreover, the form of the action for a particle in an electromagnetic field cannot be chosen only from general considerations, and it is therefore merely postulated. Said another way, contrarily to general relativity in which the equation of trajectories (i.e., the fundamental equation of dynamics) is self-imposed as a geodesics equation, in today's theory of electromagnetism the Lorentz force must be added to Maxwell's equations. Quantum field theories have improved the situation thanks to the link between the nature of charges and gauge invariance, but we still lack a fundamental understanding of the nature of gauge transformations.

We shall now review the proposals of the scale-relativity approach made in order to solve these problems, that involves a new interpretation of gauge transformations, then we shall recall some of its possible consequences.

# 7.2 Nature of the electromagnetic field (classical theory)

## 7.2.1 Electromagnetic potential as resolution dilation field

The theory of scale relativity allows one to get new insights about the nature of the electromagnetic field, of the electric charge, and about the physical meaning of gauge invariance. Consider an electron (or any other charged particle). In scale relativity, we identify the particle with a family of fractal trajectories, described as the geodesics of a nondifferentiable space-time. These trajectories are characterized by internal (fractal) structures.

Now consider anyone of these structures, lying at some (relative) resolution  $\varepsilon$  smaller that the Compton length of the particle (i.e. such that  $\varepsilon < \lambda_c$ ) for a given relative position of the particle. In a displacement of the particle, the relativity of scales implies that the resolution at which this given structure appears in the new position will a priori be different from the initial one. Indeed, if the whole internal fractal structure of the electron was rigidly fixed, this would mean an absolute character of the scale-space, which would be in contradiction with the principle of the relativity of scales.

Therefore we expect the occurrence of dilatations of resolutions induced by translations, which read

$$q \,\frac{\delta\varepsilon}{\varepsilon} = -A_\mu \,\delta x^\mu. \tag{194}$$

In this expression, the elementary dilation is written as  $\delta \varepsilon / \varepsilon = \delta \ln(\varepsilon/\lambda)$ . This is justified by the Gell-Mann-Levy method, from which the dilation operator is found to take the form  $\widetilde{D} = \varepsilon \partial/\partial \varepsilon = \partial/\partial \ln \varepsilon$  (see Sect. 4.1.1). Since the elementary displacement in space-time  $\delta x^{\mu}$  is a four-vector and since  $\delta \varepsilon / \varepsilon$  is a scalar, one must introduce a fourvector  $A_{\mu}$  in order to ensure covariance. The constant q measures the amplitude of the scale-motion coupling; it will be subsequently identified with the active electric charge that intervenes in the potential. This form ensures that the dimensionality of  $A_{\mu}$  be  $CL^{-1}$ , where C is the electric charge unit (e.g.,  $\varphi = q/r$  for a Coulomb potential) and Lthe length unit.

This behaviour can be expressed in terms of the introduction of a scale-covariant derivative. Namely, the total effect is now the sum of an inertial effect and of a geometric effect described by  $A_{\mu}$ ,

$$q \,\partial_{\mu} \ln(\lambda/\varepsilon) = q \,D_{\mu} \ln(\lambda/\varepsilon) + A_{\mu}. \tag{195}$$

This method is analogous to Einstein's construction of generalized relativity of motion, in which the Christoffel components  $\Gamma^{\mu}_{\nu\rho}$  can be introduced directly from the mere principle of relativity of motion (see e.g. Ref. [85]).

### 7.2.2 Nature of gauge invariance

Let us go one with the dilation field of resolutions  $A_{\mu}$ . If one wants such a field to be physical, it must be defined whatever the initial scale from which we started. Therefore, starting from another relative scale  $\varepsilon' = \rho \varepsilon$ , where the scale ratio  $\rho$  may be any function of coordinates  $\rho = \rho(x, y, z, t)$ , we get (considering only Galilean scale-relativity for the moment)

$$q \, \frac{\delta \varepsilon'}{\varepsilon'} = -A'_{\mu} \, \delta x^{\mu}, \tag{196}$$

so that we obtain

$$A'_{\mu} = A_{\mu} + q \,\partial_{\mu} \ln \varrho(x, y, z, t). \tag{197}$$

Therefore the four-vector  $A_{\mu}$  depends on the relative "state of scale", or "scale velocity",  $\mathbb{V} = \ln \rho = \ln(\varepsilon/\varepsilon').$ 

We have suggested [25, 23] to identify  $A_{\mu}$  with an electromagnetic four-potential and Eq. (197) with the gauge invariance relation for the electromagnetic field, that writes in the standard way

$$A'_{\mu} = A_{\mu} + q \,\partial_{\mu}\chi(x, y, z, t), \tag{198}$$

where  $\chi$  is usually considered as an arbitrary function of coordinates devoid of physical meaning. This is no longer the case here, since it is now identified with a scale ratio  $\chi = \ln \rho(x, y, z, t)$  between internal structures of the electron geodesics (at scales smaller

than its Compton length). Our interpretation of the nature of the gauge function is compatible with its inobservability. Indeed, such a scale ratio is impossible to measure explicitly, since it would mean to make two measurements of two different relative scales smaller than the electron Compton length. But the very first measurement with resolution  $\varepsilon$  would change the state of the electron. Namely, just after the measurement, its de Broglie length would become of order  $\lambda_{dB} \approx \varepsilon$  (see e.g. [4]), so that the second scale  $\varepsilon'$ would not be measured on the same electron state. Therefore the ratio  $\rho = \varepsilon'/\varepsilon$  is destined to remain a virtual quantity. However, as we shall see in what follows, even whether it cannot be directly measured, it has indirect consequences, so that the knowledge of its nature finally plays an important role. Namely, it allows one to demonstrate the quantization of the electron charge and to relate its value to that of its mass.

### 7.2.3 Electromagnetic field, electric charge and Lorentz force

Let us now show that the subsequent developments of the properties of this resolution dilation field support its interpretation in terms of electromagnetic potentials.

If one considers a translation along two different coordinates (or, in an equivalent way, displacement on a closed loop), one may write a commutator relation (once again, in analogy with the definition of the Riemann tensor in Einstein's general relativity),

$$q\left(\partial_{\mu}D_{\nu} - \partial_{\nu}D_{\mu}\right)\ln(\lambda/\varepsilon) = -(\partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}).$$
(199)

This relation defines a tensor field

$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} \tag{200}$$

which, contrarily to  $A_{\mu}$ , is independent of the initial relative scale (i.e., of the gauge). One recognizes in  $F_{\mu\nu}$  the expression for the electromagnetic field. The first group of Maxwell equations directly derives from this expression, namely,

$$\partial_{\mu}F_{\nu\rho} + \partial_{\nu}F_{\rho\mu} + \partial_{\rho}F_{\mu\nu} = 0.$$
(201)

In this interpretation, the property of gauge invariance recovers its initial status of scale invariance, in accordance with Weyl's initial ideas [93]. However, equation (197) represents a progress compared with these early attempts and with the status of gauge invariance in today's physics. Indeed the gauge function, which has, up to now, been considered as arbitrary and devoid of physical meaning, is now identified with the logarithm of internal resolutions. As we shall see, this interpretation has physical consequences concerning the quantization of the electric charge and its value [25].

Let us now derive the equation of motion of a charge in an electromagnetic field. Consider the action S for the electron. In the framework of a space-time theory based on a relativity principle, as it is the case here, it should be given directly by the length invariant s, i.e.,  $dS = -mc \, ds$ . This relation ensures that the stationary action principle  $\delta \int dS = 0$  becomes identical with a geodesics (Fermat) principle  $\delta \int ds = 0$ . Now the fractality of the geodesical curves to which the electron is identified means that, while S is an invariant with respect to space-time changes of the coordinate system, it is however a function of the scale variable,  $S = S(\ln \rho)$ , at scales smaller than  $\lambda$ .

Therefore its differential reads

$$dS = \frac{\partial S}{\partial \ln \rho} d\ln \rho = \frac{\partial S}{\partial \ln \rho} \left( D\ln \rho + \frac{1}{q} A_{\mu} dx^{\mu} \right), \tag{202}$$

so that we obtain

$$\partial_{\mu}S = D_{\mu}S + \frac{\partial S}{q\,\partial\ln\rho} A_{\mu}.$$
(203)

This is an essential result of the scale relativity theory. Indeed, the first term of the product actually provides us with a definition for the 'passive' charge

$$\frac{e}{c} = -\frac{\partial S}{q \,\partial \ln \rho}.\tag{204}$$

In the standard theory, the charge is set from experiment, then it is shown to be related to gauge transformations, while the gauge functions are considered to be arbitrary and devoid of physical meaning. In the scale-relativity approach, the charges are built from the symmetries of the scale space. One indeed recognizes in Eq. (204) the standard expression that relates, though the derivative of the action, a conservative quantity to the symmetry of a fundamental variable (here the internal relative resolution), following Noether's theorem.

Finally, the known form of the particle-field coupling term in the action is now demonstrated, while it was merely postulated in the standard theory. Namely, we obtain

$$S_{\rm pf} = \int -\frac{e}{c} A_{\mu} dx^{\mu}. \tag{205}$$

We can now write the total action under the form (recall that the field term is selfimposed to be the square of the electromagnetic tensor, see e.g. [85])

$$S = S_{\rm p} + S_{\rm pf} + S_{\rm f} = -\int mc \, ds - \int \frac{e}{c} A_{\mu} dx^{\mu} - \frac{1}{16\pi c} \int F_{\mu\nu} F^{\mu\nu} d\Omega.$$
(206)

The variational principle applied on the two first terms of this action finally yields the searched motion equation as a geodesics equation (since the action is now proportional to the invariant proper time) and therefore the known expression for the Lorentz force acting on a charge e,

$$mc \frac{du_{\mu}}{ds} = \frac{e}{c} F_{\mu\nu} u^{\nu}.$$
(207)

The variational principle applied on the two last terms of the action (after their generalization to the current of several charges) yields Maxwell's equations,

$$\partial_{\mu}F^{\mu\nu} = -\frac{4\pi}{c}j^{\nu}.$$
(208)

In conclusion of this section, the progress achieved here (respectively to the standard classical electromagnetic theory) is that the Lorentz force and the Maxwell equations are derived in the scale relativity theory as being both manifestations of the fractal geometry of space-time (instead of being independently set). Moreover, a new physical meaning can be given to the electric charge and to gauge transformations.

We shall now consider its consequences for the quantum theory of electrodynamics.

# 7.3 Scale-relativistic quantum electrodynamics

# 7.3.1 Analysis of the problem

It is well-known that the quantum theory of electromagnetism and of the electron has added a new and essential stone in our understanding of the nature of charge. Indeed, in its framework, gauge invariance becomes deeply related to phase invariance of the wave function [94]. The electric charge conservation is therefore directly related to the gauge symmetry. However, despite the huge progress that such a success has been (in particular, the extension of the approach to non-Abelian gauge theories has allowed to incorporate the weak and strong field into the same scheme) the lack of a fundamental understanding of the nature of phases, and therefore of gauge transformations has up to now prevented from reaching the final goal of gauge theories: namely, to understand why charge is quantized and, as a consequence, theoretically calculate its quantized value.

Let us indeed consider the wave function of an electron. It reads

$$\psi = \psi_0 \, \exp\left\{\frac{i}{\hbar}(px - Et + \sigma\varphi + e\chi)\right\}.$$
(209)

Its phase contains the usual products of fundamental quantities (space position, time, angle) and of their conjugate quantities (momentum, energy, angular momentum). They are related through Noether's theorem. Namely, the conjugate variables are the conservative quantities that originate from the space-time symmetries. This means that our knowledge of what are the energy, the momentum and the angular momentum and of their physical properties is founded on our knowledge of the nature of space, time and its transformations (translations, rotations and Lorentz boosts).

This is true already in the classical theory, but there is something more in the quantum theory. In its framework, the conservative quantities are quantized when the basic variables are bounded. Concerning energy-momentum, this means that it is quantized only in some specific circumstances (e.g., bound states in atoms for which r > 0 in spherical coordinates). The case of the angular momentum is particularly instructive, since its differences are quantized in an universal way in units of  $\hbar$  because angles differences cannot exceed  $2\pi$ .

In comparison, the last term in the phase of Eq. (209) keeps a special status in today's standard theory. The gauge function  $\chi$  remains arbitrary, while it is clear from a comparison with the other terms that the meaning of charge e and the reason for its universal quantization can be obtained only from understanding the physical meaning of  $\chi$  and why it is universally limited, since it is the quantity conjugate to the charge. As we shall now see, the identification of  $\chi$  with the resolution scale factor  $\ln \rho$  [25, 23], that we have recalled in the previous sections in the classical framework, can be transported to the quantum theory and allows one to suggest solutions to these problems in the special scale-relativity framework.

#### 7.3.2 QED covariant derivative

Let us first show how one can recover the standard QED covariant derivative in the scale-relativity approach. Let us consider again the generalized action introduced in the previous section, which depends on motion and on scale variables. In the scale-relativistic quantum description, the 4-velocity is now complex (see Sec. 2.4), so that the action reads  $S = S(x^{\mu}, \mathcal{V}^{\mu}, \ln \varrho)$ . Recall that the complex action gives the fundamental meaning of the wave function, namely,  $\psi$  is defined as

$$\psi = e^{i\mathcal{S}/\hbar}.$$
(210)

The decomposition performed in the framework of the classical theory still holds and becomes, in terms of now complex quantities,

$$d\mathcal{S} = -mc\,\mathcal{V}_{\mu}dx^{\mu} - \frac{e}{c}\,A_{\mu}dx^{\mu}.$$
(211)

This leads us to a QED-covariant expression for the velocity,

$$\mathcal{V}_{\mu} = i\lambda D_{\mu}(\ln\psi) = i\lambda \partial_{\mu}(\ln\psi) - \frac{e}{mc^2} A_{\mu}, \qquad (212)$$

where  $\lambda = \hbar/mc$  is the Compton length of the electron.

We recognize in this derivative the standard QED-covariant derivative operator acting on the wave function  $\psi$ ,

$$-i\hbar D_{\mu} = -i\hbar \partial_{\mu} + \frac{e}{c} A_{\mu}, \qquad (213)$$

since we can write Eq. (212) as  $mc\mathcal{V}_{\mu}\psi = [i\hbar \partial_{\mu} - (e/c)A_{\mu}]\psi$ .

We have therefore reached an understanding from first principles of the nature and origin of the QED covariant derivative, while it was merely set as a rule devoid of geometric meaning in standard quantum field theory.

This covariant derivative exactly derives from the previous one introduced in the classical framework. Indeed, the classical covariant derivative was written (for q = e),  $D_{\mu} = \partial_{\mu} - (1/e)A_{\mu}$  acting on  $\rho$ , while  $\psi = \psi_0 \exp[(-i/\hbar)(e^2/c)\ln\rho]$ . We therefore recover the expression (213) acting on  $\psi$ .

#### 7.3.3 Klein-Gordon equation in the presence of an electromagnetic field

We can now combine the two main effects of the fractality of space-time, namely, the induced effects that lead to quantum laws and the effects of coordinate-dependent resolutions that lead to the appearance of an electromagnetic field. The account of both covariant derivatives allows one to derive from a geodesics equation the relativistic wave equation for a scalar particle in the presence of an electromagnetic field. Let us start from the fully covariant form of the quadratic invariant, as established in Sec. 6.,

$$\mathcal{V}^{\mu} \otimes \mathcal{V}_{\mu} = (\mathcal{V}^{\mu} + i\lambda \,\partial^{\mu})\mathcal{V}_{\mu} = 1.$$
(214)

By taking its gradient, we obtain, in terms of the operator  $\widehat{\mathcal{V}^{\mu}} = \mathcal{V}^{\mu} + i(\lambda/2)\partial^{\mu}$  introduced in Sec. 6.1.2,

$$\widehat{\mathcal{V}}^{\widehat{\mu}} \partial_{\alpha} \mathcal{V}_{\mu} = 0. \tag{215}$$

This equation is no longer equivalent to  $\widehat{\mathcal{V}}^{\mu} \partial_{\mu} \mathcal{V}_{\alpha} = 0$  in the presence of an electromagnetic field, since in this case

$$\partial_{\alpha} \mathcal{V}_{\mu} = \partial_{\mu} \mathcal{V}_{\alpha} + \frac{e}{mc^2} F_{\mu\alpha}.$$
 (216)

Therefore Eq. (215) becomes

$$\widehat{\mathcal{V}^{\mu}}\left(\partial_{\mu}\mathcal{V}_{\alpha} + \frac{e}{mc^{2}}F_{\mu\alpha}\right) = 0, \qquad (217)$$

and we finally recover the form of the Lorentz equation of electrodynamics,

$$mc \, \frac{\widehat{d}}{ds} \mathcal{V}_{\alpha} = \widehat{\mathcal{V}^{\mu}} \, F_{\alpha\mu}. \tag{218}$$

This equation is equivalent to that found by Pissondes [74], but now the electromagnetic field itself is built from the fractal geometry, instead of being simply added by applying the standard (up to now misunderstood) QED rules. The Klein-Gordon equation with electromagnetic field is easily obtained by replacing in Eq. (214) the complex velocity by its expression in function of  $\psi$  (Eq. 212),

$$\left(i\hbar\,\partial_{\mu} - \frac{e}{c}\,A_{\mu}\right)\left(i\hbar\,\partial^{\mu} - \frac{e}{c}\,A^{\mu}\right)\psi = m^{2}c^{2}\psi.$$
(219)

## 7.3.4 Nature of the electric charge (quantum theory)

In a gauge transformation  $A'_{\mu} = A_{\mu} + e \partial_{\mu} \chi$  the wave function of an electron of charge *e* becomes

$$\psi' = \psi \, \exp\left\{-\frac{i}{\hbar} \times \frac{e}{c} \times e\chi\right\}.$$
(220)

We have reinterpreted in the previous sections the gauge transformation as a scale transformation of resolution,  $\varepsilon \to \varepsilon'$ , yielding an identification of the gauge function with a scale ratio,  $\chi = \ln(\varepsilon/\varepsilon') = \ln \varrho(x, y, z, t)$ , which is a function of space-time coordinates. In such an interpretation, the specific property that characterizes a charged particle is the explicit scale-dependence on resolution of its action, then of its wave function. The net result is that the electron wave function reads

$$\psi' = \psi \exp\left\{-i\frac{e^2}{\hbar c}\ln\varrho\right\}.$$
(221)

Since, by definition (in the system of units where the permittivity of vacuum is 1),

$$e^2 = 4\pi\alpha\,\hbar c,\tag{222}$$

where  $\alpha$  is the fine structure constant, equation (221) becomes [25, 23]

$$\psi' = \psi \, e^{-i4\pi\alpha \ln \varrho}.\tag{223}$$

This result supports the previous solution brought to the problem of the nature of the electric charge in the classical theory. Indeed, considering now the wave function of the

electron as an explicitly resolution-dependent function, we can write the scale differential equation of which it is solution as

$$i\hbar \frac{\partial \psi}{\partial \left(\frac{e}{c}\ln \varrho\right)} = e\,\psi. \tag{224}$$

We recognize in  $\tilde{D} = i(\hbar c/e)\partial/\partial \ln \rho$  a dilatation operator similar to that introduced in Sec. 3. Equation (224) can then be read as an eigenvalue equation issued from an extension of the correspondence principle (but here, demonstrated),

$$\widetilde{D}\psi = e\,\psi.\tag{225}$$

This is the quantum expression of the above classical suggestion, according to which the electric charge is understood as the conservative quantity that comes from the new scale symmetry, namely, from the uniformity of the scale space.

## 7.3.5 Charge quantization and mass-charge relations

While the results of the scale relativity theory described in the previous sections mainly deal with a new interpretation of the nature of the electromagnetic field, of the electric charge and of gauge invariance, we now arrive at one of the main consequences of this approach. As we shall see, it allows one to establish the universality of the quantization of charges and to theoretically predict the existence of fundamental relations between mass scales and coupling constants.

In the previous section, we have recalled our suggestion [25, 23] to elucidate the nature of the electric charge as being the eigenvalue of the dilation operator corresponding to resolution transformations. We have written the wave function of a charged particle under the form Eq. (224).

Let us now consider in more detail the nature of the scale factor  $\ln \rho$  in this expression. This factor describes the ratio of two relative resolution scales  $\varepsilon$  and  $\varepsilon'$  that correspond to structures of the fractal geodesical paths that we identify with the electron. However the electron is not structured at all scales, but only at time-scales smaller than its Einstein time,  $\tau_E = \hbar/m_e c^2$ , that corresponds in space to its Compton length  $\lambda_c = \hbar/m_e c$ . These structures of the fractal geodesics correspond, in terms of standard quantum field theories, to the appearance of virtual particle-antiparticle pairs, and more generally to the set of Feynman diagrams that participate in the self-energy and renormalized charge of the electron [4]. We can therefore take this upper limit as reference scale for resolution ratios and write

$$\psi' = \exp\left\{-i \ 4\pi\alpha \ \ln\left(\frac{\lambda_c}{\varepsilon}\right)\right\} \ \psi.$$
 (226)

In the case of Galilean scale relativity, in which the composition of two dilations is given by their usual product, such a relation leads to no new result, since  $\varepsilon$  can go to zero, so that  $\ln(\lambda_c/\varepsilon)$  is unlimited. But in the framework of special scale-relativity, scale laws take a log-Lorentzian form below the scale  $\lambda_c$  (see Section 2). The Planck length  $l_{\mathbb{P}}$ becomes a minimal, unreachable scale, invariant under dilations, so that the scale ratios
$\ln(\lambda_c/\varepsilon)$  becomes limited by the fundamental number  $\mathbb{C} = \ln(\lambda_c/l_{\mathbb{P}})$ . This implies a quantization of the charge which amounts to the relation  $4\pi\alpha \mathbb{C} = 2k\pi$ , i.e.,

$$\alpha \mathbb{C} = \frac{1}{2} k, \tag{227}$$

where k is integer. This equation yields a general form for relations between mass scales and coupling constants. Indeed, since  $\mathbb{C} = \ln(\lambda_c/l_{\mathbb{P}})$ , this constant is given by

$$\mathbb{C}_e = \ln\left(\frac{m_{\mathbb{P}}}{m_e}\right) = 51.528 \pm 0.001 \tag{228}$$

for the electron, where  $m_{\mathbb{P}}$  is the Planck mass and  $m_e$  is the electron mass).

Now, in order to explicitly apply such a relation to the electron, we must account for the fact that we expect the electric charge to be only a residual of a more general, high energy electroweak coupling in the framework of Grand Unified theories. From the U(1)and SU(2) couplings, one can define an effective electromagnetic coupling as [4]

$$\alpha_0^{-1} = \frac{3}{8}\alpha_2^{-1} + \frac{5}{8}\alpha_1^{-1}.$$
(229)

It is such that  $\alpha_0 = \alpha_1 = \alpha_2$  at unification scale and it is related to the fine structure constant at Z scale by the relation  $\alpha = 3\alpha_0/8$ . This means that, because the weak gauge bosons acquire mass through the Higgs mechanism, the interaction becomes transported at low energy only by the residual null mass photon. As a consequence the amplitude of the electromagnetic force abruptly falls at the WZ scale. Therefore, we have suggested that it is the coupling  $\alpha_0$  instead of  $\alpha$  which must be used in Eq. (227) for relating the electron mass to its charge.

Finally, disregarding as a first step threshold effects (that occur at the Compton scale of the electron), we get a mass-charge relation for the electron [25, 23]:

$$\ln \frac{m_{\mathbb{P}}}{m_e} = \frac{3}{8} \alpha^{-1}.$$
(230)

The existence of such a relation between the mass and the charge of the electron is supported by the experimental data. Since the coupling constant  $\alpha$  is actually running with mass scale, one can consider this relation as an equation to be solved for this running mass scale  $m_e$  and the value of the charge at this scale,  $\alpha(m_e)$  (see Fig. 18). Using the known experimental values, the two members of this equation agree to 0.2% at the actual electron mass scale. Namely, one finds  $\mathbb{C}_e = \ln(m_P/m_e) = 51.528(1)$  while  $(3/8)\alpha^{-1} = 51.388$ . The agreement is made even better if one accounts from the fact that the measured fine structure constant (at Bohr scale) differs from the limit of its asymptotic behavior (that includes radiative corrections). One finds that the asymptotic inverse running coupling at the scale where the asymptotic running mass reaches the observed mass  $m_e$  is  $\alpha_0^{-1} \{r(m = m_e)\} = 51.521$ , which lies within  $10^{-4}$  of the value of  $\mathbb{C}_e$  (see Fig. 18).



Fig. 18 Observed convergence at the electron mass-scale (i.e. at the Compton length of the electron) of the asymptotic running electromagnetic inverse coupling  $\alpha^{-1}(r)$  and of the running scale-relativity constant  $8 \mathbb{C}(r)/3 = (8/3) \ln[m_{\mathbb{P}}/m(r)]$ . Such a convergence is theoretically expected in the framework of the scale-relativistic interpretation of gauge transformations, that yields a mass-charge relation for the electron, that reads  $(8/3)\alpha_e \ln(m_{\mathbb{P}}/m_e) = 1$ . The final low energy fine structure constant differs from its asymptotic value by a small theshold effect (see e.g. [86], [4] Sec. 6.2)

### 7.4 Generalization to non-Abelian gauge theories

The scale relativistic construction of gauge fields and gauge charges from a fractal and nondifferentiable geometry of space-time has been recently generalized to the non-Abelian case [49]. Let us summarize these results.

#### 7.4.1 General scale transformations and gauge fields

This generalization is based on a general description of the internal fractal structures of geodesics in terms of scale variables  $\eta_{\alpha\beta}(x, y, z, t) = \rho_{\alpha\beta}\varepsilon_{\alpha}\varepsilon_{\beta}$  whose true nature is tensorial, in analogy with uncertainties in physics which are fully described by a covariance error matrix, involving possible correlations  $\rho_{\alpha\beta}$ , and may now be function of the coordinates. This resolution tensor generalizes the single resolution variable  $\varepsilon$ .

We assume for simplicity of the writing that the two tensorial indices can be gathered under one common index. We therefore write the scale variables under the simplified form  $\eta_{\alpha_1\alpha_2} = \eta_{\alpha}$ , with  $\alpha = 0$  to n(n+1)/2, where n is the number of dimensions that intervene in the definition of resolutions (n = 3 for fractal space, 4 for fractal space-time and 5 in the special scale relativity case which includes a 'scale-time' or 'djinn' [16]).

Let us consider infinitesimal scale transformations. The transformation law on the  $\eta_{\alpha}$  can be written in a linear way as

$$\eta_{\alpha}' = \eta_{\alpha} + \delta\eta_{\alpha} = \left(\delta_{\alpha\beta} + \delta\theta_{\alpha\beta}\right)\eta^{\beta},\tag{231}$$

where  $\delta_{\alpha\beta}$  is the Kronecker symbol. The scale covariant derivative of the Abelian case is

therefore generalized as

$$d\eta_{\alpha} = D\eta_{\alpha} - \eta^{\beta} \delta\theta_{\alpha\beta} = D\eta_{\alpha} - \eta^{\beta} W^{\mu}_{\alpha\beta} \, dx_{\mu}.$$
(232)

Gauge field potentials  $W^{\mu}_{\alpha\beta}$  are naturally introduced in this expression. They are linked to the scale transformations as follows:

$$\delta\theta_{\alpha\beta} = W^{\mu}_{\alpha\beta} \, dx_{\mu}. \tag{233}$$

One should keep in mind, when using this expression, that these potentials find their origin in a covariant derivative process and are therefore not gradients.

# 7.5 Generalized charges

After having written the transformation law of the basic variables (the  $\eta_{\alpha}$  tensors), we now need to describe how various physical quantities transform under these  $\eta_{\alpha}$  transformations. These new transformation laws are expected to depend on the nature of the objects to transform (e.g., vectors, tensors, spinors, etc.), which implies to jump to group representations.

We anticipate the existence of charges by generalizing to multiplets the relation (Eq. 184) between the velocity field and the wave function. In this case the multivalued velocity becomes a biquaternionic matrix,

$$\mathcal{V}^{\mu}_{jk} = i\lambda \; \psi^{-1}_j \partial^{\mu} \psi_k. \tag{234}$$

The biquaternionic (therefore noncommutative) nature of the wave function, which is equivalent to Dirac bispinors, plays here an essential role. Indeed, the general structure of Yang-Mills theories and the correct construction of non-Abelian charges can be obtained thanks to this result [49].

The action also becomes a tensorial biquaternionic quantity,

$$d\mathcal{S}_{jk} = d\mathcal{S}_{jk}(x^{\mu}, \mathcal{V}^{\mu}_{jk}, \eta_{\alpha}), \qquad (235)$$

and, in the absence of field, it is linked to the generalized velocity (and therefore to the spinor multiplet) by the relation

$$\partial^{\mu} \mathcal{S}_{jk} = -mc \, \mathcal{V}_{jk}^{\mu} = -i\hbar \, \psi_j^{-1} \partial^{\mu} \psi_k.$$
(236)

Now, in the presence of a field, i.e., when the second-order effects of the fractal geometry appearing in the right hand side of Eq. (232) are included), by using the complete expression for  $\partial^{\mu}\eta_{\alpha} = D^{\mu}\eta_{\alpha} - W^{\mu}_{\alpha\beta} \eta^{\beta}$ , we obtain a non-Abelian relation

$$\partial^{\mu}S_{jk} = D^{\mu}S_{jk} - \eta^{\beta} \frac{\partial S_{jk}}{\partial \eta_{\alpha}} W^{\mu}_{\alpha\beta}.$$
 (237)

We are finally led to define a general group of scale transformations whose generators are

$$T^{\alpha\beta} = \eta^{\beta}\partial^{\alpha} \tag{238}$$

(where we use the compact notation  $\partial^{\alpha} = \partial/\partial \eta_{\alpha}$ ), yielding the generalized charges,

$$\frac{\tilde{g}}{c} t_{jk}^{\alpha\beta} = \eta^{\beta} \frac{\partial S_{jk}}{\partial \eta_{\alpha}}.$$
(239)

This unified group is submitted to a unitarity condition, since, when it is applied to the wave functions,  $\psi\psi^{\dagger}$  must be conserved. Knowing that the  $\alpha$ ,  $\beta$  represent two indices each, this is a large group that contains the standard model  $U(1) \times SU(2) \times SU(3)$  as a subset [49]. Its more precise nature and its properties will be studied in forthcoming works.

As we have shown in more detail in Ref. [49], the various ingredients of Yang-Mills theories (gauge covariant derivative, gauge invariance, charges, potentials, fields, etc...) may subsequently be recovered in such a framework, and they now have a first principle and geometric scale-relativistic foundation.

# 8. Scale Quantization: Quantum Mechanics in Scale-space

#### 8.1 Motivation

Let us now consider a new tentative development of the scale relativity theory. Recall that this theory is founded on the giving up of the hypothesis of differentiability of space-time coordinates. We reached the conclusion that the problem of dealing with non-derivable coordinates could be circumvented by replacing them by fractal functions of the resolutions. These functions are defined in a space of resolutions, or 'scale-space'. The advantage of this approach is that it sends the problem of non-differentiability to infinity in the scale space  $(\ln(\lambda/\varepsilon) \to \infty)$ . But, in such a framework, standard physics should be completed by scale laws allowing to determine the physically relevant functions of differential equations (which amounts to generalize the discrete generators of fractal objects defined by iterated functions to differential generators). Then the effects induced by these internal scale laws on the dynamics can be studied: we have found that the simplest possible scale laws that are consistent (i) with the principle of scale relativity and (ii) with the standard laws of motion and displacements, lead to a quantum-like mechanics in space-time.

However, the choice to write the transformation laws of the scale space in terms of standard differential equations (involving  $\partial/\partial \ln \varepsilon$ ,  $\partial^2/(\partial \ln \varepsilon)^2$  as a first step, then  $\partial/\partial \delta$ , etc... as a second step), even though it allows nondifferentiability in standard space-time, implicitly assumes differentiability in the scale space. This is once again a mere hypothesis that can be again given up.

We may therefore use the method that has been built for dealing with nondifferentiability in space-time and explore a new level of structures that may be the manifestation of this more profound nondifferentiability. As we shall now see, this results in the obtention of scale laws that take a quantum-like form instead of a classical one. Now, these new proposals should be considered as tentative in view of their novelty. Their self-consistency and their ability to describe real systems remain to be established.

Moreover, the complementary problem of constructing the motion laws that are induced by such quantum scale laws is left open to future studies, knowing that one obtains quantum laws of motion in position space from classical laws in the scale space. The construction of 'super-quantum' laws of motion based on internal scale quantum laws involves two levels of probabilistic description embedded one in the other, and may therefore reveal to be extraordinary difficult.

# 8.2 Schrödinger equation in scale-space

Recall that, for the construction of classical scale differential equations, we have mainly considered two representations: (i) the logarithms of resolution are fundamental variables; (ii) the main new variable is the djinn and the resolutions are deduced as derivatives.

These two possibilities are also to be considered for the new present attempt to construct quantum scale-laws. The first one, that we shall only briefly study here, consists of introducing a scale-wave function  $\psi[\ln \varepsilon(x, t), x, t]$ . In the simplified case where it depends only on the time variable, one may write a Schrödinger equation acting in scale-space:

$$\mathcal{D}_{\varepsilon}^{2} \frac{\partial^{2} \psi}{(\partial \ln \varepsilon)^{2}} + i \mathcal{D}_{\varepsilon} \frac{\partial \psi}{\partial t} - \frac{1}{2} \phi \psi = 0.$$
(240)

This is the quantum equivalent of the classical stationary wave equation giving rise to a log-periodic behavior (Sec. 4.3.1). It is also related to the scale-relativity re-interpretation of gauge invariance (Sec. 7.), in which the resolutions become 'fields' depending on space and time variables, so that the wave function becomes a function of  $\ln \varepsilon$ . However only the phase was affected, while now the modulus of the scale-wave function depends on the resolution scale. This means that the solutions of such an equation give the probability of presence of a structure in the scale-space, and that time-dependent solutions describe the propagation of quantum waves in the scale space.

#### 8.3 Schrödinger equation in terms of the djinn

Let us now consider the second representation in which the 'djinn' (variable fractal dimension) has become the primary variable. Start with the general Euler-Lagrange form given to scale laws in Sec. 4.3.2 after introduction of the djinn  $\delta$ ,

$$\frac{d}{d\delta} \frac{\partial \widetilde{L}}{\partial \mathbb{V}} = \frac{\partial \widetilde{L}}{\partial \ln \mathcal{L}} .$$
(241)

where we recall that  $\mathcal{L}$  is a fractal coordinate,  $\delta$  is the djinn that generalizes to a variable fifth dimension the fractal dimension (minus the topological dimension),  $\tilde{L}$  is the scale Lagrange function and  $\mathbb{V} = \ln(\lambda/\varepsilon) = d \ln \mathcal{L}/d\delta$  is the 'scale-velocity'.

It becomes in the Newtonian case [i.e., when  $\widetilde{L} = \mathbb{V}^2/2 - \Phi_S(\ln \mathcal{L}, \delta)$ ]

$$\frac{d^2 \ln \mathcal{L}}{d\delta^2} = -\frac{\partial \Phi_S}{\partial \ln \mathcal{L}} \,. \tag{242}$$

Since the scale-space is now assumed to be itself nondifferentiable and fractal, the various elements of the new description can be used in this case, namely:

(i) Infinity of trajectories, leading to introduce a scale-velocity field  $\mathbb{V} = \mathbb{V}[\ln \mathcal{L}(\delta), \delta];$ 

(ii) Decomposition of the derivative of the fractal coordinate in terms of a 'classical part' and a 'fractal part', and introduction of its two-valuedness because of the symmetry breaking of the reflection invariance under the exchange  $(d\delta \leftrightarrow -d\delta)$ ;

(iv) Introduction of a complex scale-velocity  $\tilde{\mathcal{V}}$  based on this two-valuedness;

(v) Construction of a new total covariant derivative with respect to the djinn, that reads  $\widehat{\phantom{a}}$ 

$$\frac{\widehat{d}}{d\delta} = \frac{\partial}{\partial\delta} + \tilde{\mathcal{V}} \frac{\partial}{\partial\ln\mathcal{L}} - i\mathcal{D}_s \frac{\partial^2}{(\partial\ln\mathcal{L})^2} \,. \tag{243}$$

(vi) Introduction of a wave function as a re-expression of the action (which is now complex),  $\Psi_s(\ln \mathcal{L}) = \exp(i\mathcal{S}_s/2\mathcal{D}_s);$ 

(vii) Transformation and integration of the above Newtonian scale-dynamics equation under the form of a Schrödinger equation now acting on scale variables:

$$\mathcal{D}_s^2 \frac{\partial^2 \Psi_s}{(\partial \ln \mathcal{L})^2} + i \mathcal{D}_s \frac{\partial \Psi_s}{\partial \delta} - \frac{1}{2} \Phi_s \Psi_s = 0.$$
(244)

# 8.4 Complexergy

In order to understand the meaning of this new Schrödinger equation, let us review the various levels of evolution of the concept of physical fractals adapted to a geometric description of a nondifferentiable space-time.

The first level in the definition of fractals is Mandelbrot's concept of 'fractal objects' [2].

The second step has consisted to jump from the concept of fractal objects to scalerelativistic fractals. Namely, the scales at which the fractal structures appear are no longer defined in an absolute way. Only scale ratios do have a physical meaning, not absolute scales.

The third step, that is achieved in the new interpretation of gauge transformations recalled hereabove, considers fractal structures (still defined in a relative way) that are no longer static. Namely, the scale ratios between structures become a field that may vary from place to place and with time.

The final level (in the present state of the theory) is given by the solutions of the above scale-Schrödinger equation. The Fourier transform of these solutions will provide probability amplitudes for the possible values of the logarithms of scale ratios,  $\Psi_s(\ln \rho)$ . Then  $|\Psi_s|^2(\ln \rho)$  gives the probability density of these values. Depending on the scale-field and on the boundary conditions (in the scale-space), peaks of probability density

will be obtained, this meaning that some specific scale ratios become more probable than others. Therefore, such solutions now describe quantum probabilistic fractal structures. The statement about these fractals is no longer that they own given structures at some (relative) scales, but that there is a given probability for two structures to be related by a given scale ratio.

Concerning the direct solutions of the scale-Schrödinger equation, they provide probability densities for the position on the fractal coordinate (or fractal length)  $\ln \mathcal{L}$ . This means that, instead of having a unique and determined  $\mathcal{L}(\ln \varepsilon)$  dependence (e.g., the length of the Britain coast), an infinite family of possible behaviors is defined, which self-organize in such a way that some values of  $\ln \mathcal{L}$  become more probable than others.

A more complete understanding of the meaning of this new description can be reached by considering the case of a scale-harmonic oscillator potential well. This is the quantum equivalent of the scale force considered previously, but now in the attractive case. The stationary Schrödinger equation reads in this case

$$2\mathcal{D}_s^2 \frac{\partial^2 \Psi_s}{(\partial \ln \mathcal{L})^2} + \left[ I\!\!E - \frac{1}{2} \omega^2 (\ln \mathcal{L})^2 \right] \Psi_s = 0.$$
(245)

The 'stationarity' of this equation means that it does no longer depend on the djinn  $\delta$ . (Recall that the djinn is to scale laws what time is to motion laws, i.e., it can be identified with a 'scale-time', while the resolutions are 'scale-velocities').

A new important quantity, denoted here  $I\!\!E$ , appears in this equation. It is the conservative quantity which, according to Noether's theorem, must emerge from the uniformity of the new djinn variable (or fifth dimension). It is defined, in terms of the scale-Lagrange function  $\tilde{L}$  and of the resolution  $\mathbb{V} = \ln(\lambda/\varepsilon)$ , as:

$$I\!\!E = \mathbb{V} \frac{\partial \tilde{L}}{\partial \mathbb{V}} - \tilde{L}.$$
(246)

This new fundamental prime integral had already been introduced in Refs. [16, 4], but its physical meaning remained unclear.

As we shall now see, the behavior of the above equation suggests an interpretation for this conservative quantity and allows one to link it to the complexity of the system under consideration. For this reason, and because it is linked to the djinn in the same way as energy is linked to the time, we have suggested to call this new fundamental quantity 'complexergy' [83].

Indeed, let us consider the momentum solutions  $a[\ln(\lambda/\varepsilon)]$  of the above scale-Schrödinger equation. Recall that the main variable is now  $\ln \mathcal{L}$  and that the scale-momentum is the resolution,  $\ln \rho = \ln(\lambda/\varepsilon) = d \ln \mathcal{L}/d\delta$  (since we take here a scale-mass  $\mu = 1$ ). The squared modulus of the wave function yields the probability density of the possible values of resolution ratios, namely,

$$|a_n(\ln\rho)|^2 = \frac{1}{2^n n! \sqrt{2\pi \mathcal{D}_s \omega}} e^{-(\ln\rho)^2/2\mathcal{D}_s \omega} H_n^2\left(\frac{\ln\rho}{\sqrt{2\mathcal{D}_s \omega}}\right), \qquad (247)$$

where the  $H_n$ 's are the Hermite polynomials (see Fig. 19).

The complexergy is quantized, in terms of the quantum number n, according to the well-known relation for the harmonic oscillator:

$$I\!\!E_n = 2\mathcal{D}_s \,\omega \,\left(n + \frac{1}{2}\right). \tag{248}$$

As can be seen in Fig. 19, the solution of minimal complexergy shows a unique peak in the probability distribution of the  $\ln(\lambda/\varepsilon)$  values. This can be interpreted as describing a system characterized by a single, more probable scale (relatively to a reference scale). Now, when the complexergy increases, the number of probability peaks (n+1) increases. Since these peaks are nearly regularly distributed in terms of  $\ln \varepsilon$  (i.e., probabilistic logperiodicity), it can be interpreted as describing a system characterized by a hierarchy of imbricated levels of organization. Such a hierarchy of organization levels is one of the criterions that define complexity. Therefore increasing complexergy corresponds to increasing complexity, which justifies the chosen name for the new conservative quantity.

More generally, one can remark that the djinn is universally limited from below ( $\delta > 0$ ), which implies that the complexergy is universally quantized in the framework of such a quantum theory of scales. The same is true for the energy of systems which are described by the above scale-Schrödinger equation. In the case when  $\ln(\mathcal{L}/\mathcal{L}_0) = \ln(\mathcal{T}/\mathcal{T}_0)$  is mainly a time variable (as for example in motion-relativistic high energy physics), the associated conservative quantity is  $\mathcal{E} = \ln(E/E_0)$  (see [4], p. 242). Because of the fractal-nonfractal transition,  $\ln(\mathcal{T}/\mathcal{T}_0) > 0$  is also limited from below, so that we expect the energy to be generally quantized, but now in exponential form. In other words, it describes a power law hierarchy of energies.

## 8.5 Applications

#### 8.5.1 Elementary particle physics

A natural domain of possible application of these new concepts is the physics of elementary particles. Indeed, there is an experimentally observed hierarchy of elementary particles, that are organized in terms of three known families, with mass increasing with the family quantum number. For example, there is a  $(e, \mu, \tau)$  universality among leptons, namely these three particles have exactly the same properties except for their mass and family number. However, there is, in the present standard model, no understanding of the nature of the families and no prediction of the values of the masses.

Hence, the experimental masses of charged leptons and of the 'current' quark masses are ([99]:

- $m_e = 0.510998902(21)$  MeV;  $m_\mu = 105.658357(5)$  MeV;  $m_\tau = 1776.99(28)$  MeV;
- $m_u = 0.003 \text{ GeV}; \quad m_c = 1.25 \text{ GeV}; \quad m_t = 174 \text{ GeV};$
- $m_d = 0.006 \text{ GeV}; \quad m_s = 0.125 \text{ GeV}; \quad m_b = 4.2 \text{ GeV}.$

Basing ourselves on the above definition of complexergy and on this mass hierarchy, we suggest that the existence of particle families are a manifestation of increasing complexergy, i.e., that the family quantum number is nothing but a complexergy quantum number. This would explain why the electron, muon and tau numbers are conserved in particle collisions, since such a fondamental conservative quantity (like energy) can be neither created nor destroyed.

We have shown in Sec. 7. that the scale-relativistic re-interpretation of gauge transformations allowed one to suggest a relation between the mass of the electron and its electric charge (in terms of the fine structure constant). This result is compatible with the mass of the electron mainly being of electromagnetic origin. More generally, the observed mass hierarchy between (neutrinos, charged leptons, quarks) also goes in this direction, suggesting that their masses are respectively of (weak, electroweak and electroweak+strong) origin.

Although a full treatment of the problem must await a more advanced level of development of the theory, that would mix the scale quantization description with the gauge field one, some remarkable structures of the particle mass hierarchy already support such a view:

(i) The above values of quark and lepton masses are clearly organized in a hierarchical way. This suggests that their understanding is indeed to be searched in terms of structures of the scale-space, for example as manifestation of internal structures of iterated fractals [4].

(ii) With regards to the  $e, \mu, \tau$  leptons, we had already remarked in [4], in the framework of a fractal sef-similar model, that their mass ratios followed a power-law-type sequence. Namely, the  $\mu$  and  $\tau$  mass are given, in function of  $3 m_e$  (which is the effective mass-energy of an electron which creates a virtual electron-positron pair, interpreted in the scale relativity approach as a part of the geodesic that runs backward in time [4]) by the empirical relations  $m_{\mu} \approx 3 m_e \times 4.1^3 = 105.656$  MeV and  $m_{\tau} \approx 3 m_e \times 4.1^5 = 1776.1$ MeV. While the mass derived for the  $\tau$  from this formula was in disagreement with its known value at that time (1784 MeV), more recent experimental determinations have given a mass of 1777 MeV [99], very close to the 'predicted' value. But it is clearly only provided such relations could be expected from theoretical arguments (and therefore allow one to possibly predict other lepton families) that they could be considered as having physical meaning.

(iii) We have suggested [100] that QCD is linked with a 3D harmonic oscillator scalepotential (since its symmetry group is SU(3)). In such a framework, the energy ratios are expected to be quantized as  $\ln E \propto (3 + 2n)$ . It may therefore be significant in this regard that the s/d mass ratio, which is far more precisely known that the individual masses since it can be directly determined from the pion and kaon masses, is found to be  $m_s/m_d = 20.1$  [99], to be compared with  $e^3 = 20.086$ , which is the fundamental (n = 0) level predicted by the above formula.

8.5.2 Biology: nature of first evolutionary leaps

Another tentative application of the complexergy concept concerns biology, in particular the question of species evolution. In the fractal model of the tree of life that leads to predict a log-periodic behavior for evolutionary lineages [42, 43, 44], we have voluntarily limited ourselves to an analysis of only the chronology of events (see Fig. 4), independently of the nature of the considered evolutionary leaps. We have now at our disposal a tool that allows us to reconsider the question.

We indeed suggest that life evolution proceeds in terms of increasing quantized complexergy. This would account for the existence of punctuated evolution [101], and for the log-periodic behavior of the leap dates, which can now be interpreted in terms of probability density of the events (more precisely, of the scale intervals),  $P = \psi \psi^{\dagger} \propto \sin^2[\omega \ln(T - T_c)]$ . Moreover, one may contemplate the possibility of a first rough understanding of the nature of the events.

Indeed, in the new framework of scale quantization, it is now possible to derive the most probable scales at which structures are expected to emerge, in function of the limiting conditions in scale space. Let us consider the free Schrödinger equation in scalespace. Its solutions are determined by the minimal and maximal possible scales for the system under consideration (which play a role analogous to the walls for a free quantum particle in a box. At the fundamental level (lowest complexergy) the solution of this equation is characterized by one length-scale (Fig. 19). Moreover, the most probable value for this scale of formation is predicted to be the 'middle' of the scale-space (in the free case, it is determined by the boundary conditions). Now the universal boundary conditions are the Planck-length  $l_{\mathbb{P}}$  in the microscopic domain and the cosmic scale  $\mathbb{L} = \Lambda^{-1/2}$  given by the cosmological constant  $\Lambda$  in the macroscopic domain [4, 23, 35]. From the predicted and now observed value of the cosmological constant, one finds  $\mathbb{L}/l_{\mathbb{P}} = 5.3 \times 10^{60}$ , so that the mid scale is at  $2.3 \times 10^{30} l_{\mathbb{P}} = 40 \ \mu \text{m}$ . A quite similar result is obtained from the scale boundaries of living systems (0.5 Angströms - 30 m). This scale of 40  $\mu$ m is indeed a typical scale of living cells. Moreover, the first 'prokaryot' cells appeared about three Gyrs ago had only one hierarchy level (no nucleus).



Fig. 19 Solutions of increasing complexergy of the scale-Schrödinger equation for an harmonic oscillator scale-potential (the same kind of patterns would be obtained in other situations such as the free Schrödinger equation in a scale-box). These solutions can be interpreted as describing systems characterized by an increasing number of hierarchical levels, as illustrated in the right hand side of the figure. For example, living systems such as procaryots, eucaryots and simple multicellular organisms have respectively one (cell size), two (nucleus and cell) and three (nucleus, cell and organism) characteristic scales.

In this framework, a further increase of complexergy can occur only in a quantized

way. This is supported by the punctuated character of the major evolutionary leaps [101]. The second level describes a system with two levels of organization, in agreement with the second step of evolution leading to eukaryots about 1.7 Gyrs ago (see upper Fig. 4). One expects (in this very simplified model), that the scale of nuclei be smaller than the scale of prokaryots, itself smaller than the scale of eucaryots: this is indeed what is observed.

The following expected major evolutionary leap is a three organization level system, in agreement with the apparition of multicellular forms (animals, plants and fungi) about 1 Gyr ago (third event in upper Fig. 4). It is also predicted that the multicellular stage can be built only from eukaryots, in agreement with what is observed. Namely, the cells of multicellulars do have nuclei; more generally, evolved organisms keep in their internal structure the organization levels of the preceeding stages.

The following major leaps correspond to more complicated structures, then to new functions (supporting structures such as exoskeletons, tetrapody, homeothermy, viviparity), but they are still characterized by fundamental changes in the number of organization levels. The above model (based on spherical symmetry) is clearly too simple to account for these events, but it can be easily generalized to several scale variables and to more complicated symmetries, so that it is not excluded that some of them could be accounted for in the same framework. The theoretical biology approach outlined here [83, 102] is still in the infancy: future attempts of description using the scale-relativity methods will have the possibility to take into account more complicated symmetries, boundary conditions and constraints, so that the field seems to be wide open to investigation.

# **Conclusion and Prospect**

We have attempted, in the present review paper, to give an extended discussion of the various developments of the theory of scale-relativity, including some new proposals concerning in particular the quantization in the scale-space and tentative applications to the sciences of life.

The aim of this theory is to describe space-time as a continuous manifold which can be nondifferentiable and is constrained by the principle of relativity (of motion and of scale). Such an attempt is a natural extension of general relativity, since the twotimes differentiable continuous manifolds of Einstein's theory, that are constrained by the principle of relativity of motion, are particular sub-cases of the new geometry.

Now, giving up the differentiability hypothesis involves an extremely large number of new possible structures to be investigated and described. In view of the immensity of the task, we have chosen to proceed by adding self-imposed structures in a progressive way, using presently known physics as a guide. Such an approach is rendered possible by the result according to which small-scale structures issued from nondifferentiability are smoothed out beyond some transitions at large scale. Moreover, these transitions have profound physical meaning, since they are themselves linked to fundamental mass scales.

This means that the program that consists of developing a full scale-relativistic physics, despite all its achievements, is still in its infancy. Much work remains to be done, in order (i) to describe the effect on motion laws of the various levels of scale laws that have been considered, and of their generalizations still to come (general scalerelativity); (ii) to take into account the various new symmetries, as well continuous as discrete, of the new variables that must be introduced for the full description of a fractal space-time, and of the conservative quantities constructed from them (including their quantum counterparts which are expected to provide us with an explanation of various still misunderstood quantum numbers in elementary particle physics).

Let us conclude by a final remark: one of the main interest of the new approach is that, being based on the universality of fractal geometry already unveiled by Mandelbrot, it allows one to go beyond the frontiers between sciences. In particular, it opens the hope of a future refoundation on first principles of sciences of life and of some human sciences.

# Acknowlegments

I gratefully acknowledge Drs. Th. Lehner, M.N. Célérier, E. Parizot and S. Fay for interesting discussions and helpful remarks during the preparation of this paper.

### References

- [1] A. Einstein, Annalen der Physik 49, 769 (1916), translated in *The Principle of Relativity* (Dover, 1923, 1952)
- [2] B. Mandelbrot, Les Objets Fractals (Flammarion, Paris, 1975)
- [3] B. Mandelbrot, *The Fractal Geometry of Nature* (Freeman, San Francisco, 1982)
- [4] L. Nottale, Fractal Space-Time and Microphysics: Towards a Theory of Scale Relativity (World Scientific, 1993)
- [5] L. Nottale, La relativité dans tous ses états (Hachette, Paris, 1998)
- [6] F. Ben Adda and J. Cresson, C. R. Acad. Sci. Paris, t. **330**, Série I, p. 261 (2000)
- [7] M. Lapidus and M. van Frankenhuysen, Fractal Geometry and Number Theory: Complex Dimensions of Fractal Strings and Zeros of Zeta Functions (Birkhäuser, 2000, 268 p)
- [8] M. Novak (Editor), Fractals and Beyond: Complexities in the Sciences, Proceedings of the Fractal 98 conference, (World Scientific, 1998)
- [9] R. P. Feynman and A. R. Hibbs, *Quantum Mechanics and Path Integrals* (MacGraw-Hill, New York, 1965)
- [10] L.F. Abbott and M.B. Wise, Am. J. Phys. 49, 37 (1981)
- [11] L. Nottale and J. Schneider, J. Math. Phys. 25, 1296 (1984)
- [12] G. N. Ord, J. Phys. A: Math. Gen. 16, 1869 (1983)
- [13] L. Nottale, Int. J. Mod. Phys. A 4, 5047 (1989)
- [14] G. N. Ord, Int. J. Theor. Phys. 31, 1177 (1992)
- [15] D. G. C. McKeon and G. N. Ord Phys. Rev. Lett. 69, 3 (1992)
- [16] L. Nottale, Int. J. Mod. Phys. A 7, 4899 (1992)
- [17] M. S. El Naschie, Chaos, Solitons & Fractals 2, 211 (1992)
- [18] D. Dubois, in Proceedings of CASYS'99, 3rd International Conference on Computing Anticipatory Systems (Liège, Belgium), Am. Institute of Physics, AIP Conference proceedings, 517, 417 (1999)
- [19] E. Nelson, Phys. Rev. 150, 1079 (1966)
- [20] B. Gaveau, T. Jacobson, M. Kac and L. S. Schulman, Phys. Rev. Lett. 53, 419 (1984)
- [21] H. Grabert, P. Hänggi and P. Talkner, Phys. Rev. A19, 2440 (1979)
- [22] M. S. Wang and Wei-Kuang Liang, Phys. Rev. D48, 1875 (1993)
- [23] L. Nottale, Chaos, Solitons & Fractals 7, 877 (1996)
- [24] M.N. Célérier & L. Nottale, J. Phys. A: Math. Gen. 37, 931 (2004)
- [25] L. Nottale, in *Relativity in General*, (Spanish Relativity Meeting 93), edited by J. Diaz Alonso and M. Lorente Paramo, (Editions Frontières, Paris, 1994) p. 121
- [26] L. Nottale, Astron. Astrophys. 327, 867 (1997)

- [27] L. Nottale, in *Scale invariance and beyond*, Proceedings of Les Houches school, edited by B. Dubrulle, F. Graner and D. Sornette, (EDP Sciences, Les Ullis/Springer-Verlag, Berlin, New York, 1997) p. 249
- [28] S. Weinberg, *Gravitation and cosmology* (John Wiley & Sons, New York, 1972)
- [29] C. Tricot, *Courbes et dimensions fractales* (Springer, Paris, 1994)
- [30] K. Wilson, Rev. Mod. Phys. 47, 774 (1975)
- [31] K. Wilson, Sci. Am., 241, 140 (1979)
- [32] I.J.R. Aitchison, An informal introduction to gauge field theories (Cambridge University Press, Cambridge, 1982)
- [33] J.M. Levy-Leblond, Am. J. Phys. 44, 271 (1976)
- [34] L. Nottale, in *Frontiers of Fundamental Physics*, Proceedings of Birla Science Center Fourth International Symposium, 11-13 december 2000, edited by B. G. Sidharth and M. V. Altaisky, (Kluwer Academic, 2001) p. 65
- [35] L. Nottale, Chaos, Solitons and Fractals 16, 539 (2003)
- [36] D.N. Spergel et al., Astrophys. J. Suppl. 148, 175 (2003)
- [37] D.N. Spergel et al., arXiv: astro-ph/0308632 (2006)
- [38] M. Tegmark et al., Phys. Rev. D 74, 123507 (2006) (arXiv: astro-ph/0308632)
- [39] B. Dubrulle and F. Graner, J. Phys. (Fr.) 6, 797 (1996)
- [40] D. Sornette, Phys. Rep. 297, 239 (1998)
- [41] D. Sornette, Why Stock Market Crash (Princeton University Press, 2003)
- [42] J. Chaline, L. Nottale & P. Grou, C.R. Acad. Sci. Paris, 328, IIa, 717 (1999)
- [43] L. Nottale, J. Chaline & P. Grou, Les arbres de l'évolution: Univers, Vie, Sociétés, (Hachette 2000), 379 pp.
- [44] L. Nottale, J. Chaline, & P. Grou, , in *Fractals in Biology and Medicine*, Vol III, Proceedings of Fractal 2000 Third International Symposium, Eds. G. Losa, D. Merlini, T. Nonnenmacher and E. Weibel, (Birkhäuser Verlag, 2002), p. 247
- [45] R. Cash, J. Chaline, L. Nottale, P. Grou, C.R. Biologies 325, 585-590 (2002)
- [46] A. Johansen and D. Sornette, Physica A 294, 465 (2001)
- [47] T. Lastovicka, arXiv:hep-ph/0203260 (2002)
- [48] L. Nottale, Chaos, Solitons & Fractals 4, 361 (1994)
- [49] L. Nottale, M.N. Célérier and T. Lehner, 2006, J. Math. Phys. 47, 032303 (2006) arXiv:hep-th/0605280
- [50] G.N. Ord and J.A. Galtieri, Phys. Rev. Lett. 89, 250403 (2002)
- [51] L. Nottale, Chaos, Solitons & Fractals 9, 1051 (1998)
- [52] L. Nottale, Astron. Astrophys. Lett. 315, L9 (1996)
- [53] L. Nottale, G. Schumacher and J. Gay, Astron. Astrophys. 322, 1018 (1997)

- [54] L. Nottale and G. Schumacher, in *Fractals and beyond: complexities in the sciences*, edited by M. M. Novak (World Scientific, 1998) p. 149
- [55] R. Hermann, G. Schumacher, and R. Guyard, Astron. Astrophys. **335**, 281 (1998)
- [56] L. Nottale, G. Schumacher, E.T. Lefèvre, Astron. Astrophys. 361, 379 (2000)
- [57] D. Da Rocha, L. Nottale, Chaos, Solitons & Fractals 16, 565 (2003)
- [58] A.G. Agnese, R. Festa, Phys. Lett. A227, 165 (1997)
- [59] L. Nottale, Chaos, Solitons & Fractals 9, 1035 (1998)
- [60] L. Nottale, Chaos, Solitons & Fractals 9, 1043 (1998)
- [61] L. Nottale & N. Tran Minh, Scientific News, Paris Observatory, http://www.obspm.fr/actual/nouvelle/nottale/nouv.fr.shtml (2002)
- [62] P. Galopeau, L. Nottale, D. Ceccolini, D. DaRocha, G. Schumacher and N. Tran-Minh, in *Scientific Highlights 2004*, Proceedings of the Journées de la SF2A, Paris 14-18 Juin 2004, F. Combes, D. Barret, T. Contini, F. Meynadier & L. Pagani (eds.), EDP Sciences, p. 75 (2004)
- [63] R.M. Macqueen, Astrophys. J. 154, 1059 (1968)
- [64] L. Nottale, in *Chaos and Diffusion in Hamiltonian Systems*, ed. D. Benest and C. Froeschlé, (Frontières, 1994), p. 173
- [65] S.E. Schneider & E.E. Salpeter, Astrophys. J.385, 32 (1993)
- [66] M.A. Peterson, Am. J. Phys. 47, 488 (1979)
- [67] M.N. Célérier & L. Nottale, Electromagnetic Phenomena, T. 3, N1 (9), 83 (2003), eprint hep-th/0210027
- [68] L. Nottale, Chaos, Solitons & Fractals 10, 459 (1999)
- [69] A. Einstein, Annalen der Physik 17, 549 (1905)
- [70] K. M. Kolwankar and A. D. Gangal, Phys. Rev. Lett. 80, 214 (1998)
- [71] J. Cresson, Mémoire d'habilitation à diriger des recherches, Université de Franche-Comté, Besançon (2001)
- [72] G. Jumarie, Computer and Mathematics 51, 1367 (2006)
- [73] D. Dohrn and F. Guerra, in proceedings of conference *Stochastic behaviour in classical* and quantum Hamiltonian systems, Como, 20-24 June, eds. G. Casati and J. Ford (1977)
- [74] J. C. Pissondes, J. Phys. A: Math. Gen. 32, 2871 (1999)
- [75] L. Landau and E. Lifchitz, *Mechanics* (Mir, Moscow, 1970)
- [76] D. Dohrn and F. Guerra, Phys. Rev. D31, 2521 (1985)
- [77] T. Zastawniak, Europhys. Lett. 13,13 (1990)
- [78] M. Serva, Ann. Inst. Henri Poincaré-Physique théorique, 49, 415 (1988)
- [79] M. Postnikov, Leçons de Géométrie. Groupes et algèbres de Lie (Mir, Moscow, 1982), Leçon 14.
- [80] J. L. Synge, in Quaternions, Lorentz transformations, and the Conway-Dirac-Eddington matrices Comm. Dublin Inst. Advanced Studies A21 (1972)

- [81] A. Connes, Noncommutative Geometry (Academic Press, New York, 1994).
- [82] L. Nottale, in *Proceedings of 7th International Colloquium on Clifford Algebra*, Ed. P. Anglès (Birkhauser), in press (2007)
- [83] L. Nottale, American Institute of Physics Conf. Proc. 718, 68 (2004)
- [84] L. Nottale, Electromagnetic Phenomena T. 3, N1 (9), 24 (2003)
- [85] L. Landau and E. Lifchitz, *Field Theory* (Mir, Moscow, 1970)
- [86] L. Landau and E. Lifchitz, *Relativistic Quantum Theory* (Mir, Moscow, 1972)
- [87] E. Madelung, Zeit. F. Phys. 40, 322 (1927)
- [88] D. Bohm, Phys. Rev. 85, 166 (1952)
- [89] R. Hermann, J. Phys. A: Math. Gen. **30**, 3967 (1998)
- [90] M.V. Berry, J. Phys. A: Math. Gen. 29, 6617 (1996)
- [91] M.J.W. Hall, J. Phys. A: Math. Gen. 37, 9549 (2004)
- [92] M.N. Célérier & L. Nottale, J. Phys. A, 39, 12565 (2006) (arXiv:quant-ph/0609107)
- [93] H. Weyl, Sitz. Preus. Akad. d. Wiss. (1918). English translation in *The Principle of Relativity*, (Dover publications), p. 201-216.
- [94] H. Weyl, Zeit. f. Physic, 330, 56 (1929). English translation in Proc. Natl. Acad. Sci., 15, 32 (1929)
- [95] P.A.M. Dirac, Proc. Roy. Soc. Lond. A 333, 403-418 (1973)
- [96] L. Nottale, in Science of the Interface, Proceedings of International Symposium in honor of Otto Rössler, ZKM Karlsruhe, 18-21 May 2000, Eds. H. Diebner, T. Druckney and P. Weibel (Genista Verlag, Tübingen, 2001), p. 38
- [97] L. Nottale, Revue de Synthèse, T. 122, 4e S., No 1, janvier-mars 2001, p. 93-116 (2001)
- [98] G. Losa, D. Merlini, T. Nonnenmacher and E. Weibel (Editors) Fractals in Biology and Medicine, Vol III, Proceedings of Fractal 2000 Third International Symposium, Birkhäuser Verlag, 2002
- [99] K. Hagiwara et al. (Particle Data Group), Phys. Rev. D 66, 010001 (2002)
- [100] L. Nottale, in *Traité IC2, "Lois d'Echelle, Fractales et Ondelettes"*, eds. P. Abry, P. Goncalvès et J. Levy Vehel, (Hermès Lavoisier 2002), Vol. 2, Chap. 7, p. 233
- [101] S.J. Gould and N. Eldredge, Paleobiology, 3(2), 115-151 (1977)
- [102] C. Auffray & L. Nottale, Progr. Biophys. Mol. Bio., submitted (2007)