
EJTP 4, No. 16(II) (2007) 187–274 Electronic Journal of Theoretical Physics

Scale Relativity: A Fractal Matrix for Organization
in Nature

Laurent Nottale∗

CNRS
LUTH, Observatoire de Paris, Université Paris Diderot, 92190 Meudon, France
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Abstract: In this review paper, we recall the successive steps that we have followed in the construction of the theory of scale relativity.

The aim of this theory is to derive the physical behavior of a nondifferentiable and fractal space-time and of its geodesics (to which wave-

particles are identified), under the constraint of the principle of relativity of all scales in nature. The first step of this construction consists

in deriving the fundamental laws of scale dependence (that describe the internal structures of the fractal geodesics) in terms of solutions of

differential equations acting in the scale space. Various levels of these scale laws are considered, from the simplest scale invariant laws to the

log-Lorentzian laws of special scale relativity. The second step consists in studying the effects of these internal fractal structures on the laws

of motion. We find that their main consequence is the transformation of classical mechanics in a quantum-type mechanics. The basic quantum

tools (complex, spinor and bi-spinor wave functions) naturally emerge in this approach as consequences of the nondifferentiability. Then the

equations satisfied by these wave functions (which may themselves be fractal and nondifferentiable), namely, the Schrödinger, Klein-Gordon,

Pauli and Dirac equations, are successively derived as integrals of the geodesics equations of a fractal space-time. Moreover, the Born and

von Neumann postulates can be established in this framework. The third step consists in addressing the general scale relativity problem,

namely, the emergence of fields as manifestations of the fractal geometry (which generalizes Einstein’s identification of the gravitational field

with the manifestations of the curved geometry). We recall that gauge transformations can be identified with transformations of the internal

scale variables in a fractal space-time, allowing a geometric definition of the charges as conservative quantities issued from the symmetries of

the underlying scale space, and a geometric construction of Abelian and non-Abelian gauge fields. All these steps are briefly illustrated by

examples of application of the theory to various sciences, including the validation of some of its predictions, in particular in the domains of

high energy physics, sciences of life and astrophysics.
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1. Introduction

The theory of scale-relativity is an attempt to extend today’s theories of relativity,

by applying the principle of relativity not only to motion transformations, but also to

scale transformations of the reference system. Recall that, in the formulation of Einstein

[1], the principle of relativity consists in requiring that ‘the laws of nature be valid in

every systems of coordinates, whatever their state’. Since Galileo, this principle had
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been applied to the states of position (origin and orientation of axes) and of motion of

the system of coordinates (velocity, acceleration). These states are characterized by their

relativity, namely, they are never definable in a absolute way, but only in a relative way.

This means that the state of any system (including reference systems) can be defined

only with regard to another system.

We have suggested that the observation scale (i.e., in other words, the resolution at

which a system is observed or experimented) should also be considered as characterizing

the state of reference systems, in addition to position, orientation and motion. It is an

experimental fact known for long that the scale of a system can only be defined in a

relative way: namely, only scale ratios do have a physical meaning, never absolute scales.

This led us to propose that the principle of relativity should be generalized in order to

apply also to relative scale transformations of the reference system, i.e., dilations and

contractions of space-time resolutions. Note that, in this new approach, one reinterprets

the resolutions, not only as a property of the measuring device and / or of the measured

system, but more generally as a property that is intrinsic to the geometry of space-time

itself: in other word, space-time is considered to be fractal. But here, we connect the

fractal geometry with relativity, so that the resolutions are assumed to characterize the

state of scale of the reference system in the same way as velocity characterizes its state

of movement. The principle of relativity of scale then consists in requiring that ‘the

fundamental laws of nature apply whatever the state of scale of the coordinate system’.

It is clear that the present state of fundamental physics is far from coming under such

a principle. In particular, in today’s view there are two physics, a quantum one toward

the small scales and a classical one toward large scales. The principle of scale-relativity

amounts to requiring a re-unification of these laws, by writing them under a unique more

fundamental form, which become respectively the usual quantum laws and classical laws

depending on the relative state of scale of the reference system.

There are other motivations for adding such a first principle to fundamental physics.

It allows one to generalize the current description of the geometry of space-time. The

present description (curved geometry) is usually reduced to at least two-time differentiable

manifolds (even though singularities are possible at certain particular points and events).

So a way of generalization of current physics consists in trying to abandon the hypothesis

of differentiability of space-time coordinates. This means to consider general continuous

manifolds, which may be differentiable or non-differentiable. These manifolds include

as a sub-set the usual differentiable ones, and therefore all the Riemannian geometries

that subtend Einstein’s generalized relativity of motion. Then in such an approach, the

standard classical physics will be naturally recovered, in limits which will be studied

throughout the present contribution.

But new physics is also expected to emerge as a manifestation of the new non-

differentiable geometry. One can prove (as recalled in the present contribution) that

a continuous and non-differentiable space is fractal, in Mandelbrot’s general definition of

this concept [2, 3], namely, the coordinates acquire an explicit dependence on resolutions

and diverge when the resolution interval tends to zero [4, 6].



Electronic Journal of Theoretical Physics 4, No. 16(II) (2007) 187–274 189

This leads one to apply the concept of fractality not only to objects in a given space,

but to the geometry of space-time itself (which means to define it in an internal way

though its metrics invariants). Hence the tool of fractals, whose universality has now

been recognized in almost every sciences (see e.g. the volumes [8, 98], other volumes

of these series and references therein) may also be destined for playing a central role

in fundamental physics. Note however that (as will be recalled in this paper), non-

differentiable space-time do also have new properties that are irreducible to the sole

fractality.

One of the first fundamental consequences of the non-differentiability and fractality of

space-time is the non-differentiability and fractality of its geodesics, while one of the main

feature of space-time theories is their ability to identify the trajectories of ‘free’ particles

with the space-time geodesics. Now the introduction of non-differentiable trajectories

in physics dates back to pioneering works by Feynman in the framework of quantum

mechanics [9]. Namely, Feynman has demonstrated that the typical quantum mechanical

paths that contribute in a dominant way to the path integral are fractal non-differentiable

curves of fractal dimension 2 [10, 11].

In the fractal space-time approach, one is therefore naturally led to consider the

reverse question: does quantum mechanics itself find its origin in the fractality and non-

differentiability of space-time ? Such a suggestion, first made twenty years ago [12, 11],

has been subsequently developed by several authors [13, 14, 15, 16, 17, 4, 5, 18].

The introduction of non-differentiable trajectories was also underlying the various

attempts of construction of a stochastic mechanics [19, 20]. But stochastic mechanics

is now known to have problems of self-consistency [21, 26], and, moreover, to be in

contradiction with quantum mechanics [22]). The proposal that is developed here, even

if it shares some common features with stochastic mechanics, due to the necessity to use

a stochastic description as a consequence of the non-differentiability, is fundamentally

different and is not subjected to the same difficulties [26].

Remark that, in the new approach, we do not have to assume that trajectories are

fractal and non-differentiable, since this becomes a consequence of the fractality of space-

time itself. Indeed, one of the main advantages of a space-time theory is that the equation

of motion of particles has not to be added to the field equations: it is a direct consequence

of them, since the particles are expected to follow the space-time geodesics. As we shall

see, the Schrödinger equation (and more generally the Klein-Gordon, Pauli and Dirac

equations) are, in the scale-relativity approach, re-expressions of the equation of geodesics

[4, 23, 24]. Note that we consider here only geodesical curves (of topological dimension

1), but it is also quite possible to be more general and to consider subspaces of larger

topological dimensions (fractal strings [7], fractal membranes, etc...).

The present review paper is mainly devoted to the theoretical aspects of the scale-

relativity approach. We shall first develop at various levels the description of the laws of

scale that come under the principle of scale-relativity (Sections 3. and 4.). Examples of

applications of these laws in various domains (astrophysics, high energy physics, sciences

of life) will be briefly given, with references of more detailed studies for the interested
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readers.

Then we shall recall how the description of the effects on motion of the internal fractal

and non-differentiable structures of ‘particles’ lead to write a geodesics equation that is

integrated in terms of quantum mechanical equations (Sections 5.-6.). The Schrödinger

equation is derived in the (motion) non-relativistic case, that corresponds to a space-time

of which only the spatial part is fractal. Looking for the motion-relativistic case amounts

to work in a full fractal space-time, in which the Klein-Gordon equation is derived.

Finally the Pauli and Dirac equation are derived as integrals of geodesics equations when

accounting for the breaking of the reflexion symmetry of space differential elements that

is expected from non-differentiability.

Now, the three minimal conditions under which this result is obtained (infinity of tra-

jectories, each trajectory is fractal, breaking of differential time reflexion invariance) may

be achieved in more general systems than only the microscopic realm. As a consequence,

fundamental laws that share some properties in common with the standard quantum

mechanics of microphysics but not all, may apply to different realms. Some examples of

applications of these new quantum-type mechanics (which are not based on the Planck

constant �, but on a new constant that can be macroscopic and specific of the system

under consideration) in the domains of gravitation and of sciences of life will be given.

The next Section 7. is devoted to the account of the interpretation of the nature

of gauge transformation and of gauge fields in the scale-relativity framework (only the

simple case of a U(1) electromagnetic like gauge field will be considered). We attribute

the emergence of such field to the effects of coupling between scale and motion. In

other words, the internal resolutions becomes themselves ‘fields’ which are functions of

the coordinates. Some applications in the domain of elementary particle physics will be

briefly given.

We finally consider hints of a new tentative extension of the theory (Section 8.), in

which quantum mechanical laws are written in the scale space. In this case the internal

relative fractal structures become described by probability amplitudes, from which a

probability density of their ‘position’ in scale space can be deduced. A new quantized

conservative quantity, that we have called ‘complexergy’, is defined (it plays for scale laws

the same role as played by energy for motion laws), whose increase corresponds to an

increase of the number of hierarchically imbricated levels of organisations in the system

under consideration.

2. Structure of the Theory

2.1 Successive levels of development of the theory

The theory of scale relativity is constructed by completing the standard laws of

classical physics (laws of motion in space, i.e. of displacement in space-time) by new

scale laws (in which the space-time resolutions are considered as variables intrinsic to

the description). We hope such a stage of the theory to be only provisional, and the
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motion and scale laws to be treated on the same footing in the final theory. However,

before reaching such a goal, one must realize that the various possible combinations of

scale laws and motion laws already lead to a large number of sub-sets of the theory to be

developed. Indeed, three domains of the theory are to be considered:

(1) Scale-laws: description of the internal fractal structures of trajectories in a non-

differential space-time at a given point / event;

(2) Induced effects of scale laws on the equations of motion: generation of quantum

mechanics as mechanics in a nondifferentiable space-time;

(3) Scale-motion coupling: effects of dilations induced by displacements, that we in-

terpret as gauge fields (only the case of the electromagnetic field has been considered up

to now) [25, 23, 100].

Now, concerning the first step (1) alone, several levels of the description of scale laws

can be considered. These levels are quite parallel to that of the historical development

of the theory of motion laws:

(1.i) Galilean scale-relativity: standard laws of dilation, that have the structure of a

Galileo group (fractal power law with constant fractal dimension). When the fractal di-

mension of trajectories is DF = 2, the induced motion laws are that of standard quantum

mechanics [4, 23].

(1.ii) Special scale-relativity: generalization of the laws of dilation to a Lorentzian

form [16]. The fractal dimension itself becomes a variable, and plays the role of a fifth

dimension, that we call ‘djinn’. An impassable length-time scale, invariant under dila-

tions, appears in the theory; it replaces the zero, owns all its physical properties (e.g.,

an infinite energy-momentum would be needed to reach it), and plays for scale laws the

same role as played by the velocity of light for motion.

(1.iii) Scale-dynamics: while the first two cases correspond to “scale freedom”, one

can also consider distorsion from strict self-similary that would come from the effect of a

“scale-force” or “scale-field” [26, 27].

(1.iv) General scale-relativity: in analogy with the field of gravitation being ultimately

attributed to the geometry of space-time, a future more profound description of the scale-

field could be done in terms of geometry of the five-dimensional space-time-djinn and its

couplings with the standard classical space-time. (This case will not be fully considered

in this paper: however, the third step involving scale-motion couplings and leading to a

new interpretation of gauge fields is expected, in the end, to become part of a general

theory of scale-relativity.).

(1.v) Quantum scale-relativity: the above cases assume differentiability of the scale

transformations. If one assumes them to be continuous but, as we have assumed for

space-time, non-differentiable, one is confronted for scale laws to the same conditions

that lead to quantum mechanics in space-time. One may therefore attempt to construct

a new quantum mechanics in scale-space, thus achieving a kind of ‘third quantization’.

The possible complication of the theory becomes apparent when one realizes that

these various levels of the description of scale laws lead to different levels of induced

dynamics (2) and scale-motion coupling (3), and that other sublevels are to be considered,
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depending on the status of motion laws (non-relativistic, special-relativistic, general-

relativistic).

In the present contribution, we recall the various possible developments of scale laws

(1.i-1.v). Then we consider the induced effects on motion (2) of the simplest self-similar

scale laws (1.i), that lead to transform classical mechanics into a quantum mechanics. (For

hints on possible generalizations, see [23]. The scale-motion coupling laws are analysed

in two cases: Galilean scale laws (1.i) and their Lorentzian generalization (1.ii). Some

examples of applications of the various levels of the theory in various sciences (gravitation,

particle physics, sciences of life) are briefly considered at the end of each section.

2.2 First principles

Let us briefly recall the fundamental principles that underly, since the work of Einstein

[1], the foundation of theories of relativity. We shall express them here under a general

form that transcends particular theories of relativity, namely, they can be applied to any

state of the reference system (origin, orientation, motion, scale,...). The basic principle

is the principle of relativity, that requires that the laws of physics should be of such a

nature that they apply to any reference system. In other words, it means that physical

quantities are not defined in an absolute way, but are instead relative to the state of

the reference system. It is subsequently implemented in physics by three related and

interconnected principles and their related tools:

(1) The principle of covariance, that requires that the equations of physics keep

their form under changes of the state of reference systems. As remarked by Weinberg

[28], it should not be interpreted in terms of simply giving the most general (arbitrarily

complicated) form to the equations, which would be meaningless. It rather means that,

knowing that the fundamental equations of physics have a simple form in some particular

coordinate systems, they will keep this simple form whatever the system. With this

meaning in mind, two levels of covariance can be defined: (i) Strong covariance, according

to which one recovers the simplest possible form of the equations, which is the Galilean

form they have in the vacuum devoid of any force. For example, the equations of motion

in general relativity take the free inertial form Duμ = 0, in terms of Einstein’s covariant

derivative, so they come under strong covariance. (ii) Weak covariance, according to

which the equations keep a same, simple form under any coordinate transformation. A

large part of the general relativity theory is only weakly covariant: for example, the

Einstein’s field equations have a source term, and the gravitational field (the Christoffel

symbols) are not tensors.

(2) The equivalence principle is a more specific statement of the principe of rela-

tivity, when it is applied to a given physical domain. In general relativity, it states that

a gravitational field is locally equivalent to a field of acceleration, i.e., it expresses that

the very existence of gravitation is relative on the choice of the reference systems, and it

specifies the nature of the coordinate systems that absorb it. In scale relativity, one may

make a similar proposal and set generalized equivalence principles according to which the
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quantum behavior is locally equivalent to a fractal and non-differentiable motion, while

the gauge fields are locally equivalent to expansion / contraction fields on the internal

resolutions (scale variables).

(3) The geodesics principle states that the free trajectories are the geodesics of

space-time. It plays a very important role in a geometric / relativity theory, since it means

that the fundamental equation of dynamics is completely determined by the geometry of

space-time, and therefore has not to be set as an independent equation. Moreover, in such

a theory the action identifies (up to a constant) with the fundamental length-invariant,

so that the stationary action principle and the geodesics principle become identical.

One of the main tools by which these principles are implemented is the covariant

derivative. This tool includes in an internal way the effects of geometry through a new

definition of the derivative, contrarily to the standard field approach whose effects are

considered to be externally applied on the system. In general relativity, it amounts to

substract the geometric effects to the total increase of a vector, leaving only the inertial

part DAμ = dAμ − Γρ
μνAρdxν . One of the most remarkable results of general relativity

is that the three principles (strong covariance, equivalence and geodesics / least action

principle) lead to the same inertial form for the motion equation, Duμ = 0 (see e.g. [85]).

As we shall recall in this paper, the theory of scale-relativity attempts to follow a similar

line of thought, and to construct new covariant tools adapted to the new problem posed

here, i.e., the description of a non-differentiable and fractal geometry coming under the

principle of the relativity of scales.

3. On the Relation Between Nondifferentiability and Fractality

3.1 Beyond differentiability

One of the main questions that is asked concerning the emergence of fractals in

natural and physical sciences is the reason for their universality [2, 3]. We mean here

by ‘universality’ that an explicitly scale-dependent behavior (not only self-similarity) has

been found in a wide class of very different situations in almost every sciences. While

particular causes may be found for their origin by a detailed description of the various

systems where they appear (chaotic dynamics, biological systems, life sciences social

sciences, etc...) their universality nevertheless may call for a universal answer (i.e., for an

identification of fundamental features which would be common to these various causes).

Our suggestion, which has been developed in [4, 23], is as follows. Since the time

of Newton and Leibniz, the founders of the integro-differentiation calculus, one basic

hypothesis which is put forward in our description of physical phenomena is that of

differentiability. The strength of this hypothesis has been to allow physicists to write

the equations of physics in terms of differential equations. However, there is neither a a

priori principle nor definite experiments that impose the fundamental laws of physics to

be differentiable. On the contrary, it has been shown by Feynman that typical quantum

mechanical paths are non-differentiable [9].
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The basic idea that underlines the theory of scale relativity is therefore to give up the

hypothesis of differentiability of space-time. This does not mean to give up differentabil-

ity itself, but use a generalized description including differentiable and nondifferentiable

systems. In mathematical words, we shall consider continuous functions of class C0,

but we no longer assume as in standard physics that they are of class C1 or C2, al-

though these cases will still be included in the description a s particular cases. In such

a framework, the successes of present day differentiable physics could be understood as

applying to domains where the approximation of differentiability (or integrability) was

good enough, i.e. at scales such that the effects of nondifferentiability were smoothed

out; but conversely, we expect the differential method to fail when confronted with truly

nondifferentiable or nonintegrable phenomena, namely at very small and very large length

scales (i.e., quantum physics and cosmology), and also for chaotic systems seen at very

large time scales.

3.2 Continuity and nondifferentiability implies fractality

A new ‘frontier’ of mathematical physics amounts to construct a continuous but non-

differentiable physics. Set in such terms, the project may seem extraordinarily difficult.

Fortunately, there is a fundamental key which will be of great help in this quest, namely,

the concept of scale transformations. Indeed, the main consequence of continuity and

nondifferentiability is explicit scale-dependence (and divergence) [4, 23, 26]. One can

prove [4] that the length of a continuous and nowhere (or almost nowhere) differentiable

curve is explicitly dependent on resolution ε, and, further, that L(ε) → ∞ when ε → 0,

i.e. that this curve is fractal (in a general meaning). The scale divergence of continuous

and almost nowhere-differentiable curves is a direct consequence of Lebesgue’s theorem,

which states that a curve of finite length is almost everywhere differentiable. Let us recall

the demonstration of this fundamental property.

Consider a continuous but nondifferentiable function f(x) between two points A0[x0, f(x0)]

and AΩ[xΩ, f(xΩ)]. Since f is non-differentiable, there exists a point A1 of coordinates

[x1, f(x1)] with x0 < x1 < xΩ, such that A1 is not on the segment A0AΩ. Then the total

length L1 = L(A0A1) + L(A1AΩ) > L0 = L(A0AΩ). We can now iterate the argument

and find two coordinates x01 and x11 with x0 < x01 < x1 and x1 < x11 < xΩ, such

that L2 = L(A0A01) + L(A01A1) + L(A1A11) + L(A11AΩ) > L1 > L0. By iteration we

finally construct successive approximations f0, f1, ...fn of f(x) whose lengths L0,L1, ...Ln

increase monotonically when the ‘resolution’ r ≈ (xΩ − x0)× 2−n tends to zero. In other

words, continuity and nondifferentiability implies a monotonous scale dependence of f .

From Lebesgue’s theorem, that states that ‘a curve of finite length is almost ev-

erywhere differentiable’, see e.g. [29], one deduces that if f is continuous and almost

everywhere nondifferentiable, then L(ε) → ∞ when the resolution ε → 0, i.e., f is scale-

divergent. This theorem is also demonstrated in Ref. [4], p. 82, using non-standard

analysis.
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3.3 Explicit scale dependence on resolution

This result is the key for a description of nondifferentiable processes in terms of differential

equations. We introduce explicitly the resolutions in the expressions of the main physical

quantities, and, as a consequence, in the fundamental equations of physics. This means

that a physical quantity f , usually expressed in terms of space-time variables x, i.e.,

f = f(x), can be now described as also depending on resolutions, f = f(x, ε). In other

words, rather than considering only the strictly nondifferentiable mathematical object

f(x) = f(x, 0), we now consider its various versions at various scales obtained from

smoothing it or averaging it at various resolutions.

However, this cannot be done simply by smoothing f(x) or averaging it at various

resolutions by using a filter or a smoothing ball, since this would assume that the lim-

iting function f(x) = limε→0f(x, ε) does exist and is already known. This would be in

contradistinction with the non-reductionist view that underlies the present work, namely,

that new information is expected to appear when one changes the scale. We shall show

in the following that the true physical nature of the scale variables leads one to naturally

represent them in terms of ln ε rather than ε. Under this form the fractal function reads

f = f(x, ln ε), so that the limit function f(x) now reads f(x) = f(x,−∞). This exhibits

the true nature of the zero point as actually being an infinity. Therefore, in the same

way as one no longer considers, in the framework of space-time physics, that one may

place oneself at infinity, we definitely consider that f(x) = f(x,−∞) is devoid of physical

meaning, and that only the transformation from one finite scale to another finite scale

does have physical meaning.

This therefore leads us [4] to define a fractal function only in a (scale) relative way,

namely, as is a function f(x, ε) of a variable x and of a resolution scale ε that satisfies

the relations:

-Change of scale:

∀x, ∀ε′ > ε, f(x, ε′) =

∫ +∞

−∞
Φ(x, y, ε′)f(x, ε)dy, (1)

where Φ(x, y, ε′) is a smoothing function at resolution ε′.
-Equality (equivalence class within resolution):

f ≡ g ⇔ ∀ε, ∀x, ∃x′, |x − x′| < kε, f(x, ε) = g(x′, ε), (2)

where k defines the accepted statistical level of agreement. For example, if the filter is a

Gaussian of dispersion ε, the choice k = 3 corresponds to a 3 σ statistical agreement.

This can be also seen as a relative wavelet transformation, but using a filter that is not

necessarily conservative. Such a point of view is particularly well adapted to applications

in physics: any real measurement is always performed at finite resolution (see [4, 13] for

additional comments on this point). While f(x, 0) is nondifferentiable, f(x, ε), which we

have called a ‘fractal function’ [4], is now differentiable for all ε �= 0.

The problem of the physical description of the process where the function f inter-

venes is now shifted. In standard differentiable physics, it amounts to finding differential
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equations implying the derivatives of f , namely ∂f/∂x, ∂2f/∂x2, that describe the laws

of displacement and motion. The integro-differentiable method amounts to performing

such a local description, then integrating to get the global properties of the system under

consideration. Such a method has often been called ‘reductionist’, and it was indeed

adapted to most classical problems where no new information appears at different scales.

But the situation is completely different for systems implying fractals and nondiffer-

entiability at a fundamental level, like the space-time of microphysics itself as suggested

here. At high energies, the properties of quarks, of nucleons, of the nucleus, of atoms

are interconnected but not reducible one to the other. In living systems, the scales of

DNA bases, chromosomes, nuclei, cells, tissues, organs, organisms, then social scales, do

co-exist, are related one with another, but are certainly not reducible to one particular

scale, even the smaller one. In such cases, new, original information may exist at differ-

ent scales, and the project to reduce the behavior of a system at one scale (in general,

the large one) from its description at another scale (the smallest, described by the limit

δx → 0 in the framework of the standard differentiable tool) seems to lose its meaning

and to be hopeless. Our suggestion consists precisely of giving up such a hope, and of

introducing a new frame of thought where all scales co-exist simultaneously in a scale-

space, but are connected together via scale-differential equations. As we shall see, the

solutions of the scale equations that come under the principle of scale-relativity are able

to describe not only continuous scaling behavior on some ranges of scales, but also the

existence of sudden transitions at some particular scale.

Indeed, in non-differentiable physics, ∂f(x)/∂x = ∂f(x, 0)/∂x does not exist any

longer. But the physics of the given process will be completely described if we succeed in

knowing f(x, ε) for all relevant values of ε, which is differentiable when ε �= 0, and can

be the solution of differential equations involving ∂f(x, ε)/∂x but also ∂f(x, ε)/∂ ln ε.

More generally, if one seeks nonlinear laws, one expects the equations of physics to take

the form of second order differential equations, which will then contain, in addition to

the previous first derivatives, operators like ∂2/∂x2 (laws of motion), ∂2/∂(ln ε)2 (laws of

scale), but also ∂2/∂x∂ ln ε, which corresponds to a coupling between motion laws and

scale laws.

4. Scale Laws

4.1 Scale invariance and Galilean scale-relativity

Consider a non-differentiable (fractal) curvilinear coordinate L(x, ε), that depends

on some parameter x and on the resolution ε. Such a coordinate generalizes to non-

differentiable and fractal space-times the concept of curvilinear coordinates introduced

for curved Riemannian space-times in Einstein’s general relativity [4]. L(x, ε), being

differentiable when ε �= 0, can be the solution of differential equations involving the

derivatives of L with respect to both x and ε.
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4.1.1 Differential dilation operator

Let us apply an infinitesimal dilation ε → ε′ = ε(1 + dρ) to the resolution. Being, at this

stage, interested in pure scale laws, we omit the x dependence in order to simplify the

notation and we obtain, to first order,

L(ε′) = L(ε + ε dρ) = L(ε) +
∂L(ε)

∂ε
ε dρ = (1 + D̃ dρ)L(ε), (3)

where D̃ is, by definition, the dilation operator. The identification of the two last members

of this equation yields

D̃ = ε
∂

∂ε
=

∂

∂ ln ε
. (4)

This well-known form of the infinitesimal dilation operator, obtained above by the

‘Gell-Mann-Levy method’ (that allows one to find the currents corresponding to a given

symmetry [32]), shows that the “natural” variable for the resolution is ln ε, and that

the expected new differential equations will indeed involve quantities as ∂L(x, ε)/∂ ln ε.

The renormalization group equations, in the multi-scale-of-length approach proposed by

Wilson [30, 31], already describe such a scale dependence. The scale-relativity approach

allows one to suggest more general forms for these scale groups (and their symmetry

breaking).

4.1.2 Simplest differential scale law

The simplest renormalization group-like equation states that the variation of L under an

infinitesimal scale transformation d ln ε depends only on L itself. We thus write

∂L(x, ε)

∂ ln ε
= β(L). (5)

Still looking for the simplest form of such an equation, we expand β(L) in powers of

L. We obtain, to the first order, the linear equation (in which a and b are independent

of ε at this level of the analysis, but may depend on x):

∂L(x, ε)

∂ ln ε
= a + bL , (6)

of which the solution is (see Fig. 1)

L(x, ε) = L0(x)

[
1 + ζ(x)

(
λ

ε

)−b
]

, (7)

where λ−bζ(x) is an integration constant and L0 = −a/b.

Let us now define, following Mandelbrot [2, 3], a scale exponent δ = DF −DT , (where

DF is the fractal dimension, defined here in terms of covering dimension, and DT the

topological dimension) as:

δ =
d lnL

d ln(λ/ε)
. (8)
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Fig. 1 Scale dependence of the length and of the effective scale-dimension in the case of ‘inertial’
scale laws (which are solutions of the simplest, first order scale-differential equation): toward
the small scale one gets a scale-invariant law with constant fractal dimension, while the explicit
scale-dependence is lost at scales larger than some transition scale λ.

In the asymptotic regime ε << λ, δ = −b is constant, and one obtains a power-law

dependence on resolution that reads

L(x, ε) = L0(x)

(
λ

ε

)δ

. (9)

Anticipating on the following, one can also define a variable ‘effective’ or ‘local’ scale

exponent from the derivative of the complete solution (7), that jumps from zero to its

constant asymptotic value at the transition scale λ (see Fig. 1 and the following figures):

δeff =
δ

1 + (ε/λ)δ
. (10)

4.1.3 Galilean relativity of scales

Let us now check that such a simple self-similar scaling law does come under the principle

of relativity extended to scale transformations of the resolutions. The above quantities

transform, under a scale transformation ε → ε′, as

ln
L(ε′)
L0

= ln
L(ε)

L0

+ δ(ε) ln
ε

ε′
, (11)

δ(ε′) = δ(ε). (12)

These transformations have exactly the mathematical structure of the Galileo group

(applied here to scale rather than motion), as confirmed by the dilation composition law,

ε → ε′ → ε′′, which writes

ln
ε′′

ε
= ln

ε′

ε
+ ln

ε′′

ε′
, (13)

and is therefore similar to the law of composition of velocities. Since the Galileo group of

motion transformations is known to be the simplest group that implements the principle

of relativity, the same is true for scale transformations.
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4.1.4 Scale transition

However, it is important to note that Eq. (7) gives, in addition, a transition from a fractal

to a non-fractal behavior at scales larger than some transition scale λ. In other words,

contrarily to the case of motion laws, for which the invariance group is universal, the

scale group symmetry is broken beyond some (relative) transition scale.

Indeed, Eq.(6) is more general that the mere renormalisation argument, under which

the constant a would vanish. Two arguments lead us to keep this constant:

(i) A research of generality (we look for the most general among the simplest laws).

(ii) The fact that the new scale laws do not take the place of motion-displacement

laws, but instead must be combined with them. Starting from a strictly scale-invariant

law (a = 0), and adding a translation in standard position space (L → L − L0), we

indeed recover the broken solution (a �= 0, which is asymptotically scale-dependent (in a

scale-invariant way) and independent of scale beyond some transition.

The scale symmetry is therefore spontaneously broken by the very existence of the

standard space-time symmetries (here, the translations, that are part of the full Poincaré

group of space-time transformations including also the rotations and the Lorentz boosts).

The symmetry breaking is not achieved here by a suppression of one law to the profit

of the other, but instead by a domination of each law (scale vs motion) over the other

respectively toward the small and large scales. Since the transition is itself relative (on the

state of motion of the reference system) this implies that one can jump from a behavior

to the other by a change of the reference system. As we shall see in what follows,

this transition plays an important role in the fractal space-time approach to quantum

mechanics, since we identifiy it with the Einstein-de Broglie scale, and therefore the

fractal-non fractal transition with the quantum-classical transition [4].

4.1.5 Scale relativity versus scale invariance

Let us briefly be more specific about the way the scale-relativity viewpoint differs from

‘scaling’ or simple ‘scale invariance’. In the standard concept of scale invariance, one

considers scale transformations of the coordinate,

X → X ′ = q × X, (14)

then one looks for the effect of such a transformation on some function f(X). It is scaling

when

f(qX) = qα × f(X) (15)

The scale relativity approach involves a more profound level of description, since the

coordinate X is now explicitly resolution-dependent, i.e. X = X(ε). Therefore we now

look for a scale transformation of the resolution,

ε → ε′ = ρε, (16)

which implies a scale transformation of the position variable

X(ρε) = ρ−δX(ε). (17)
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But now the scale factor on the variable gets a physical meaning which goes beyond a

trivial change of units. It corresponds to a coordinate measured on a fractal curve of

fractal dimension D = 1 + δ at two different resolutions. Finally, one can also consider

again a scaling function of a fractal coordinate:

f(ρ−δX) = ρ−αδ × f(X). (18)

In the framework of the analogy with the laws of motion and displacement, the dilation

(14) is the equivalent of a static translation x′ = x + a. Indeed, it reads in logarithmic

form

ln
X ′

λ
= ln

X

λ
+ ln q, (19)

Note that it can also be generalized to four different dilations on the four coordinates,

ln(X ′
μ/λ) = ln(Xμ/λ) + ln qμ. One jumps from static translation x′ = x + a to motion

by introducing a time dependent translation a = −vt, so that one obtains the Galileo

law of coordinate transformation, x′ = x − vt. The passage from a simple dilation law

ln X ′ = ln X + ln q to the law of scale transformation of a fractal self-similar curve,

ln X ′ = ln X − δ × ln ρ is therefore of the same nature. In other words, fractals are to

scale invariance what motion is to static translations.

These ‘scale-translations’ should not be forgotten when constructing the full scale-

relativistic group of transformations (in similarity with the Poincaré group, that adds

four space-time translations to the Lorentz group of rotation and motion in space (i.e.,

rotation in space-time).

It is also noticeable here that such a scale-relativity group will be different and larger

than a conformal group, for the two reasons outlined in this section:

(i) The conformal group adds to the Poincaré group a global dilatation and an in-

version (that leads to four special conformal transformations when combined with trans-

lations), yielding a 15 parameter group. But these transformations are applied to the

coordinates without specification of their physical cause. In scale relativity, the cause is

the fractality, i.e. the resolution dependence of the coordinates. For example, the sym-

metric element in a resolution transformation is ln(λ/ε′) = − ln(λ/ε), which is nothing

but a resolution inversion ε′ = λ2/ε. A fractal coordinate which is resolution-dependent

as a power law, L(ε) = (λ0/ε)
δ, is therefore itself transformed by an inversion, namely

L(ε′) = L1/L(ε), where L1 = (λ0/λ)δ.

(ii) Ultimately we need to define four independent resolution transformations on the

four coordinates. Such a transformation does not preserve the angles and it therefore

goes beyond the conformal group (see Sec. 4.3.6).

4.2 Special scale-relativity

4.2.1 Theory

The question that we shall now address is that of finding the laws of scale transforma-

tions that meet the principle of scale relativity. Up to now, we have characterized typical



Electronic Journal of Theoretical Physics 4, No. 16(II) (2007) 187–274 201

scale laws as the simplest possible laws, namely, those which are solutions of the sim-

plest form of linear scale differential equations: this reasoning has provided us with the

standard, power-law, fractal behavior with constant fractal dimension in the asymptotic

domain. But are the simplest possible laws those chosen by nature? Experience in the

construction of the former physical theories suggests that the correct and general laws

are simplest among those which satisfy some fundamental principle, rather than those

which are written in the simplest way: anyway, these last laws are often approximations

of the correct, more general laws. Good examples of such relations between theories

are given by Einstein’s motion special relativity, of which the Galilean laws of inertial

motion are low velocity approximations, and by Einstein’s general relativity, which in-

cludes Newton’s theory of gravitation as an approximation. In both cases, the correct

laws are constructed from the requirement of covariance, rather than from the too simple

requirement of invariance.

The theory of scale relativity [16, 4] proceeds along a similar reasoning. The principle

of scale relativity may be implemented by requiring that the equations of physics be

written in a covariant way under scale transformations of resolutions. Are the standard

scale laws (those described by renormalization-group-like equations, or by a fractal power-

law behavior) scale-covariant ? They are usually described (far from the transition to

scale-independence) by asymptotic laws such as L = L0(λ/ε)δ, with δ a constant scale-

dimension (which may differ from the standard value δ = 1 by an anomalous dimension

term [32]). This means that, as we have recalled hereabove, a scale transformation ε → ε′

can be written:

ln
L(ε′)
L0

= ln
L(ε)

L0

+ V δ(ε), (20)

δ(ε′) = δ(ε),

where we have set:

V = ln(ε/ε′). (21)

The choice of a logarithmic form for the writing of the scale transformation and the

definition of the fundamental resolution parameter V is justified by the expression of the

dilatation operator D̃ = ∂/∂ ln ε. The relative character of V is evident: in the same way

that only velocity differences have a physical meaning (Galilean relativity of motion), only

V differences have a physical meaning (relativity of scales). We have then suggested [16]

to characterize this relative resolution parameter V as a ‘state of scale’ of the coordinate

system, in analogy with Einstein’s formulation of the principle of relativity [1], in which

the relative velocity characterizes the state of motion of the reference system.

Now in such a frame of thought, the problem of finding the laws of linear transfor-

mation of fields in a scale transformation V = ln ρ (ε → ε′) amounts to finding four

quantities, a(V), b(V), c(V), and d(V), such that

ln
L′

L0

= a(V) ln
L
L0

+ b(V) δ, (22)

δ′ = c(V) ln
L
L0

+ d(V) δ.
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Set in this way, it immediately appears that the current ‘scale-invariant’ scale transfor-

mation law of the standard form (Eq. 20), given by a = 1, b = V, c = 0 and d = 1,

corresponds to the Galileo group.

This is also clear from the law of composition of dilatations, ε → ε′ → ε”, which has

a simple additive form,

V” = V + V
′. (23)

However the general solution to the ‘special relativity problem’ (namely, find a, b, c and d

from the principle of relativity) is the Lorentz group [33]. In particular, we have proved

[16] that, for two variables, only 3 axioms were needed (linearity, internal composition

law and reflection invariance) Then we have suggested to replace the standard law of

dilatation, ε → ε′ = �ε by a new Lorentzian relation [16]. However, while the relativistic

symmetry is universal in the case of the laws of motion, this is not true for the laws of

scale. Indeed, physical laws are no longer dependent on resolution for scales larger than

the classical-quantum transition (identified with the fractal-nonfractal transition in our

approach) which has been analysed above. This implies that the dilatation law must

remain Galilean above this transition scale.

For simplicity, we shall consider in what follows only the one-dimensional case. We

define the resolution as ε = δx = cδt, and we set λ0 = cτdB = �c/E. In its rest frame,

λ0 is thus the Compton length of the system or particle considered, i.e., in the first place

the Compton length of the electron (this will be better justified in Section 6). The new

law of dilatation reads, for ε < λ0 and ε′ < λ0

ln
ε′

λ0

=
ln(ε/λ0) + ln �

1 + ln � ln(ε/λ0)/ ln2(Λ/λ0)
. (24)

This relation introduces a fundamental length scale Λ, that we have identified (toward

the small scales) with the Planck length (currently 1.6160(11) × 10−35 m),

Λ = lP = (�G/c3)1/2. (25)

But, as one can see from Eq.(24), if one starts from the scale ε = Λ and apply any

dilatation or contraction �, one gets back the scale ε′ = Λ, whatever the initial value

of λ0 (i.e., whatever the state of motion, since λ0 is Lorentz-covariant under velocity

transformations). In other words, Λ is now interpreted as a limiting lower length-scale,

impassable, invariant under dilatations and contractions. In the simplified case of a

transformation from L0 to L( see [16, 4] for general expressions), the length measured

along a fractal coordinate, that was previously scale-dependent as ln(L/L0) = δ0 ln(λ0/ε)

for ε < λ0 becomes in the new framework (see Fig. 2)

ln(L/L0) =
δ0 ln(λ0/ε)√

1 − ln2(λ0/ε)/ ln2(λ0/Λ)
. (26)

The main new feature of scale relativity respectively to the previous fractal or scale-

invariant approaches is that the scale exponent δ and the fractal dimension DF = 1 + δ,
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which were previously constant (DF = 2, δ = 1 ), are now explicitly varying with scale

(see Fig. 2), following the law (given once again in the simplified case when we start from

the referece scale L0):

δ(ε) =
δ0√

1 − ln2(λ0/ε)/ ln2(λ0/Λ)
. (27)
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Fig. 2 Scale dependence of the length and of the effective scale-dimension in the case of scale-
relativistic Lorentzian scale laws.

These new laws corresponds to a Minkowskian scale metrics invariant that reads:

dσ2 = dδ2 − (d lnL)2

C2
. (28)

For a more complete development of special relativity (including its implications as

regards new conservative quantities), see Refs. [16, 4, 23].

4.2.2 Applications

The theory of special scale-relativity has many consequences in two domains of physics

(we shall not develop them further in the present contribution for lack of place: we

refer the interested reader to the quoted references, in particular the two review papers

[23, 35]).

(i) High energy and elementary particle physics [16, 4, 23, 34] (with applications to

primeval cosmology [23, 35]). For example, one can apply this description to the ‘internal’

structures of the electron (identified with the fractal geodesics of a fractal space-time).

This means that the fractal dimension jumps from DF = 1 to DF = 2 at the electron

Compton scale λ0 = λe = �/mec (see the construction of quantum laws in what follows),

then begins to vary with scale. Its variation is first very slow (quadratic in log of scale):

DF (ε) = 2(1 +
1

4

V
2

C2
0

+ ...), (29)

where V = ln(λ0/ε) and C0 = ln(λ0/lP), lP being the Planck length-scale. Then it tends

to infinity at very small scales when V → C0, i.e., ε → Λ = lP.

The new status of the Planck length-scale (and time-scale), identified with a minimal

scale, invariant under dilations and contractions, implies new relations between length-

time scales and momentum-energy scales [4, 23]. These relations involve new log-Lorentz
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factors that allow to solve some remaining problems of the standard model, such as the

divergence problem of masses and charges, and the hierarchy problem between the GUT

scale and the electroweak scale [23], and to suggest new methods for understanding the

mass and charge spectrum of elementary particles [48, 23].

(ii) Cosmology [4, 23, 35]. We have suggested that log-Lorentz dilation transformations

were also relevant at very large scales. In this case the invariant scale Λ becomes a

maximal length-scale, invariant under dilations, that we have identified with the length-

scale L = Λ−1/2 that can be constructed from the cosmological constant Λ (which is a

curvature, i.e. the inverse of the square of a length).

Such an identification brings new light about the nature and the value of the cosmo-

logical constant. Indeed, its value, theoretically predicted in [4, 23], Λpred = (1.3628 ±
0.0004) × 10−56 cm−2, yields a scaled cosmological constant ΩΛh2 = 0.38874 ± 0.00011,

where h = H0/H100 is the scaled Hubble constant. This prediction is supported by re-

cent determinations from observational measurements of ΩΛ(obs)= 0.761 ± 0.017 and

h = 0.730 ± 0.019 [36, 37, 38], so that ΩΛh2(obs)= (0.405 ± 0.031).

This new approach also leads to a description of the large-scale Universe in which

the fractal dimension of space, and consequently that of the distribution of matter, is

increasing with scale, following the law of Eq. 27. We have found [4, 23] that it should

reach the value D = 3 at a scale of about 750 Mpc, implying a transition to uniformity

at that scale.

Another application of these new laws to turbulence has also been suggested by

Dubrulle and Graner [39], but with a different interpretation of the variables.

4.3 Generalized scale laws

4.3.1 Discrete scale invariance, complex dimension and log-periodic behavior

A correction to pure scale invariance is potentially important, namely the log-periodic

correction to power laws that is provided, e.g., by complex exponents or complex fractal

dimensions [7]. Sornette et al. (see [40] and references therein) have shown that such a

behavior provides a very satisfactory and possibly predictive model of the time evolution

of many critical systems, including earthquakes and market crashes [41]. More recently,

it has been applied to the analysis of major event chronology of the evolutionary tree of

life [42, 43], of human development [45] and of the main economic crisis of western and

Precolumbian civilizations [43, 46].

Let us show how one can recover log-periodic corrections from requiring scale covari-

ance of the scale differential equations [27]. Consider a scale-dependent function L(ε),

(it may be for example the length measured along a fractal curve). In the applications

to temporal evolution quoted above, the scale variable is identified with the time interval

|t− tc|, where tc is the date of crisis. Assume that L satisfies a renormalization-group-like

first order differential equation,

dL
d ln ε

− νL = 0, (30)
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whose solution is a power law L(ε) ∝ εν . Now looking for corrections to this law, we

remark that simply jumping to a complex value of the exponent ν would lead to large

log-periodic fluctuations rather than to a controlable correction to the power-law. So let

us assume that the right-hand side of Eq. 30 actually differs from zero

dL
d ln ε

− νL = χ. (31)

We can now apply the scale-covariance principle and require that the new function χ be

solution of an equation which keeps the same form as the initial equation

dχ

d ln ε
− ν ′χ = 0. (32)

Setting ν ′ = ν + η, we find that L must be solution of a second-order equation

d2L
(d ln ε)2

− (2ν + η)
dL

d ln ε
+ ν(ν + η)L = 0. (33)

It writes L(ε) = aεν(1 + bεη), and finally, the choice of an imaginary exponent η = iω

yields a solution whose real part includes a log-periodic correction:

L(ε) = a εν [1 + b cos(ω ln ε)]. (34)

Adding a constant term provides a transition to scale independence at large scales (see

Fig. 3).
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Fig. 3 Scale dependence of the length and of the scale exponent in the case of a log-periodic
behavior with fractal / nonfractal transition, L(ε) = L0[1 + (λ/ε)ν eb cos(ω ln(ε/λ))].

Let us now give another physically meaningful way to obtain an equivalent behavior,

that does not make use of imaginary exponents. Define a log-periodic local scale exponent:

δ =
∂ lnL
∂ ln ε

= ν − b ω sin(ω ln ε) (35)

It leads after integration to a scale-divergence that reads

L(ε) = a εν eb cos(ω ln ε) (36)

whose first order expansion is (34). Such a law is a solution of a scale stationary wave

equation:
∂2

(∂ ln ε)2
ln

(
L
L0

)
+ ω2 ln

(
L
L0

)
= 0, (37)
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where L0 = a εν is the strictly self-similar solution. Hence the log-periodic behavior can

be viewed as a stationary wave in the scale-space (this prepares Sec. 8, in which we

tentatively introduce a quantum wave scale equation). Note that these solutions can

apply to fractal lengths only for b ω < ν, since the local scale exponent should remain

positive: this behavior is typical of what is observed when measuring the resolution-

dependent length of fractal curves of the von Koch type which are built by iteration and,

strictly, have only discrete scale invariance instead of a full continuous scale invariance.

But such laws also apply to other kind of variables (for example market indices or ion

concentration near earthquake zones, see [40]) for which local decreases are relevant.
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Fig. 4 Three typical examples of log-periodic chronological laws in species evolution (from
Refs.[42, 43, 44]). Up: main trunk of the ‘tree of life’, from the apparition of life to homeothermy
and viviparity (last two plotted points). The dates are best-fitted by an accelerating log-periodic
law Tn = T0 + (Tc − T0) × g−n, with Tc = −30 ± 60 Myr and g = 1.83. Middle: comparison of
the dates of the major leaps in the evolution of primates including the hominids (plus the two
preceding main events: apparition of mammals and viviparity), with an accelerating log-periodic
law. The last two dates of up figure are the first two of the middle figure (note the zoom by a
factor 20 between the two figures). The best fit gives Tc = 2.0 ± 0.4 Myr and g = 1.78 ± 0.01.
For the 14 dates from the origin of life to the appearance of the Homo sapiens bauplan, one finds
Tc = 2.1± 1.0 Myr and g = 1.76± 0.01. The probability is less than 10−4 to obtain such a fit by
chance. Down: comparison with a decelerating log-periodic law of the dates of the major leaps
in the evolution of echinoderms. The best fit yields Tc = −575 ± 25 Myr and g = 1.67 ± 0.02
(origin excluded). This means that the critical time from which the deceleration starts is their
date of apparition (within uncertainties). All results are statistically highly significant (see the
quoted references for details about the data and their analysis).

We give in Fig. 4 an example of application of such log-periodic laws to the analysis

of the chronology of species evolution (see more detail in Refs. [42, 43, 44]). One finds

either an acceleration toward a critical date Tc or a deceleration from a critical date, Tc

depending on the considered lineage.



Electronic Journal of Theoretical Physics 4, No. 16(II) (2007) 187–274 207

4.3.2 Lagrangian approach to scale laws

The Lagrangian approach can be used in the scale space in order to obtain physically

relevant generalizations of the above simplest (scale-invariant) laws. In this aim, we are

led to reverse the definition and meaning of the variables. Namely, the scale exponent δ

becomes a primary variable that plays, for scale laws, the same role as played by time in

motion laws. We have suggested to call ‘djinn’ this variable scale exponent (equal to the

difference between a variable fractal dimension and the cosntant topological dimension) .

The resolution, ε, can therefore be defined as a derived quantity in terms of the fractal

coordinate L and of the scale exponent or djinn, δ

V = ln

(
λ

ε

)
=

d lnL
dδ

. (38)

A scale Lagrange function L̃(lnL, V, δ) is introduced, from which a scale action is

constructed

S̃ =

∫ δ2

δ1

L̃(lnL, V, δ) dδ. (39)

The application of the action principle yields a scale Euler-Lagrange equation that

writes
d

dδ

∂L̃

∂V
=

∂L̃

∂ lnL . (40)

In analogy with the physics of motion, in the absence of any “scale-force” (i.e.,

∂L̃/∂ lnL = 0), the Euler-Lagrange equation becomes

∂L̃/∂V = const ⇒ V = const. (41)

which is the equivalent for scale of what inertia is for motion. The simplest possible

form for the Lagrange function is a quadratic dependence on the “scale velocity”, (i.e.,

L̃ ∝ V
2). The constancy of V = ln(λ/ε) means that it is independent of the djinn

δ. Equation (38) can therefore be integrated to give the usual power law behavior,

L = L0(λ/ε)δ. This reversed viewpoint has several advantages which allow a full imple-

mentation of the principle of scale relativity:

(i) The djinn δ is given its actual status of a fifth dimension or “scale time” and the

logarithm of the resolution, V, its status of “scale velocity” (see Eq. 38). This is in accor-

dance with its scale-relativistic definition, in which it characterizes the “state of scale” of

the reference system, in the same way as the velocity v = dx/dt characterizes its state of

motion.

(ii) This leaves open the possibility of generalizing our formalism to the case of four in-

dependent space-time resolutions, V
μ = ln(λμ/εμ) = d lnLμ/dδ. This amount to jump

to a five-dimensional geometric description in terms of a space-time-djinn (at the level

of the fractal fluctuations). Note in this respect that the genuine nature of resolutions is

ultimately tensorial, εν
μ = εμε

ν = ρμλε
νελ and involves correlation coefficients, in analogy

with variance-covariance matrices.

(iii) Scale laws more general than the simplest self-similar ones can be derived from more

general scale Lagrangians [26], as we shall now see.
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4.3.3 Scale ‘dynamics’

The whole of our previous discussion indicates to us that the scale invariant behavior

corresponds to ‘freedom’ (i.e. scale forec-free behavior) in the framework of a scale

physics. However, in the same way as there exists forces in nature that imply departure

from inertial, rectilinear uniform motion, we expect most natural fractal systems to also

present distorsions in their scale behavior respectively to pure scale invariance. This

means taking non-linearity in scale into account. Such distorsions may be, as a first step,

attributed to the effect of a scale “dynamics”, i.e. of a “scale-field”. (Caution: at this

level of description, this is only an analog of dynamics, which acts on the scale axis, on

the internal structures of the system under consideration, not in space-time. See what

follows for the effects of coupling with space-time displacements).

In this case the Lagrange scale-equation takes the form of Newton’s equation of dy-

namics:

F = μ
d2 lnL

dδ2
, (42)

where μ is a ‘scale-mass’, which measures how the system resists to the ‘scale-force’, and

where Γ = d2 lnL/dδ2 = d ln(λ/ε)/dδ is the ‘scale-acceleration’.

We shall now attempt to define physical, generic, scale-dynamical behaviors which

could be common to very different systems. For various systems the scale-force may have

very different origins, but in all cases where it has the same form (constant, harmonic

oscillator, etc...), the same kind of scale behavior would be obtained. It is also worthwhile

to remark that such a ‘Newtonian’ approach is itself considered to be only an intermediate

step while waiting for a fully developped general scale-relativity. Thus the scale-forces are

expected to be finally recovered as approximations of the manifestations of the geometry

of the scale-space.

4.3.4 Constant scale-force

Let us first consider the case of a constant scale-force. The potential is ϕ = F lnL, and

Eq. 42 writes
d2 lnL

dδ2
= G, (43)

where G = F/μ = cst. It is easily integrated in terms of a parabolic solution (which is

the equivalent for scale laws of parabolic motion in a constant field):

V = V0 + Gδ , lnL = lnL0 + V0δ +
1

2
Gδ2. (44)

However the physical meaning of this result is not clear under this form. This is due to the

fact that, while in the case of motion laws we search for the evolution of the system with

time, in the case of scale laws we search for the dependence of the system on resolution,

which is the directly measured observable. We find, after redefinition of the integration

constants,

δ =
1

G
ln

(
λ

ε

)
, ln

(
L
L0

)
=

1

2G
ln2

(
λ

ε

)
. (45)
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This is easily generalized to include a transition to scale independence toward large scales

by replacing L by (L − L0) in these equations (see Fig. 5).
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Fig. 5 Scale dependence of the length and of the effective fractal dimension (minus the topologi-
cal dimension) in the case of a constant ‘scale-force’, including a transition to scale independence
at large scale.

The scale exponent δ becomes a linear function of resolution (the same being true,

as a consequence, of the fractal dimension DF = 1 + δ), and the (logL, log ε) relation is

now parabolic instead of linear (see Fig. 5). There are several physical situations where,

after careful examination of the data, the power-law models were clearly rejected since

no constant slope could be defined in the (logL, log ε) plane. In the several cases where a

clear curvature appears in this plane (e.g., turbulence, sand piles, ...), the physics could

come under such a ’scale-dynamical’ description. In these cases it might be of interest

to identify and study the scale-force responsible for the scale distorsion (i.e., for the

deviation to standard scaling).

4.3.5 Scale harmonic oscillator

Another interesting case is that of a repulsive harmonic oscillator potential, ϕ = −(k/2) ln2 L,

in the scale space. The scale differential equation reads in this case (we omit the reference

scale L0 in order to simplify the exposition):

d2 lnL
dδ2

= k lnL. (46)

Setting k = 1/δ2
0, where δ0 is constant, one of its solution reads

lnL = a sinh

(
δ

δ0

+ α

)
, (47)

so that the scale velocity, which is its derivative with respect to δ, reads

V = ln
λ

ε
=

a

δ0

cosh

(
δ

δ0

+ α

)
. (48)

As in the previous section, we may now re-express lnL in function of the resolution thanks

to the relation cosh2 x − sinh2 x = 1. We obtain

1

δ2
0

ln2 L − ln2 λ

ε
= −a2

δ2
0

. (49)
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Finally, reintroducing a reference scale for L and changing the name of the constants, the

solution can be put under the form

ln
L
L0

= δ0

√
ln2 λ

ε
− ln2 λ

λ1

. (50)

Note the correction to previous publications [27] in which we considered only a special

solution which involved a relation between the constants λ, λ1 and δ0. Actually the new

scale of transition λ1 can be defined independently of the scale force-free transition λ.

One sould also be aware not to confuse the asymptotic constant exponent δ0 with the

now variable exponent δ.

For ε � λ it gives the standard Galilean-type case L = L0(λ/ε)δ0 , i.e., constant fractal

dimension DF = 1 + δ0. But its intermediate-scale behavior is particularly interesting,

since, from the viewpoint of the mathematical solution, resolutions larger than a scale

λ1 are no longer possible. This transition of a new form therefore separates small scales

from large scales, i.e., an “interior” (scales smaller than λ1) from an “exterior” (scales

larger than λ1). It is characterized by an effective fractal dimension that becomes formally

infinite. This behavior may reveal to be particularly interesting for applications to biology.

Here λ is the fractal / non-fractal transition scale for the asymptotic domain, i.e., it

is the transition scale which would have been observed in the absence of the additional

scale force (see Figure 6).
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Fig. 6 Scale dependence of the length and of the scale exponent in the case of a harmonic
oscillator scale-potential, with transition to scale independence at large scale.

Another possible interpretation of this scale harmonic oscillator model consists of

considering the variable ε in the above equations as a distance r from a centre (i.e., a

scaling coordinate instead as a scale-resolution). Then it describes a system in which the

effective fractal dimension of trajectories diverges at some distance r = λmax from the

center, is larger than 1 in the inner region and becomes D = 1 (i.e., non-fractal) in the

outer region. Since the increase of the fractal dimension of a curve corresponds to the

increase of its ‘thickness’ [2, 3]), such a model can be interpreted as describing a system

in which the inner and outer domains are separated by a wall.

We also hope such a behavior to provide a model of confinement in QCD. Indeed,

the gauge symmetry group of QCD, SU(3), is the dynamical symmetry group of a 3-

dimensional isotropic harmonic oscillator, while gauge invariance can be re-interpreted in

scale relativity as scale invariance on space-time resolutions (see following section).
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This suggestion is re-inforced by the following results and remarks:

(i) QCD is precisely characterized by the property of ‘asymptotic freedom, which

means that quarks become free at small scales while the strong coupling constant increases

toward large scales. It may become formally infinite at the confinement scale.

(ii) There is increasing evidence for an internal fractal structure of the proton, more

generally of hadrons [47].

(iii) Free u and d quark masses (i.e., the masses they would have in the absence of

confinement) are far smaller than their effective mass in the proton and neutron. This

means that their Compton length λc = �/mc is larger than the confinement scale (of

order 1 Fermi). This is exactly what is expected in the above model. Indeed, as we shall

see in what follows, the fractal/non fractal transition is identified in rest frame with the

Compton length of a particle.

(iv) A 3-dimensional sphere is scale space (ln X, ln Y, ln Z) becomes, when viewed in

terms of direct variables (X, Y, Z) and for large values of the variables, a triad (see Fig.7).

Such a behavior may provide a model of color and quarks, in which the three quarks in

hadrons would have no real separated existence, but could be identified with the three

extremities of such a ‘3-tip string’. Their appearance could therefore be the mere result

of a change of reference system (i.e., of relativity), provided the genuine physical variables

for the description of intra-hadron physics be the scale variables (ln X, ln Y, ln Z), in terms

of which there is pure isotropy on the scale-sphere, while our measurement devices work

in terms of the (X,Y, Z) variables.
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Fig. 7 ‘Three-tip string’. Three dimensional sphere in scale space, (lnX)2 + (lnY )2 + (ln Z)2 =
A2, plotted in terms of direct variables (X, Y, Z), for A = 8.

4.3.6 Toward a generalized theory of scale-relativity

The above approach in terms of ‘scale dynamics’ is actually intended to be a provisional

description. Indeed, in analogy with Einstein’s general relativity of motion, in which

Newton’s gravitational ‘force’ becomes a mere manifestation of space-time curvature, we

hope that the scale dynamical forces introduced hereabove are only intermediate and

practical concepts, which should ultimately be recovered as mere manifestation of the

fractal geometry of space-time.

We shall be led in future developments of the theory to look for the general non-linear

scale laws that satisfy the principle of scale relativity, and also to treat scale-laws and
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motion laws on the same footing. We have suggested that, in this purpose, a change of

representation was necessary.

Namely, recall that our first proposal [13] was to work in a ‘fractal space-time’ rep-

resentation, involving four coordinates that are explicit functions of the four space-time

resolutions, {X(εx), Y (εy), Z(εz), T (εt)}. Since the resolutions are interpreted as charac-

terizing the state of scale of the reference system, this eight variable representation can be

viewed as the equivalent of a ‘phase-space’ representation. Now, much work remains to

be done, since we have mainly considered, up to now, the simplified case of only one res-

olution variable. We shall be led in future works to define four different transformations

on the four space-time resolutions.

Moreover, in this representation gauge transformations emerge as a manifestation

of the coupling between scale and motion (see the following Section 7.). Namely, we

have seen that the coordinates are generally split into two terms, a scale-dependent

part and a scale-independent part that is identified with the classical non-fractal coordi-

nates {x, y, z, t}. In other words, the classical differentiable space-time is recovered as a

large-scale degeneracy of the microscopic fractal space-time. This allows one to consider

resolutions that now vary with the classical coordinates, and therefore to have a more

profound description in terms of fractal coordinates Xμ[ε(x, y, z, t)]. As we shall see in a

next section, such an approach leads to a new interpretation of gauge invariance and of

gauge fields.

Now, in the case when the fractal dimension is no longer constant, we have proposed

another representation in terms of a five-dimensional ‘spacetime-djinn’, in which the

fractal dimension becomes itself a fifth dimension. Note that it is not the coordinates

which are scale-dependent in an essential way, but only coordinate intervals: indeed,

as emphasized previously, and as will be further developed in the following, they can

be separated in two parts, a classical scale-independent part and a fractal fluctuation

with vanishing mathematical expectation. Only the fractal fluctuation depends on scale.

Therefore the spacetime-djinn combines space and time intervals with the djinn, i.e., it is

defined in terms of the variables {dX, dY, dZ, dT, δ}, while the clasical part of the space-

time remains four-dimensional and of (+,−,−,−) signature . The spacetime-djinn itself

involves two levels of description:

(i) A ‘Galilean’ scale-relativity description, in which the djinn δ, though possibly

variable, remains a parameter which is separated from the four space-time coordinates,

i.e. {dX(δ), dY (δ), dZ(δ), dT (δ)}. It allows one to implement the identification of

resolutions with ‘scale-velocities’,

ln

(
λμ

εμ

)
=

d ln |dXμ|
dδ

. (51)

In this framework, the scale-motion coupling laws introduced to account for gauge trans-

formations are recovered as second order derivatives involving the djinn and the coordi-

nates (∂2/∂δ∂x), and they therefore appear on the same footing as motion accelerations

(∂2/∂t2) and ‘scale-accelerations’ (∂2/∂δ2).

(ii) A fully covariant scale-relativistic description in terms of five fractal variables χα,
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with α = 0 to 4 and signature (+,−,−,−,−). Its simplified two-dimensional version has

already been explicitly given in the above description of special-scale relativity, involving a

log-Lorentzian law of dilation. In this representation, the four dilations on the four space-

time resolutions are identified with rotations in the spacetime-djinn, i.e., to log-Lorentz

scale-boosts. In this respect the final group of relativity (motion + scale) is beyond the

conformal group, since it contains independent dilations of the four coordinates (fractal

parts), which do not conserve angles. It is expected to be at least a combination of the

Poincaré group for the 4-dimensional standard space-time (‘classical’ variables) and of

a group of generators χα∂β (including ‘scale-rotations’ (χα∂β − χβ∂α)/2). Moreover, as

already remarked, the true nature of the resolutions is tensorial instead of vectorial. All

these points will be taken into account in the future developments of the theory [49].

5. Fractal Space and Induced Quantum-type Mechanics

5.1 Introduction

Let us now consider an essential part of the theory of scale relativity, namely, the

description of the effects in standard space-time that are induced by the internal fractal

structures in scale-space. The previous Sections were devoted to pure scale laws, i.e.,

to the description of the scale dependence of fractal trajectories at a given point of

space-time. The question now addressed is: what are the consequences on motion of

the internal fractal structures of space (more generally, of space-time)? This is a huge

question that cannot be solved in one time. We therefore proceed by first studying the

induced effects of the simplest scale laws (namely, self-similar laws of fractal dimension

2 for trajectories) under restricted conditions (only fractal space, then fractal space and

time, breaking of symmetry on time, then also on space). As recalled in the following

Sections, we successively recover in this way more and more profound levels of quantum

mechanical laws: namely, non-relativistic quantum mechanics (Schrödinger equation),

relativistic quantum mechanics without spin (Klein-Gordon equation) and for spinors

(Dirac equation).More complicated situations (constant fractal dimension differing of 2,

variable fractal dimension, special scale-relativistic log-Lorentzian behavior, etc...), that

may lead to scale-relativistic corrections to standard quantum mechanics, have been

tentatively considered in previous works [48, 23], but will not be recalled here.

5.2 Infinite number of geodesics

Strictly, the non-differentiability of the coordinates means that the velocity

V =
dX

dt
= lim

dt→0

X(t + dt) − X(t)

dt
(52)

is undefined. Namely, when dt tends to zero, either the ratio dX/dt tends to infinity,

or it fluctuates without reaching any limit. However, as recalled in the introduction,
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continuity and nondifferentiability imply an explicit dependence on scale of the various

physical quantities. As a consequence, the velocity, V is itself re-defined as an explicitly

resolution-dependent function V (t, dt).

However, this change of description is not yet sufficient. Indeed, one of the direct

geometric consequences of the nondifferentiability and of the subsequent fractal character

of space itself (not only of the trajectories) is that there is an infinity of fractal geodesics

relating any couple of points of this fractal space [4, 71]. This can be easily understood

already at the level of fractal surfaces, which can be described in terms of a fractal

distribution of conic points of positive and negative infinite curvature (see [4], Sec. 3.6

and 3.10). The number of geodesics is therefore also infinite at the differential level,

each “point” of the fractal space having an infinite diffusive effect on the paths. As a

consequence, we are led to replace the velocity V (t, dt) on a particular geodesic by the

velocity field V [x(t, dt), t, dt] of the whole infinite ensemble of geodesics. Moreover, this

fundamental and irrepressible loss of information of purely geometric origin means the

giving-up of determinism at the level of trajectories and leads to jump to a statistical

and probabilistic description. But here, contrarily to the view of standard quantum

mechanics, the statistical nature of the physical tool is not set as a foundation of physics,

but derived from geometric properties.

In the simplest case, we expect this velocity field to be solution of a scale differential

equation like Eq. 6, i.e.

V = v + w = v

[
1 + ζ

( τ

dt

)1−1/DF

]
. (53)

This means that the velocity is now the sum of two independent terms of different orders

of differentiation, since their ratio v/w is, from the standard viewpoint, infinitesimal. In

analogy with the real and imaginary parts of a complex number, we have suggested [67, 24]

to call v the ‘classical part’ of the velocity and w its ‘fractal part’. The new component

w is an explicitely scale-dependent fractal fluctuation (which would be infinite from the

standard point of view where one makes dt → ∞). The nondifferentiability of the space

implies a fundamental loss of determinism of the paths in this space, in particular of the

geodesics, so that we are led to describe this fractal fluctuation by a stochastic variable.

It is normalized by chosing τ in such a way that < ζ >= 0 and < ζ2 >= 1, where ζ is

now a purely mathematical dimensionless stochastic variable. The mean < > is taken

upon the probability distribution of this variable. But, as we shall see, the final result

does not depend on this distribution so that we do not have to specify it. This means

that this description includes far more general processes than Markov, Brownian-like or

Wiener processes.

We have therefore suggested [13] that the description of a quantum mechanical par-

ticle, including its property of wave-particle duality, could be reduced to the geometric

properties of the set of fractal geodesics that corresponds to a given state of this “par-

ticle”. In such an interpretation, we do not have to endow the “particle” with internal

properties such as mass, spin or charge, since the “particle” is not identified with a point

mass which would follow the geodesics, but its “internal” properties can now be defined
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as global geometric properties of the fractal geodesics themselves. As a consequence, any

measurement is interpreted as a sorting out (or selection) of the geodesics. For example,

if the “particle” has been observed at a given position with a given resolution, this means

that the geodesics which pass through this domain have been selected [4, 13].

5.3 ‘Classical part’ and ‘fractal part’ of differentials

The transition scale appearing in Eq. (53) yields two distinct behaviors of the system

(i.e., the ‘particle’, identified with an infinite family of geodesics of the fractal space)

depending on the resolution at which it is considered. Equation (53) multiplied by dt

gives the elementary displacement, dX, of the system as a sum of two infinitesimal terms

of different orders

dX = dx + dξ. (54)

The variable dx is defined as the “classical” (or differentiable) part of the full deplace-

ment dX. By ‘classical’, we do not mean that this is necessarily a variable of classical

physics (for example, as we shall see hereafter, it will become two-valued due to non-

differentiability, which is clearly not a classical property). We mean here that it remains

differentiable, and therefore come under classical differentiable equations.

Here dξ represents the “fractal part” (or nondifferentiable part) of the elementary de-

placement dX. As recalled at the beginning of this review paper, the nondifferentiability

here does not mean that we cannot differentiate, since we have kept the continuity of

space-time (so that we can define dξ), but that we can no longer calculate a derivative in

the standard meaning (namely, dξ/dt is infinite). Due to the definitive loss of information

implied by the nondifferentiability, we have no other choice than to represent it in terms

of a stochastic variable, as recalled in the previous section. We therefore write

dx = v dt, (55)

dξ = η
√

2D(dt2)1/2DF . (56)

In what follows, we shall mainly consider the case of fractal dimension DF = 2, which can

be shown to play a critical role in the construction of the motion equation [23]. Moreover,

it has been shown by Feynman [9] that the typical quantum mechanical paths, i.e., those

that contribute most to the path integral, are of fractal dimension 2. In tthis case, the

fractal fluctuation reads

dξ = η
√

2D dt1/2, (57)

where 2D = τ0 = τv2, and where η is a stochastic variable such that < η >= 0 and

< η2 >= 1. Owing to Eq. (53), we identify τ with the Einstein transition scale, τ =

�/E = �/1
2
mv2 (in the non relativistic case). Therefore, as we shall see further on,

2D = τ0 is a scalar quantity which can be identified with the Compton scale (up to

fundamental constants), �/mc, i.e., its physical meaning yields the mass of the particle

itself.
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5.4 Discrete symmetry breaking

One of the most fundamental consequences of the nondifferentiable nature of space (more

generally, of space-time) is the breaking of a new discrete symmetry, namely, of the

reflection invariance on the differential element of (proper) time . As we shall see in what

follows, it implies a two-valuedness of velocity which can be subsequently shown to be

the origin of the complex nature of the quantum tool.

The derivative with respect to the time t of a differentiable function f can be written

twofold
df

dt
= lim

dt→0

f(t + dt) − f(t)

dt
= lim

dt→0

f(t) − f(t − dt)

dt
. (58)

The two definitions are equivalent in the differentiable case. In the nondifferentiable

situation, both definitions fail, since the limits are no longer defined. In the new frame-

work of scale relativity, the physics is related to the behavior of the function during the

“zoom” operation on the time resolution δt, identified with the differential element dt.

The nondifferentiable function f(t) is replaced by an explicitly scale-dependent fractal

function f(t, dt), which therefore becomes a function of two variables, t (in space-time)

and dt (in scale space). Two functions f ′
+ and f ′

− are therefore defined as explicit functions

of the two variables t and dt

f ′
+(t, dt) =

f(t + dt, dt) − f(t, dt)

dt
, f ′

−(t, dt) =
f(t, dt) − f(t − dt, dt)

dt
. (59)

One passes from one definition to the other by the transformation dt ↔ −dt (dif-

ferential time reflection invariance), which actually was an implicit discrete symmetry of

differentiable physics. When applied to fractal space coordinates x(t, dt), these definitions

yield, in the non-differentiable domain, two velocity fields instead of one, that are fractal

functions of the resolution, V+[x(t, dt), t, dt] and V−[x(t, dt), t, dt].

These two fractal velocity fields may in turn be decomposed in terms of their classical

and fractal parts, namely,

V+[x(t, dt), t, dt] = v+[x(t), t] + w+[x(t, dt), t, dt], (60)

V−[x(t, dt), t, dt] = v−[x(t), t] + w−[x(t, dt), t, dt]. (61)

The V+ and V− fractal functions are a priori different functions, and the same is there-

fore true of their classical parts v+ and v− (which are scale-independent standard fluid

mechanics-like velocity fields). While, in standard classical mechanics, the concept of

velocity was one-valued, we must therefore introduce, for the case of a non-differentiable

space, two velocity fields instead of one, even when going back to the classical domain. In

recent papers, Ord [50] also insists on the importance of introducing ‘entwined paths’ for

understanding quantum mechanics (but without giving a mechanism for their emergence).

A simple and natural way to account for this doubling consists in using complex

numbers and the complex product. As we recall hereafter, this is the origin of the

complex nature of the wave function of quantum mechanics, since this wave function

can be identified with the exponential of the complex action that is naturally introduced
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in this framework. We shall now demonstrate that the choice of complex numbers for

representing the two-valuedness of the velocity is a simplifying and “covariant” choice (in

the sense of the principle of covariance, according to which the simplest possible form of

the equations of physics should be conserved under all transformations of coordinates).

5.5 Covariant total derivative operator

We are now lead to describe the elementary displacements for both processes, dX±, as the

sum of a classical part, dx± = v± dt, and of a stochastic fluctuation about this classical

part, dξ±, which is, by definition, of zero mean, < dξ± >= 0, namely,

dX+(t) = v+ dt + dξ+(t),

dX−(t) = v− dt + dξ−(t). (62)

More generally, one may define two classical derivative operators, d+/dt and d−/dt,

which yield the twin classical velocities when they are applied to the position vector x,

d+

dt
x(t) = v+ ,

d−
dt

x(t) = v− . (63)

As regards the fluctuations, the generalization to three dimensions of the fractal be-

havior of Eq. (56) reads (when DF = 2)

< dξ±i dξ±j >= ±2 D δij dt i, j = x, y, z, (64)

since the dξ(t)’s are of null classical part and assumed to be mutually independent.

The Krönecker symbol δij, in Eq. (64), indeed means that the mean crossed product

< dξ±i dξ±j >, with i �= j, is null.

5.5.1 Origin of complex numbers in quantum mechanics

We now know that each component of the velocity field takes two values instead of one.

This means that each component of the velocity becomes a vector in a two-dimensional

space, or, in other words, that the velocity becomes a two-index tensor. The general-

ization of the sum of these quantities is straighforward, but one also needs to define a

generalized product.

The problem can be put in a general way: it amounts to find a generalization of the

standard product that keeps its fundamental physical properties.

From the mathematical point of view, we are here exactly confronted to the well-

known problem of the doubling of algebra (see, e.g., Ref. [79]). Indeed, the effect of the

symmetry breaking dt ↔ −dt (or ds ↔ −ds) is to replace the algebra A in which the

classical physical quantities are defined, by a direct sum of two exemplaries of A, i.e., the

space of the pairs (a, b) where a and b belong to A. The new vectorial space A2 must be

supplied with a product in order to become itself an algebra (of doubled dimension). The

same problem is asked again when one takes also into account the symmetry breakings
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dxμ ↔ −dxμ and xμ ↔ −xμ (see [67]): this leads to new algebra doublings. The

mathematical solution to this problem is well-known: the standard algebra doubling

amounts to supply A2 with the complex product. Then the doubling R
2 of R is the

algebra C of complex numbers, the doubling C
2 of C is the algebra H of quaternions,

the doubling H
2 of quaternions is the algebra of Graves-Cayley octonions. The problem

with algebra doubling is that the iterative doubling leads to a progressive deterioration

of the algebraic properties. Namely, one loses the order relation of reals in the complex

plane, while the quaternion algebra is non-commutative, and the octonion algebra is also

non-associative. But an important positive result for physical applications is that the

doubling of a metric algebra is a metric algebra [79].

These mathematical theorems fully justify the use of complex numbers, then of quater-

nions, in order to describe the successive doublings due to discrete symmetry breakings

at the infinitesimal level, which are themselves more and more profound consequences of

space-time non-differentiability [24, 82].

However, we give in what follows complementary arguments of a physical nature,

which show that the use of the complex product in the first algebra doubling R → C

have a simplifying and covariant effect [24, 82] (we use here the word “covariant” in

the original meaning given to it by Einstein [1], namely, the requirement of the form

invariance of fundamental equations).

In order to simplify the argument, let us consider the generalization of scalar quanti-

ties, for which the product law is the standard product in R.

The first constraint is that the new product must remain an internal composition law.

We also make the simplifying assumption that it remains linear in terms of each of the

components of the two quantities to be multiplied. A general bilinear product c = a × b

reads

ck = ai ωk
ij bj, (65)

and it is therefore defined by eight numbers ωk
ij in the case (considered here) of a two-

valuedness of the quantities a, b, c.

The second physical constraint is the requirement to recover the classical variables and

the classical product at the classical limit. The mathematical equivalent of this constraint

is the requirement that A still be a sub-algebra of A2. Therefore we identify a0 ∈ A with

(a0, 0) and we set (0, 1) = α. This allows us to write the new two-dimensional vectors in

the simplified form a = a0 + a1α, so that the product now writes

c = (a0 + a1α) (b0 + b1α) = a0b0 + a1b1α
2 + (a0b1 + a1b0)α. (66)

The problem is now reduced to find α2, which is now defined by only two coefficients

α2 = ω0 + ω1α. (67)

Let us now come back to the beginning of our construction. We have introduced two

elementary displacements, each of them made of two terms, a classical part and a fractal
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part (see Eq. (62))

dX+(t) = v+ dt + dξ+(t),

dX−(t) = v− dt + dξ−(t). (68)

Let us first consider the two values of the ‘classical’ part of the velocity. Instead of

considering them as a vector of a new plane, (v+, v−), we shall use the above construction

for defining them as a number of the doubled algebra [68]. Namely, we first replace

(v+, v−) by the equivalent twin velocity field [(v+ + v−)/2, (v+ − v−)/2], then we define

the number:

V =

(
v+ + v−

2
− α

v+ − v−
2

)
. (69)

This choice is motivated by the requirement that, at the classical limit when v = v+ = v−,

the real part identifies with the classical velocity v and the new ‘imaginary’ part vanishes.

The same operation can be made for the fractal parts. One can define velocity fluctuations

w+ = dξ+/dt and w− = dξ−/dt, so that we define a new number of the doubled algebra,

W =

(
w+ + w−

2
− α

w+ − w−
2

)
. (70)

Finally the total velocity (classical part and fractal fluctuation) reads:

V + W =

(
v+ + v−

2
− α

v+ − v−
2

)
+

(
w+ + w−

2
− α

w+ − w−
2

)
. (71)

We shall see in what follows that a Lagrange function can be introduced in terms of the

new two-valued tool, that leads to a conserved form for the Euler-Lagrange equations. In

the end, as we shall see, the Schrödinger equation is obtained as their integral. Now, from

the covariance principle, the classical Lagrange function in the Newtonian case should

strictly be written as

L =
1

2
m < (V + W)2 >=

1

2
m

(
< V2 > + < W2 >

)
. (72)

Now we have < W >= 0 by definition, and < V .W >= 0 because they are mutually

independent. But what about < W2 > ? The presence of this term would greatly

complicate all the subsequent developments toward the Schrödinger equation, since it

would imply a fundamental divergence of non-relativistic quantum mechanics. Let us

expand it:

4 < W2 > = < [(w+ + w−) − α (w+ − w−)]2 >

= < (w2
+ + w2

−)(1 + α2) − 2α(w2
+ − w2

−) + 2w+w−(1 − α2) > . (73)

Since < w2
+ >=< w2

− > and < w+.w− >= 0 (they are mutually independent), we

finally find that < W2 > can vanish only provided

α2 = −1, (74)
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namely, α = ±i, the imaginary unit.

Therefore we have shown that the choice of the complex product in the algebra dou-

bling plays an essential physical role, since it allows to suppress what would be additional

infinite terms in the final equations of motion [24, 82]. The two solutions +i and −i have

equal physical meaning, since the final equation of Schrödinger (demonstrated in the fol-

lowing) and the wave function are physically invariant under the transformation i → −i

provided it is applied to both of them, as is well known in standard quantum mechanics.

5.5.2 Complex velocity field

We now combine the two derivatives to define a complex classical derivative operator,

that allows us to recover local differential time reversibility in terms of the new complex

process [4]:

d̂

dt
=

1

2

(
d+

dt
+

d−
dt

)
− i

2

(
d+

dt
− d−

dt

)
. (75)

Applying this operator to the position vector yields a complex classical velocity field

V =
d̂

dt
x(t) = V − iU =

v+ + v−
2

− i
v+ − v−

2
. (76)

The minus sign in front of the imaginary term is chosen here in order to obtain

the Schrödinger equation in terms of the wave function ψ (which will be constructed in

what follows). The reverse choice would give the Schrödinger equation for the complex

conjugate of the wave function ψ†, and would be therefore physically equivalent.

The real part, V , of the complex velocity, V, represents the standard classical velocity,

while its imaginary part, −U , is a new quantity arising from non-differentiability. At the

usual classical limit, v+ = v− = v, so that V = v and U = 0.

5.5.3 Complex time-derivative operator

Contrary to what happens in the differentiable case, the total derivative with respect to

time of a fractal function f(x(t), t) of integer fractal dimension contains finite terms up

to higher order [69]

df

dt
=

∂f

∂t
+

∂f

∂xi

dXi

dt
+

1

2

∂2f

∂xi∂xj

dXidXj

dt
+

1

6

∂3f

∂xi∂xj∂xk

dXidXjdXk

dt
+ ... (77)

Note that it has been shown by Kolwankar and Gangal [70] that, if the fractal dimen-

sion is not an integer, a fractional Taylor expansion can also be defined, using the local

fractional derivative (however, see [71] about the physical relevance of this tool and [72]

for another proposal).

In our case, a finite contribution only proceeds from terms of DF -order, while lesser-

order terms yield an infinite contribution and higher-order ones are negligible. Therefore,

in the special case of a fractal dimension DF = 2, the total derivative writes

df

dt
=

∂f

∂t
+

∂f

∂xi

dXi

dt
+

1

2

∂2f

∂xi∂xj

dXidXj

dt
. (78)
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Let us now consider the classical part of this expression. By definition, < dX >= dx,

so that the second term is reduced to v.∇f . Now concerning the term dXidXj/dt, it is

usually infinitesimal, but here its classical part reduces to < dξi dξj > /dt. Therefore,

thanks to Eq. (64), the last term of the classical part of Eq. (78) amounts to a Laplacian,

and we obtain
d±f

dt
=

(
∂

∂t
+ v±.∇±DΔ

)
f . (79)

Substituting Eqs. (79) into Eq. (75), we finally obtain the expression for the complex

time derivative operator [4]

d̂

dt
=

∂

∂t
+ V.∇− iDΔ . (80)

This is one of the main results of the theory of scale relativity. Indeed, the passage

from standard classical (i.e., almost everywhere differentiable) mechanics to the new non-

differentiable theory can now be implemented by replacing the standard time derivative

d/dt by the new complex operator d̂/dt (being cautious with the fact that it involves

a combination of first order and second order derivatives, in particular when using the

Leibniz rule for products or composed functions [74, 83]). In other words, this means that

d̂/dt plays the role of a “covariant derivative operator”, namely, we shall write in its term

the fundamental equations of physics under the same form they had in the differentiable

case.

It should be remarked, before going on with this construction, that we use here the

word ‘covariant’ in analogy with the covariant derivative DjA
k = ∂jA

k + Γk
jlA

l replacing

∂jA
k in Einstein’s general relativity. But one shoud be cautious with this analogy, since

the two situations are different. Indeed, the problem posed in the construction of general

relativity was that of a new geometry, in a framework where the differential calculus was

not affected. Therefore the Einstein covariant derivative amounts to substracting the

new geometric effect −Γk
jlA

l in order to recover the mere inertial motion, for which the

Galilean law of motion Duk/ds = 0 naturally holds [85]. Here there is an additional

difficulty: the new effects come not only from the geometry (see Sec. 7. for a scale-

covariant derivative acting in the same way as that of general relativity) but also from

the non-differentiability and its consequences on the differential calculus.

Therefore the true status of the new derivative is actually an extension of the con-

cept of total derivative. Already in standard physics, the passage from the free Galileo-

Newton’s equation to its Euler form was a case of conservation of the form of equations in

a more complicated situation, namely, d/dt → d/dt = ∂/∂t + v.∇ when v(t) → v[x(t), t].

In the fractal and nondifferentiable situation considered here, the three consequences of

nondifferentiability (infinity of geodesics, fractality and two-valuedness of derivative) lead

to three new terms in the total derivative operator, namely V.∇, −iU.∇ and −iDΔ.

5.6 Covariant mechanics induced by scale laws

Let us now summarize the main steps by which one may generalize the standard classical

mechanics using this covariance. We are now looking to motion in the standard space. In
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what follows, we consider only the ‘classical parts’ of the variables, which are differentiable

and independent of resolutions. However, we shall subsequently show that the same result

(i.e., construction of a complex wave function that is solution of a Schrödinger equation)

can also be obtained by taking the full velocity field, including the fractal nondifferentiable

part.

The effects of the internal nondifferentiable structures are now contained in the covari-

ant derivative. Following the standard construction of the laws of mechanics, we assume

that the classical part of the mechanical system under consideration can be character-

ized by a Lagrange function that keeps the usual form but now in terms of the complex

velocity, L(x,V, t), from which an action S is defined

S =

∫ t2

t1

L(x,V , t)dt, (81)

which is therefore now complex since V is itself complex.

In this expression, we have assume that the (+) and (-) velocity fields can be combined

in the expression of the Lagrange function in terms of the complex velocity. We have

already given arguments, in the previous section, according to which the choice made in

the construction of the complex velocity is a simplifying and covariant choice. We shall

now prove that the action can indeed be put in a general way under the above form, and

that it allows us to conserve the standard form of the Euler-Lagrange equations (i.e., to

write generalized covariant Euler-Lagrange equations).

In a general way, the Lagrange function is expected to be a function of the variables x

and of their time derivatives ẋ. We have found that the number of velocity components

ẋ is doubled, so that we are led to write

L = L(x, ẋ+, ẋ−, t). (82)

In terms of this Lagrange function, the action principle reads

δS = δ

∫ t2

t1

L(x, ẋ+, ẋ−, t) dt = 0. (83)

It becomes ∫ t2

t1

(
∂L
∂x

δx +
∂L
∂ẋ+

δẋ+ +
∂L
∂ẋ−

δẋ−

)
dt = 0. (84)

Now, the Lagrange function of Eq. (81), re-expressed in terms of ẋ+ and ẋ−, reads

L = L
(

x,
1 − i

2
ẋ+ +

1 + i

2
ẋ−, t

)
, (85)

and it is therefore an equivalent function of ẋ+ and ẋ− considered as independent vari-

ables. Therefore we obtain

∂L
∂ẋ+

=
1 − i

2

∂L
∂V ;

∂L
∂ẋ−

=
1 + i

2

∂L
∂V , (86)
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while the new covariant time derivative operator writes

d̂

dt
=

1 − i

2

d+

dt
+

1 + i

2

d−
dt

. (87)

Since δẋ+ = d+(δx)/dt and δẋ− = d−(δx)/dt, the action principle takes the form∫ t2

t1

(
∂L
∂x

δx +
∂L
∂V

[
1 − i

2

d+

dt
+

1 + i

2

d−
dt

]
δx

)
dt = 0, (88)

i.e., ∫ t2

t1

(
∂L
∂x

δx +
∂L
∂V

d̂

dt
δx

)
dt = 0. (89)

This is the form one would have obtained directly from Eq. (81).

The subsequent demonstration of the Lagrange equations from the stationary action

principle relies on an integration by part. This integration by part cannot be performed in

the usual way without a specific analysis, because it involves the new covariant derivative.

The first point to be considered is that such an operation involves the Leibniz rule

for the covariant derivative operator d̂/dt. Since d̂/dt = ∂/dt+V .∇− iDΔ, it is a linear

combination of first and second order derivatives, so that the same is true of its Leibniz

rule, namely, it is a linear combination of the first order and second order Leibniz rules.

This implies the appearance of an additional term in the expression for the derivative of

a product (see [74, 83] and Sec. 6.1.2), namely

d̂

dt

(
∂L

∂V . δx

)
=

d̂

dt

(
∂L

∂V

)
. δx +

∂L

∂V .
d̂

dt
δx − 2iD∇

(
∂L

∂V

)
.∇δx. (90)

Since δx(t) is not a function of x, the additional term vanishes. Therefore the above

integral becomes ∫ t2

t1

[(
∂L

∂x
− d̂

dt

∂L

∂V

)
δx +

d̂

dt

(
∂L

∂V . δx

)]
dt = 0. (91)

The second point is concerned with the integration of the covariant derivative itself.

We define a new integral as being the inverse operation of the covariant derivation, i.e.,

−
∫

d̂f = f (92)

in terms of which one obtains

−
∫ t2

t1

d̂

(
∂L

∂V . δx

)
=

[
∂L

∂V . δx

]t2

t1

= 0, (93)

since δx(t1) = δx(t2) = 0 by definition of the variation principle. Therefore the action

integral becomes ∫ t2

t1

(
∂L

∂x
− d̂

dt

∂L

∂V

)
δx dt = 0. (94)
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And finally we obtain generalized Euler-Lagrange equations that read

d̂

dt

∂L

∂V =
∂L

∂x
. (95)

Therefore, thanks to the transformation d/dt → d̂/dt, they take exactly their standard

classical form. This result reinforces the identification of our tool with a “quantum-

covariant” representation, since, as we have shown in previous works and as we recall

in what follows, this Euler-Lagrange equation can be integrated under the form of a

Schrödinger equation.

In analogy with the standard cosntruction of classical mechanics and by extension

of it, one can now define from the homogeneity of position space a generalized complex

momentum given by

P =
∂L
∂V . (96)

If we now consider the action as a functional of the upper limit of integration in

Eq. (81), the variation of the action from a trajectory to another nearby trajectory yields

a generalization of another well-known relation of standard mechanics, namely,

P = ∇S. (97)

As concerns the generalized energy, its expression involves an additional term [74, 51],

namely, it write for a Newtonian Lagrange function and in the absence of exterior poten-

tial,

E =
1

2
m(V2 − 2iD divV) (98)

(see the four-dimensional generalisation of this expression and a discussion of its origin

in Sec. 6.1.2).

5.7 Newton-Schrödinger Equation

5.7.1 Geodesics equation

Let us now specialize our study, and consider Newtonian mechanics, i.e., the general

case when the structuring external scalar field is described by a potential energy Φ. The

Lagrange function of a closed system, L = 1
2
mv2 − Φ, is generalized as L(x,V , t) =

1
2
mV2 − Φ.

The Euler-Lagrange equations keep the form of Newton’s fundamental equation of

dynamics

m
d̂

dt
V = −∇Φ, (99)

which is now written in terms of complex variables and complex time derivative operator.

In the case when there is no external field, and also when the field can itself be

constructed from a covariant geometric process, like gravitation in general relativity [1]

and now gauge fields in scale relativity [49], the covariance is explicit and complete, so
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that Eq. (99) takes the simple form of Galileo’s equation of inertial motion, i.e., of a

geodesics equation,

d̂

dt
V = 0. (100)

This is analog to Einstein’s general relativity, where the equivalence principle of gravita-

tion and inertia leads to a strong covariance principle, expressed by the fact that one may

always find a coordinate system in which the metric is locally Minkowskian. This means

that, in this coordinate system, the covariant equation of motion of a free particle is that

of inertial motion Duμ = 0 in terms of the general-relativistic covariant derivative D and

four-vector uμ. The expansion of the covariant derivative subsequently transforms this

free-motion equation in a geodesic equation in a curved space-time, whose manifestation

is the gravitational field. The same form can be obtained from the equivalence principle,

from the strong covariance principle, and from the least-action principle, that becomes a

geodesics principle in a relativity theory thanks to the identification of the action with

the invariant proper time (see e.g. [85]).

The covariance induced by scale effects leads to an analogous transformation of

the equation of motions, which, as we shall now show below, become after integration

the Schrödinger equation, (then the Klein-Gordon and Dirac equations in the motion-

relativistic case), which we can therefore consider as the integral of a geodesic equation.

In both cases, with or without external field, the complex momentum P reads

P = mV , (101)

so that, from Eq. (97), the complex velocity field V is potential, namely it is the gradient

of the complex action,

V = ∇S/m. (102)

5.7.2 Complex wave function

We now introduce a complex wave function ψ which is nothing but another expression

for the complex action S
ψ = eiS/S0 . (103)

We stress on the fact that, since S = SR − iSI is complex, despite its apparent form, this

ψ function has a phase θ = SR/S0 and a modulus, |ψ| = exp(SI/S0). The factor S0 has

the dimension of an action (i.e., of an angular momentum) and must be introduced for

dimensional reasons. We show in what follows, that, when this formalism is applied to

microphysics, i.e., to the standard molecular and atomic physics, S0 is nothing but the

fundamental constant �. From Eq. (102), we find that the function ψ is related to the

complex velocity field as follows

V = −i
S0

m
∇(ln ψ). (104)
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5.7.3 Schrödinger equation

We have now at our disposal all the mathematical tools needed to write the fundamental

equation of dynamics of Eq. (99) in terms of the new quantity ψ. It takes the form

iS0
d̂

dt
(∇ ln ψ) = ∇Φ. (105)

Now one should be aware that d̂ and ∇ do not commute. However, as we shall see in

the following, d̂(∇ ln ψ)/dt is nevertheless a gradient in the general case.

Replacing d̂/dt by its expression, given by Eq. (80), yields

∇Φ = iS0

(
∂

∂t
+ V.∇− iDΔ

)
(∇ ln ψ), (106)

and replacing once again V by its expression in Eq. (104), we obtain

∇Φ = iS0

[
∂

∂t
∇ ln ψ − i

{
S0

m
(∇ ln ψ.∇)(∇ ln ψ) + DΔ(∇ ln ψ)

}]
. (107)

Consider now the remarkable identity [4]

(∇ ln f)2 + Δ ln f =
Δf

f
, (108)

which proceeds from the following tensorial derivation

∂μ∂
μ ln f + ∂μ ln f∂μ ln f = ∂μ

∂μf

f
+

∂μf

f

∂μf

f

=
f∂μ∂

μf − ∂μf∂μf

f2
+

∂μf∂μf

f 2

=
∂μ∂

μf

f
. (109)

When we apply this identity to ψ and take its gradient, we obtain

∇
(

Δψ

ψ

)
= ∇[(∇ ln ψ)2 + Δ ln ψ]. (110)

The second term in the right-hand side of this expression can be transformed, using

the fact that ∇ and Δ commute, i.e.,

∇Δ = Δ∇. (111)

The first term can also be transformed thanks to another remarkable identity

∇(∇f)2 = 2(∇f.∇)(∇f), (112)

that we apply to f = ln ψ. We finally obtain [4]

∇
(

Δψ

ψ

)
= 2(∇ ln ψ.∇)(∇ ln ψ) + Δ(∇ ln ψ). (113)
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This identity can be still generalized thanks to the fact that ψ appears only through its

logarithm in the right-hand side of the above equation. By replacing in it ψ by ψα, we

obtain the general remarkable identity

1

α
∇

(
Δψα

ψα

)
= 2α (∇ ln ψ.∇)(∇ ln ψ) + Δ(∇ ln ψ), (114)

We recognize, in the right-hand side of this equation, the two terms of Eq. (107), which

were respectively in factor of S0/m and D. Therefore, by taking for α the value

α =
S0

2mD , (115)

the whole motion equation becomes a gradient,

∇Φ = 2mD
{

i
∂

∂t
∇ ln ψα + D∇

(
Δψα

ψα

)}
. (116)

and it can therefore be generally integrated, in terms of the new function

ψα =
(
eiS/S0

)α
= eiS/2mD. (117)

One would have obtained the same result by directly setting S0 = 2mD in the initial

definition of ψ [4], but in the above proof it is obtained without making any particular

choice. This relation is more general than in standard quantum mechanics, in which S0 is

restricted to the only value S0 = �. Eq. (115) is actually a generalization of the Compton

relation (see next section): this means that the function ψ becomes a wave function only

provided it is accompanied by a Compton-de Broglie relation. Without this relation, the

equation of motion would remain of third order, with no general prime integral.

Indeed, the simplification brought by this relation is twofold: (i) several complicated

terms are compacted into a simple one; (ii) the final remaining term is a gradient, which

means that the fundamental equation of dynamics can now be integrated in a universal

way. The function ψ in Eq. (103) is therefore defined as

ψ = eiS/2mD, (118)

and it is solution of the fundamental equation of dynamics, Eq. (99), which now takes

the form
d̂

dt
V = −2D∇

{
i
∂

∂t
ln ψ + DΔψ

ψ

}
= −∇Φ/m. (119)

Integrating this equation finally yields a generalized Shrödinger equation,

D2Δψ + iD ∂

∂t
ψ − Φ

2m
ψ = 0, (120)

up to an arbitrary phase factor which may be set to zero by a suitable choice of the

ψ phase. The standard Schrödinger equation of quantum mechanics is recovered in the

special case � = 2mD. Therefore the Schrödinger equation is the new form taken by the
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Hamilton-Jacobi / energy equation (see [51] on this point) after change of variable from

the complex action to the function ψ.

Arrived at that point, several steps have been already made toward the final identifica-

tion of the function ψ with a wave function. It is complex, solution of a Schrödinger equa-

tion, so that its linearity is also ensured. Namely, if ψ1 and ψ2 are solutions, a1ψ1 + a2ψ2

is also a solution. Let us complete the proof by giving new insights about other basic

postulates of quantum mechanics.

5.7.4 Compton length

In the case of standard quantum mechanics, as applied to microphysics, the relation

obtained above,

S0 = 2mD, (121)

means that there is a natural link between the Compton relation and the Schrödinger

equation. In this case, indeed, S0 is nothing but the fundamental action constant �,

while D defines the fractal/non-fractal transition (i.e., the transition from explicit scale-

dependence to scale-independence in the rest frame), λc = 2D/c. Therefore, the relation

S0 = 2mD becomes a relation between the mass and the fractal (scale dependence) to

nonfractal (scale independence) transition in the scale space, that reads

λc =
�

mc
. (122)

We recognize here the definition of the Compton length. Its profound meaning

amounts to define the inertial mass (up to the fundamental constants � and c, which

can both be identified to 1 in the special scale and motion relativity theory). Therefore,

in the scale relativity framework, a geometric meaning can be given to mass, in terms

of the transition scale from fractality (at small scales) to scale-independence (at large

scales) in rest frame. We note that this length-scale is to be understood as a structure

of scale-space, not of standard space. The de Broglie length can now be easily recov-

ered. Indeed, the fractal fluctuation is a differential elements of order 1/2, i.e., it reads

< dξ2 >= � dt/m in function of dt, and then < dξ2 >= λxdx in function of the space

differential elements, which is of the same order as dt. The identification of these two

relations implies λx = �/mv, which is the non-relativistic expression for the de Broglie

length.

We recover, in the case � = 2mD, the standard form of Schrödinger’s equation

�
2

2m
Δψ + i�

∂

∂t
ψ = Φψ. (123)

5.7.5 Born and von Neumann postulates

We have given above two representations of the fundamental equations of dynamics in

a fractal and locally irreversible context. The first representation is the equation of

geodesics that is written in terms of the complex velocity field, V = V − iU .
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The second representation is the Schrödinger equation, whose solution is a wave func-

tion ψ. Both representations are related by the transformation

V = −2iD∇ ln ψ. (124)

Let us decompose the wave function in terms of a modulus |ψ| =
√

P and of a phase θ,

namely, we write the wave function under the form ψ =
√

P × eiθ. We shall now build a

mixed representation, in terms of the real part of the complex velocity field, V , and of the

square of the modulus of the wave function, P . This fluid-like representation allows one to

come back to the initial scale-relativistic view of the motion as following a fluid of fractal

geodesics. We shall indeed obtain, as we shall now see, a fluid mechanics-type description

of the classical part of the velocity field V , but with an added quantum potential which

profoundly changes the meaning and behaviour of this description.

By separating the real and imaginary parts of the Schrödinger equation and by making

the change of variables from ψ to (P , V ), we obtain respectively a generalized Euler-like

equation and a continuity-like equation [56](
∂

∂t
+ V · ∇

)
V = −∇

(
Φ

m
− 2D2 Δ

√
P√

P

)
, (125)

∂P

∂t
+ div(PV ) = 0. (126)

This system of equations is equivalent to the classical system of equations of fluid mechan-

ics (with no pressure and no vorticity), except for the change from a density of matter

to a density of probability, and for the appearance of an extra potential energy term Q

that reads

Q = −2mD2 Δ
√

P√
P

. (127)

The existence of this potential energy is, in the scale relativity approach, a very man-

ifestation of the geometry of space, namely, of its nondifferentiability and fractality, in

similarity with Newton’s potential being a manifestation of curvature in Einstein’s general

relativity. It is a generalization of the quantum potential of standard quantum mechanics

[87, 88]. However, its nature was misunderstood in this framework, since the variables

V and P were constructed from the wave function, which is set as one of the axiom of

quantum mechanics, in the same way as the Schrödinger equation itself. On the contrary,

in the scale relativity theory, we know from the very beginning of the construction that

V represents the velocity field of the fractal geodesics, and the Schrödinger equation is

derived from the very equation of these geodesics.

The von Neumann postulate, according to which just after the measurement, the

system is in the state given by the measurement result, and Born’s postulate, according

to which the square of the modulus of the wave function P = |ψ|2 gives the probability

of presence of the particle, can now be inferred from the scale relativity construction.

Indeed, we have identified the wave-particle with the various geometric properties of

a subset of the fractal geodesics of a non-differentiable space-time. In such an interpreta-

tion, a measurement (and more generally any knowledge about the system) amounts to
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a selection of the sub-sample of the geodesics family in which are kept only the geodesics

having the geometric properties corresponding to the measurement result. Therefore,

just after the measurement, the system is in the state given by the measurement result,

in accordance with von Neumann’s postulate of quantum mechanics.

As a consequence, the probability for the particle to be found at a given position must

be proportional to the density of the geodesics fluid. We already know its velocity field,

whose real part is given by V , identified, at the classical limit, with a classical velocity

field. The geodesics density � has not yet been introduced at this level of the construction

(contrarily to most stochastic approaches where it is introduced from the very beginning

and is used to define averages, which leads to contradictions with quantum mechanics

[21, 22]). In order to calculate it, we remark that it is expected to be a solution of a

fluid-like Euler and continuity system of equations, namely,(
∂

∂t
+ V · ∇

)
V = −∇

(
Φ

m
+ Q

)
, (128)

∂ρ

∂t
+ div(�V ) = 0, (129)

where Φ describes an external scalar potential possibly acting on the fluid, and Q is the

potential that is expected to appear as a manifestation of the fractal geometry of space (in

analogy with the appearance of the Newtonian potential as a manifestation of the curved

geometry in general relativity). This is a system of four equations (since Eq. (128) is

vectorial and is therefore made of three equations) for four unknowns, (�, Vx, Vy, Vz), that

would be therefore completely determined by such a system.

Now these equations are exactly the same as equations (125, 126), except for the

replacement of the square of the modulus of the wave function P by the fluid density

�. Therefore this result allows one to univoquely identify P = |ψ|2 with the probabil-

ity density of the geodesics, i.e., with the probability of presence of the particle [24, 82].

Moreover, one identifies the non-classical term Q with the new potential which is expected

to emerge from the fractal geometry. Numerical simulations in which the expected prob-

ability density can be obtained directly from the distribution of geodesics without writing

the Schrödinger equation, have confirmed this result [89].

5.7.6 Generalization to nondifferentiable wave function

In the above derivation of the Schrödinger equation, only the classical part of the velocity

was taken into account when defining the wave function. However, the full velocity field of

the fractal space-time geodesics actually contains a formally infinite term, which manifests

the nondifferentiability of space-time. We shall now show that this nondifferentiability of

space-time is expected to manifest itself in terms of a possible nondifferentiability of wave

functions. Such a result agrees with Berry’s [90] and Hall’s [91] similar finding obtained

in the framework of standard quantum mechanics.

Recall that each of the two fractal velocity fields can be decomposed in terms of a
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classical (differentiable) part and a fractal (nondifferentiable) part,

V+ = v+ + w+, V− = v− + w−. (130)

Then the two velocity fields can be combined in terms of a complex velocity, that we

write under the form

Ṽ = V + W =

(
v+ + v−

2
− i

v+ − v−
2

)
+

(
w+ + w−

2
− i

w+ − w−
2

)
, (131)

which now includes the classical and the fractal parts. Although the fractal part is

infinite, and therefore undefined from the viewpoint of standard methods, in the scale

relativity framework it can be defined as an explicit function of the scale variable dt,

namely, W = W [x(t, dt), t, dt], which becomes infinite only in the limit dt → 0, i.e.,

ln dt → −∞.

Let us now consider the full complex action in the Newtonian case, now defined in

terms of the classical part and of the fractal (divergent) part of the velocity,

dS̃ =
1

2
m(V + W)2 dt, (132)

which is equal to the previous mean action dS = 1
2
mV2dt plus terms of zero stochastic

average (see Sec. 5.5.1).

We now define a complete wavefunction ψ̃ from this full action S̃,

ψ̃ = eiS̃/2mD, (133)

and the relation of the complete complex velocity to the complete wavefunction therefore

reads

Ṽ = V + W = ∇S̃/m = −2iD∇ ln ψ̃. (134)

In the scale relativity approach this equation keeps a mathematical and physical meaning

in terms of fractal functions which are explicitly dependent on the scale interval dt and

divergent only when dt → 0. In other words, the wavefunction ψ̃ defined hereabove can

now be nondifferentiable.

We shall now prove that this nondifferentiable wavefunction nevertheless remains

solution of a Schrödinger equation.

Let us write the fractal parts of the velocities under the form:

w+ = η+

√
2D
dt

, w− = η−

√
2D
dt

, (135)

where η+ and η− are stochastic variables such that < η+ >=< η− >= 0 and < η2
+ >=<

η2
− >= 1.

The two (+) and (−) derivatives read

d+f

dt
=

∂f

∂t
+ (v+ + w+)∇f + D η2

+ Δf + ..., (136)
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d−f

dt
=

∂f

∂t
+ (v− + w−)∇f −D η2

−Δf + ..., (137)

where the next terms are infinitesimals. Let us now define the following complex stochas-

tic variables:

η̃ =
η+ + η−

2
− i

η+ − η−
2

, (138)

1 + ζ̃ =
η2

+ + η2
−

2
+ i

η2
+ − η2

−
2

, (139)

which are such that < η̃ >= 0 and < ζ̃ >= 0. We can now combine the two derivatives

in terms of a further generalized complex covariant derivative

d̂

dt
=

∂

∂t
+ (V + W).∇− iD(1 + ζ̃)Δ (140)

plus infinitesimal terms that vanish when dt → 0. It reads

d̂

dt
=

[
∂

∂t
+ V .∇− iDΔ

]
+

√
2D
dt

η̃.∇− iD ζ̃ Δ. (141)

We therefore recover the previous mean covariant derivative plus two additional stochastic

terms of zero mean, the first being W .∇, which is infinite at the limit dt → 0, and the

second −iD ζ̃ Δ, in which ζ̃ remains finite. The first of these terms was already introduced

in Ref. [68], while the second was neglected since their ratio is an infinitesimal of order

dt1/2.

We are now able, using this covariant derivative, to write a complete free equation of

motion in terms of a geodesics equation that keeps the form of the free Galilean inertial

motion equation [68],

d̂

dt
Ṽ = 0. (142)

In the presence of a potential φ, it can be easily generalized in terms of a covariant

equation which keeps the form of Newton’s fundamental equation of dynamics,

d̂

dt
Ṽ = −∇φ

m
. (143)

After expansion of this equation, new terms of zero stochastic mean are now added [68]

with respect to the previous incomplete form of the equation d̂V/dt = −∇φ/m [4], namely

it reads

d̂V
dt

+

(
∂W
∂t

+ ∇(V .W) + W.∇W − iDΔW
)
− iD ζ̃ Δ(V + W) = −∇φ

m
. (144)

Starting from the full geodesics equation (142), and more generally from Eq. (143),

we now expand the covariant derivative and we find(
∂

∂t
+ Ṽ .∇− iD(1 + ζ̃)Δ

)
Ṽ = −∇φ

m
, (145)
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of which equation (144) is an expansion. Now, as we have seen, the stochastic term ζ̃ΔṼ
is infinitesimal with respect to the other stochastic term W̃ .∇Ṽ, so that we can neglect

it as we did in Ref. [68]. Now introducing the full wavefunction ψ̃ in this equation thanks

to equation (134), we obtain(
∂

∂t
+ (−2iD∇ ln ψ̃).∇− iDΔ

)
(−2iD∇ ln ψ̃) = −∇φ

m
. (146)

In the standard framework, the very writing of this equation would be forbidden since

ψ̃ is nondifferentiable and therefore its derivatives are formally infinite. But, as recalled

above, the fundamental tool used in the scale-relativity approach, which was definitely

constructed to solve this kind of problems (at the level of fractal space-time coordinates),

can now be used in a similar manner at the level of the wavefunction. Namely, in terms of

a wavefunction ψ̃(x, t, dt), the various terms of equation (146) remain finite for all values

of dt �= 0. We are therefore in the same conditions as in previous calculations involving

a differentiable wave function [4, 24], so that it can finally be integrated in terms of a

generalized Schrödinger equation that keeps the same form as in the differentiable wave

function case, namely,

D2Δψ̃ + iD ∂ψ̃

∂t
− φ

2m
ψ̃ = 0. (147)

This generalized Schrödinger equation now has nondifferentiable solutions, which come, in

our framework, as a direct manifestation of the nondifferentiability of space. The research

in laboratory experiments of such a behavior constitutes an interesting new challenge for

quantum physics .

5.7.7 Schrödinger form of other fundamental equations of physics

The general method described above can be applied to any physical situation where the

three basic conditions (namely, infinity of trajectories, each trajectory is a fractal curve of

fractal dimension 2, breaking of differential time reflexion invariance) are achieved in an

exact or in an approximative way. Several fundamental equations of classical physics can

be transformed to take a generalized Schrödinger form under these conditions. Namely,

we have applied this new macroscopic quantization method to the equation of motion

in the presence of an electromagnetic field (see Sec. 7.), the Euler and Navier-Stokes

equations in the case of potential motion and for incompressible and isentropic fluids, the

equation of the rotational motion of solids, the motion equation of dissipative systems,

field equations (scalar field for one space variable). We refer the interested reader to

Ref. [26] for more detail.

5.8 Application to gravitational structuring

5.8.1 Curved and fractal space

Some applications of the scale relativity theory to the problem of the formation and

evolution of gravitational structures have been presented in several previous works [4,
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23, 52, 26, 53, 54, 55, 56]. A recent review paper about the comparison between the

theoretically predicted structures and observational data, from the scale of planetary

systems to extragalactic scales, has been given in Ref. [57]. We shall only briefly sum up

here the principles and methods used in such an attempt, then quote some of the main

results obtained.

In its present acceptance, gravitation is understood as the various manifestations of

the geometry of space-time at large scales. Up to now, in the framework of Einstein’s

theory, this geometry was considered to be Riemannian, i.e. curved. However, in the new

framework of scale relativity, the geometry of space-time is assumed to be characterized

not only by curvature, but also by fractality beyond a new relative time-scale and/or

space-scale of transition, which is an horizon of predictibility for the classical deterministic

description. As we have seen in a previous section, fractality manifests itself, in the

simplest case, in terms of the appearance of a new scalar field. We have suggested that

this new field leads to spontaneous self-organization and may also be able to explain

[34, 57], without additional matter, the various astrophysical effects which have been, up

to now, tentatively attributed to unseen “dark” matter .

5.8.2 Gravitational Schrödinger equation

We shall briefly consider in what follows only the Newtonian limit. In this case the equa-

tion of geodesics, which can be constructed by combining the general motion-relativistic

and scale-relativistic covariant derivatives, keeps the form of Newton’s fundamental equa-

tion of dynamics in a gravitational field, namely,

D̄V
dt

=
d̂V
dt

+ ∇
(

φ

m

)
= 0, (148)

where φ is the Newtonian potential energy. As demonstrated hereabove, once written in

terms of ψ, this equation can be integrated to yield a gravitational Newton-Schrödinger

equation :

D2Δψ + iD ∂

∂t
ψ =

φ

2m
ψ. (149)

Since the imaginary part of this equation is the equation of continuity, and basing

ourselves on our description of the motion in terms of an infinite family of geodesics,

P = |ψ|2 can be interpreted as giving the probability density of the particle position.

Note however that the situation and therefore the interpretation are different here from

the application of the theory to the standard quantum mechanics of the microphysical

domain. The two main differences are:

(i) While in the microscopic realm elementary “particles” can be defined as the

geodesics themselves (their defining properties such as mass, spin or charge being de-

fined as internal geometric properties, see [23, 67]), in the macroscopic realm there does

exist actual particles that follow the geodesics as trajectories.

(ii) While differentiability is definitively lost toward the small scales in the micro-

physical domain, the macroscopic quantum theory is valid only beyond some time-scale
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transition (and/or space-scale transition) which is an horizon of predictibility. Therefore

in this last case there is an underlying classical theory, which means that the quantum

macroscopic approach is a new kind of hidden variable theory [26].

Even though it takes this Schrödinger-like form, equation (149) is still in essence

an equation of gravitation, so that it must keep the fundamental properties it owns in

Newton’s and Einstein’s theories. Namely, it must agree with the equivalence principle

[52, 58], i.e., it is independent of the mass of the test-particle. In the Kepler central

potential case (φ = −GMm/r), GM provides the natural length-unit of the system

under consideration. As a consequence, the parameter D takes the form

D =
GM

2w
, (150)

where w is a fundamental constant that has the dimension of a velocity. The Agnese

constant αg = w/c actually plays the role of a macroscopic gravitational coupling constant

[58, 56]).

5.8.3 Formation and evolution of gravitational structures

Let us now compare our approach with the standard theory of gravitational structure

formation and evolution. Instead of the Euler-Newton equation and of the continuity

equation which are used in the standard approach, we write a mere Newton-Schrödinger

equation. In both cases, the Newton potential is given by the Poisson equation. Two

situations can be considered: (i) when the ‘orbitals’, which are solutions of the motion

equation, can be considered as filled with the particles (e.g., planetesimals, planet em-

bryos or protoplanets in the case of planetary systems formation, interstellar gas and

dust in the case of star formation, etc...), the mass density ρ is proportional to the prob-

ability density P = |ψ|2: this situation is relevant in particular for addressing problems

of structure formation; (ii) another possible situation concerns test bodies which are not

in large enough number to contribute to the matter density, but whose motion is nev-

ertheless submitted to the Newton-Schrödinger equation: this case may be relevant for

the anomalous dynamical effects which have up to now been attributed to the unseen

so-called “dark” matter.

As previously shown, by separating the imaginary and real parts of the Schrödinger

equation we obtain respectively a continuity equation and a generalized Euler-Newton

equation, in terms of a Newtonian potential energy φ that is solution of a Poisson equa-

tion, namely,

m (
∂

∂t
+ V · ∇)V = −∇(φ + Q),

∂P

∂t
+ div(PV ) = 0, (151)

Δφ = 4πGρm. (152)

In the case when there is a large number of particles each subjected to the probability

density P , one has P ∝ ρ, and this system of equations becomes equivalent to the classical

system used in the standard approach to gravitational structure formation, except for the

appearance of the extra potential energy term Q = −2mD2Δ
√

P/
√

P .
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In the case (i) where actual particles achieve the probability density distribution

(structure formation), we have ρ = ρ0P ; then the Poisson equation (i.e., the field equa-

tion) becomes Δφ = 4πGmρ0|ψ|2 and it is therefore strongly coupled with the Schrödinger

equation. An equation for matter alone can finally be written [26] (which has automati-

cally its equivalent in an equation for the potential alone),

Δ

(
D2Δψ + iD∂ψ/∂t

ψ

)
− 2πGρ0|ψ|2 = 0. (153)

This is a Hartree equation of the kind which is encountered in the description of super-

conductivity. We expect its solutions to provide us with general theoretical predictions

for the structures (in position and velocity space) of self-gravitating systems at multiple

scales [57]. This expectation is already supported by the observed agreement of several

solutions with astrophysical observational data [4, 52, 56, 53, 54, 59, 60, 55].

Fig. 8 IR-dust density observed during the solar eclipse of January 1967 (adapted from Mac-
Queen [63]). The scale-relativity approach leads to a hierarchical description of the Solar System,
which is described by imbricated sub-systems that are solutions of gravitational Schrödinger
equations. While the inner solar system is organized on a constant w0 = 144 km/s, we ex-
pect the existence of an intramercurial subsystem organized on the basis of a new constant
w = 3 × 144 = 432 km/s. The Sun radius is in precise agreement with the peak of the fun-
damental level of this sequence: namely, one finds n� = 0.99 with R� = 0.00465 AU, that
corresponds to a Keplerian velocity of 437.1 km/s. The next probability density peaks are pre-
dicted to lie at distances 4.09 R�, and 9.20 R� = 0.043 AU, which correspond respectively to
Keplerian velocities of 432/2 = 216 km/s and 432/3 = 144 km/s. Since 1966, there has been
several claims of detection during solar eclipses of IR thermal emission peaks from possible cir-
cumsolar dust rings which lie precisely at the predicted distances [57]. Several exoplanets have
now been also found at similar relative distances a/M from their star (see Fig. 10).

Indeed, the theory has been able to predict in a quantitative way a large number of

new effects in the astrophysical domain of gravitational structure formation and evolution.

Moreover, these predictions have been successfully checked in various systems on a large

range of scales and in terms of a common fundamental gravitational coupling constant

whose value averaged on these systems was found to be w0 = c αg = 144.7± 0.7 km/s (or

its multiple or sub-multiples) [52].

New structures have been theoretically predicted, then checked by the observational

data in a statistically significant way, for our solar system, including distances of planets

[4, 53, 62] (Fig. 10) and satellites [55], sungrazer comet perihelions [57], transient dust
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Fig. 9 Distribution of the semi-major axis of Kuiper belt objects (KBO) and scattered Kuiper
belt objects (SKBO), compared with the theoretical predictions of probability density peaks
for the outer solar system (arrows) [57]. The whole inner solar system (whose density peak
lies at the Earth distance, that corresponds to ni = 5) can be identified with the fundamental
ne = 1 orbital of the outer solar system [53]. Therefore the outer solar system is expected to be
organized according to a constant we = 144/5 = 28.8 km/s. The existence of probability density
peaks for the Kuiper belt small planets at ≈ 40, 55, 70, 90 AU, etc..., has been theoretically
predicted before the discovery of these objects [64].

2 4 61 3 5

4.83 (a/M)1/2

144 72 48 36 29 24
velocity  (km/s)

N
um

be
r

7 8 9 10

21 18 16 14

2

3

4

5

6

7

8

1

Fig. 10 Observed distribution of the semi-major axes of recently discovered exoplanets and
inner solar system planets, compared with the theoretical prediction from the scale-relativity /
Schrödinger approach. Note that these predictions [4, 64] have been made before the first discov-
ery of exoplanets. One expects the occurence of peaks of probability density for semimajor axes
an = GM(n/w0)2, where n is integer, M is the star mass and w0 = 144.7 ± 0.7 km/s is a grav-
itational coupling constant (see [4, 52, 56]). For example, the velocity of Mercury is 48=144/3
km/s, of Venus 36=144/4 km/s, of the Earth 29=144/5 km/s and of Mars 24=144/6 km/s.
The data supports the theoretical prediction in a statistically significant way (the probability to
obtain such an agreement by chance is P = 4 × 10−5).

around the sun [57] (Fig. 8), space debris distribution around the Earth [57] , obliquities

and inclinations of planets and satellites [59], distances of small planets in the Kuiper belt,

including a prediction of the new distant objects like Sedna [57, 62] (Fig. 9), exoplanets

semi-major axes [52, 56] (Fig. 10) and eccentricities [61, 62] (Fig. 11) , including planets

around pulsars (for which a high precision is reached) [52, 60], double stars [54], planetary

nebula [57] (Fig. 12), binary galaxies [23] (Fig. 13), our local group of galaxies [57], clusters
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Fig. 11 Observed distribution of the eccentricities of exoplanets. The theory predicts that the
product of the eccentricity e by the quantity ñ = 4.83(a/M)1/2, where a is the semi-major axis
and M the parent star mass, should cluster around integers. The data support this theoretical
prediction at a probability level P = 10−4 [61, 57].

of galaxies and large scale structures of the universe [54, 57].

A full account of this new domain would be too long to be included in the present

contribution. We give here only few typical examples of these effects (see figures and

their captions) and we refer the interested reader to the review paper Ref. [57] for more

detail.

l=6 m=5 l=6 m=4 l=6 m=3 l=6 m=2 l=6 m=1

Fig. 12 Example of morphologies predicted from solution of a macroscopic Schrödinger equation
that describes an accretion or ejection process with respect to a central object. This problem is
similar to that of scattering in elementary particle physics (spherical ingoing or outgoing wave).
Such morphologies are typical of those observed in ’planetary nebula’, which are, despite their
names, outer shells ejected by stars (see [57]).
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Fig. 13 Deprojection of the intervelocity distribution of galaxy pairs [23, 57] from the Schneider-
Salpeter catalog with precision redshifts [65]. The main probability peak is found to lie at 144
km/s (plus secondary peaks at 72=144/2 km/s and 24=144/6 km/s), in agreement with the
exoplanet and inner solar system structuration (see Fig. 10).
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5.8.4 Possible solution to the “dark matter” problem

In the case (ii) of isolated test particles, the density of matter ρ may be nearly zero while

the probability density P does exist, but only as a virtual quantity that determines the

potential Q, without being effectively achieved by matter. In this situation, even though

there is no or few matter at the point considered (except the test particle that is assumed

to have a very low contribution), the effects of the potential Q are real (since it is the

result of the structure of the geodesics fluid). This situation is quite similar to the Newton

potential in vacuum around a mass.

We have therefore suggested [34, 57, 35] that this extra scalar field, which is a man-

ifestation of the fractality of space, may be responsible for the various dynamical and

lensing effects which are usually attributed to unseen “dark matter”. Recall that up to

now two hypotheses have been formulated in order to account for these effects (which

are far larger than those due to visible matter): (i) The existence of a very large amount

of unseen matter in the Universe which, despite intense and continuous efforts, has nev-

ertheless escaped detection. (ii) A modification of Newton’s law of force: but such an

ad hoc hypothesis seems very difficult to reconcile with its geometric origin in general

relativity, which lets no latitude for modification. In the scale-relativity proposal, there

is no need for additional matter, and Newton’s potential is unchanged since it remains

linked to curvature, but there is an additional potential linked to fractality.

This interpretation is supported by the fact that, for a stationary solution of the

gravitational Schrödinger equation, one obtains the general relation

φ + Q

m
=

E

m
= cst, (154)

where E/m can take only quantized values (which are related to the fundamental gravi-

tational coupling [58], αg = w/c).

This result can be applied, as an example, to the motion of bodies in the outer

regions of spiral galaxies. In these regions there is practically no longer any visible

matter, so that the Newtonian potential (in the absence of additional dark matter) is

Keplerian. While the standard Newtonian theory predicts for the velocity of the halo

bodies v ∝ φ1/2, i.e. v ∝ r−1/2, one predict in the new framework v ∝ |(φ+Q)/m|1/2, i.e.,

v = constant. More specifically, assuming that the gravitational Schrödinger equation

is solved for the halo objects in terms of the fundamental level wave function, one finds

Qpred = −(GMm/2rB)(1−2 rB/r), where rB = GM/w2
0. This is exactly the result which

is systematically observed in spiral galaxies (i.e., flat rotation curves) and which has

motivated (among other effects) the assumption of the existence of dark matter. In other

words, we suggest that the effects tentatively attributed to unseen matter are simply the

result of the geometry of space-time. In this proposal, space-time is not only curved but

also fractal beyond some given relative time-scale and space-scales. While the curvature

manifests itself in terms of the Newton potential, we tentatively suggest that fractality

could manifest itself in terms of the new scalar potential Q, and then finally in terms of

the anomalous dynamics and lensing effects.



240 Electronic Journal of Theoretical Physics 4, No. 16(II) (2007) 187–274

5.9 Application to sciences of life

Self-similar fractal laws have already been used as models for the description of a large

number of biological systems (lungs, blood network, brain, cells, vegetals, etc..., see e.g.

[98, 8], previous volumes, and references therein).

The scale-relativistic tools may also be relevant for a description of behaviors and

properties which are typical of living systems. Some examples have been given in [97,

42, 43, 44] (and are briefly recalled in the present review), concerning halieutics, mor-

phogenesis, log-periodic branching laws and cell “membrane” models. As we shall see in

what follows, scale relativity may also provide a physical and geometric framework for the

description of additional properties such as formation, duplication, morphogenesis and

imbrication of hierarchical levels of organization. This approach does not mean to dismiss

the importance of chemical and biological laws in the determination of living systems,

but on the contrary to attempt to establish a geometric foundation that could underlie

them. Under such a view-point, biochemical processes would arise as a manifestation

‘tool’ of fundamental laws issued from first principles.

5.9.1 Morphogenesis

The Schrödinger equation can be viewed as a fundamental equation of morphogenesis [83].

It has not been yet considered as such, because its unique domain of application was,

up to now, the microscopic (molecular, atomic, nuclear and elementary particle) domain,

in which the available information was mainly about energy and momentum. Such a

situation is now changing thanks to field effect microscopy and atom laser trapping, which

begin to allow the observation of quantum-induced geometric shapes at small scales.

However, scale-relativity extends the potential domain of application of Schrödinger-

like equations to every systems in which the three conditions (infinite or very large number

of trajectories, fractal dimension 2 of individual trajectories, local irreversibility) are ful-

filled. Macroscopic Schrödinger equations can be derived, which are not based on Planck’s

constant �, but on constants that are specific of each system (and may emerge from their

self-organization). We have suggested that such an approach applies to gravitational

structures at large scales. One may in particular recover in this way complicated shapes

such as those of planetary nebulae [57], that had up to now no detailed quantitative or

predictive explanation.

Now the three above conditions seems to be particularly well adapted to the descrip-

tion of living systems. Let us give a simple example of such an application.

In living systems, morphologies are acquired through growth processes. One can

attempt to describe such a growth in terms of an infinite family of virtual, fractal and

locally irreversible, trajectories. Their equation can therefore be written under the form

(99), then it can be integrated in a Schrödinger equation (120).

We now look for solutions describing a growth from a center. This problem is formally

identical to the problem of planetary nebulae (which are stars that eject their outer shells),

and, in the quantum point of view, to the problem of particle scattering. The solutions
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looked for correspond to the case of the outgoing spherical probability wave.

Depending on the potential, on the boundary conditions and on the symmetry con-

ditions, a very large family of solutions can be obtained. Let us consider here only the

simplest ones, i.e., central potential and spherical symmetry. The probability density dis-

tribution of the various possible values of the angles are given in this case by the spherical

harmonics,

P (θ, ϕ) = |Ylm(θ, ϕ)|2. (155)

These functions show peaks of probability for some angles, depending on the quantized

values of the square of angular momentum L2 (measured by the quantum number l) and

of its projection Lz on axis z (measured by the quantum number m).

Finally a more probable morphology is obtained by ‘sending’ matter at angles of

maximal probability. The solutions obtained in this way, show floral ‘tulip’-like shape

(see Fig. 12 and Refs. [97, 83]). Now the spherical symmetry is broken in the case of living

systems. One jumps to cylindrical symmetry: this leads in the simplest case to introduce

a periodic quantization of angle θ (measured by an additional quantum number k), that

gives rise to a separation of discretized petals. Moreover there is a discrete symmetry

breaking along axis z linked to orientation (separation of ‘up’ and ‘down’ due to gravity,

growth from a stem). This results in floral shapes such as given in Fig. 14.

Fig. 14 Morphogenesis of flower-like structure, solution of a growth process equation that takes
the form of a Schrödinger equation under fractal conditions (l = 5, m = 0). The ‘petals’ and
‘sepals’ and ‘stamen’ are traced along angles of maximal probability density. A constant force
of ‘tension’ has been added, involving an additional curvature of petals, and a quantization of
the angle θ that gives an integer number of petals (here, k = 5).

5.9.2 Formation, duplication and bifurcation

A fondamentally new feature of the scale relativity approach concerning problems of

formation is that the Schrödinger form taken by the geodesics equation can be interpreted

as a general tendency for systems to which it applies to make structures, i.e., to self-

organize [26]. In the framework of a classical deterministic approach, the question of

the formation of a system is always posed in terms of initial conditions. In the new

framework, structures are formed whatever the initial conditions, in correspondance with

the field, the boundary conditions and the symmetries, and in function of the values of

the various conservative quantities that characterize the system.
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Fig. 15 Model of formation of a structure from a background medium. The global harmonic
oscillator potential defined by the background induces the formation of a local structure (see a
3D representation in Fig. 16), in such a way that the average density remains constant (i.e., the
matter of the structure is taken from the medium).

A typical example is given by the formation of gravitational structures from a back-

ground medium of strictly constant density (Fig. 15). This problem has no classical

solution: no structure can form and grow in the absence of large initial fluctuations. On

the contrary, in the present quantum-like approach, the stationary Schrödinger equation

for an harmonic oscillator potential (which is the form taken by the gravitational poten-

tial in this case) does have confined stationary solutions. The ‘fundamental level’ solution

(n = 0 is made of one object with Gaussian distribution (see Fig. 15), the second level

(n = 1) is a pair of objects (see Fig. 16), then one obtains chains, trapezes, etc... for

higher levels. It is remarkable that, whatever the scales (stars, clusters of stars, galaxies,

clusters of galaxies) the zones of formation show in a systematic way this kind of double,

aligned or trapeze-like structures [57].

Now these solutions may also be meaningful in other domains than gravitation, be-

cause the harmonic oscillator potential is encountered in a wide range of conditions. It is

the general force that appears when a system is displaced from its equilibrium conditions,

and, moreover, it describes an elementary clock. For these reasons, it is well adapted to

an attempt of description of living systems, at first in a rough way [43].

Firstly, such an approach could allow one to ask the question of the origin of life in

a renewed way. This problem is the analog of the ‘vacuum’ (lowest energy) solutions,

i.e. of the passage from a non-structured medium to the simplest, fundamental level

structures. Provided the description of the prebiotic medium comes under the three

above conditions (complete information loss on angles, position and time), we suggest

that it could be subjected to a Schrödinger equation (with a coefficient D self-generated

by the system itself). Such a possibility is supported by the symplectic formal structure

of thermodynamics [66], in which the state equations are analogous to Hamilton-Jacobi

equations. One can therefore contemplate the possibility of a future ‘quantization’ of

thermodynamics, and then of the chemistry of solutions. In such a framework, the fun-

damental equations would describe a universal tendency to make structures. Moreover,

a first result naturally emerges: due to the quantization of energy, we expect the pri-

mordial structures to appear at a given non-zero energy, without any intermediate step.

But clearly much pluridisciplinary work is needed in order to implement such a working
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program.

n=0 n=1

E = 3 D ω E = 5 D ω

Fig. 16 Model of duplication. The stationary solutions of the Schrödinger equation in a 3D
harmonic oscillator potential can take only discretized morphologies in correspondence with the
quantized value of the energy. Provided the energy increases from the one-object case (E0 =
3Dω), no stable solution can exist before it reaches the second quantized level at E1 = 5Dω.
The solutions of the time-dependent equation show that the system jumps from the one object
to the two-object morphology.

Secondly, the analogy can be pushed farther, since the passage from the fundamental

level to the first excited level now provides us with a (rough) model of duplication [83] (see

Figs. 16 and 17). Once again, the quantization implies that, in case of energy increase,

the system will not increase its size, but will instead be lead to jump from a one-object

structure to a two-object structure, with no stable intermediate step between the two

stationary solutions n = 0 and n = 1. Moreover, if one comes back to the level of

description of individual trajectories, one finds that from each point of the initial one

body-structure there exist trajectories that go to the two final structures. We expect, in

this framework, that duplication needs a discretized and precisely fixed jump in energy.

Such a model can also be applied to the description of a branching process (Fig. 17),

e.g. in the case of a tree growth when the previous structure remains instead of disap-

pearing as in cell duplication.

Note finally that, though such a model is still too rough to claim that it describes

biological systems, it may already be improved by incorporating in it other results that

are quoted elsewhere in this paper, in particular (i) the model of membrane through

fractal dimension variable with the distance to a center (Sec. 4.3.5); (ii) the model of

multiple hierarchical levels of organization depending on ‘complexergy’ (Sec. 8.4).

Fig. 17 Model of branching / bifurcation. Successive solutions of the time-dependent 2D
Schrödinger equation in an harmonic oscillator potential are plotted as isodensities. The en-
ergy varies from the fundamental level (n = 0) to the first excited level (n = 1), and as a
consequence the system jumps from a one-object to a two-object morphology.
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6. Fractal Space-time and Relativistic Quantum Mechanics

6.1 Klein-Gordon equation

6.1.1 Theory

Let us now come back to standard quantum mechanics, but in the motion-relativistic

case (i.e., underlying classical Minkowski space-time). We shall recall here how one can

get the free and electromagnetic Klein-Gordon equations, as already presented in [25, 23].

Most elements of our approach as described hereabove remain correct, with the time

differential element dt replaced by the proper time differential element ds. Now not

only space, but the full space-time continuum is considered to be nondifferentiable, and

therefore fractal. We chose a classical metric of signature (+,−,−,−). The elementary

displacement along geodesics now writes (in the standard case DF = 2 )

dXμ
± = dxμ

± + dξμ
±. (156)

Due to the breaking of the reflection symmetry (ds ↔ −ds) issued from nondifferentia-

bility, we still define two ‘classical’ derivatives, d+/ds and d−/ds, which, once applied to

xμ, yield two classical four-velocities,

d+

ds
xμ(s) = vμ

+ ;
d−
ds

xμ(s) = vμ
−. (157)

These two derivatives can be combined in terms of a complex derivative operator

d̂

ds
=

(d+ + d−) − i (d+ − d−)

2ds
, (158)

which, when applied to the position vector, yields a complex 4-velocity

Vμ =
d̂

ds
xμ = V μ − i Uμ =

vμ
+ + vμ

−
2

− i
vμ

+ − vμ
−

2
. (159)

We are lead to a stochastic description, due to the infinity and indefinite character (in the

limit ds → 0) of geodesics in a fractal space-time. This forces us to consider the question

of the definition of a Lorentz-covariant stochasticity in space-time. This problem has

been addressed by several authors, in particular in order to apply its solutions to a

relativistic generalization of Nelson’s stochastic quantum mechanics. These solutions

are also relevant here, though our framework is fundamentally different. Namely, two

fluctuation fields, dξμ
±(s), are defined, which have zero expectation (< dξμ

± >= 0), are

mutually independent and such that

< dξμ
± dξν

± >= ∓λ ημνds. (160)

The constant λ is another writing for the coefficient 2D = λc, with D = �/2m in the stan-

dard quantum case. In other words, it is the generalized Compton length of the particle.

This process makes sense only in R
4, i.e. the “metric” ημν should be positive definite.
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Indeed, the fractal fluctuations are of the same nature as uncertainties and ‘errors’, so

that the space and the time fluctuations add quadratically. The sign corresponds to a

choice of space-like fluctuations.

Dohrn and Guerra [76] introduce the above “Brownian metric” and a kinetic metric

gμν , and obtain a compatibility condition between them which reads gμνη
μαηνβ = gαβ.

An equivalent method was developed by Zastawniak [77], who introduces, in addition to

the covariant drifts vμ
+ and vμ

−, new drifts bμ
+ and bμ

− (note that our notations are different

from his). Serva [78] gives up Markov processes and considers a covariant process which

belongs to a larger class, known as “Bernstein processes”.

All these proposals are equivalent, and amount to transforming a Laplacian operator

in R
4 into a Dalembertian. Namely, the two (+) and (−) differentials of a function

f [x(s), s] can be written, still assuming a Minkowskian metric for classical space-time, as

d±f

ds
=

(
∂

∂s
+ vμ

± ∂μ ∓ 1

2
λ ∂μ∂μ

)
f. (161)

In what follows, we shall only consider s-stationary functions, i.e., that are not explicitly

dependent on the proper time s. In this case the covariant time derivative operator

reduces to
d̂

ds
=

(
Vμ +

1

2
i λ ∂μ

)
∂μ. (162)

Let us assume that the system under consideration can be characterized by an action

S, which is complex because the four-velocity is now complex. The same reasoning as

in classical mechanics leads us to write dS = −mcVμdxμ (see [74] for another equivalent

choice). The least-action principle applied on this action yields the equations of motion

of a free particle, that takes the form of a geodesics equation, d̂Vα/ds = 0. Such a

form is also directly obtained from the ‘strong covariance’ principle and the generalized

equivalence principle. We can also write the variation of the action as a functional of

coordinates. We obtain the usual result (but here generalized to complex quantities),

δS = −mcVμδx
μ ⇒ Pμ = mcVμ = −∂μS, (163)

where Pμ is now a complex four-momentum. As in the nonrelativistic case, the wave

function is introduced as being nothing but a reexpression of the action, namely,

ψ = eiS/mcλ ⇒ Vμ = iλ ∂μ(ln ψ), (164)

so that the equations of motion become

d̂Vα/ds = iλ

(
Vμ +

1

2
iλ∂μ

)
∂μVα = 0 ⇒

(
∂μ ln ψ +

1

2
∂μ

)
∂μ∂α ln ψ = 0. (165)

Now, by using the remarkable identity (109) established in [4], it reads:

∂α(∂μ∂
μ ln ψ + ∂μ ln ψ ∂μ ln ψ) = ∂α

(
∂μ∂

μψ

ψ

)
= 0. (166)
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So the equation of motion can finally be integrated in terms of the Klein-Gordon equation

for a free particle,

λ2 ∂μ∂μψ = ψ, (167)

where λ = �/mc is the Compton length of the particle. The integration constant is

chosen so as to ensure the identification of � = |ψ|2 with a probability density for the

particle and to recover the nonrelativistic limit.

As shown by Zastawniak [77] and as can be easily recovered from the definition (159),

the quadratic invariant of special motion-relativity, vμvμ = 1, is naturally generalized as

VμV†
μ = 1, (168)

where V†
μ is the complex conjugate of Vμ. This ensures the covariance (i.e. the invariance

of the form of equations) of the theory at this level.

6.1.2 Quadratic invariant, Leibniz rule and complex velocity operator

It has been shown by Pissondes [74] that the square of the complex four-velocity field is

no longer equal to unity, since it is now complex. Its expression can be derived directly

from (166) after accounting for the Klein-Gordon equation. One obtains the generalized

energy (or quadratic invariant) equation

VμVμ + iλ ∂μVμ = 1. (169)

Now taking the gradient of this equation, one obtains

∂α(VμVμ + iλ ∂μVμ) = 0 ⇒
(
Vμ +

1

2
iλ ∂μ

)
∂αVμ = 0, (170)

which is equivalent to Eq. (165) in the case of free motion, since in the absence of external

field one gets ∂αVμ = ∂μVα.

Clearly, the new form of the quadratic invariant comes only under ‘weak covariance’.

One can therefore address the problem of implementing the strong covariance (i.e., of

keeping the free, Galilean form of the equations of physics even in the new, more compli-

cated situation) at all levels of the description [74]. The additional terms in the various

equations find their origin in the very definition of the ‘quantum-covariant’ total deriva-

tive operator. Indeed, it contains derivatives of first order (namely, Vμ∂μ), but also

derivatives of second order (∂μ∂μ). Therefore, when one is led to compute quantities like

d̂(fg)/dt = 0, the Leibniz rule to be used becomes a linear combination of the first order

and second order Leibniz rules. There is no problem provided one always come back to

the definition of the covariant total derivative. (Some inconsistency would appear only if

one, in contradiction with this definition, wanted to use only the first order Leibniz rule

d(fg) = fdg + gdf). Indeed, one finds

d̂

ds
(fg) = f

d̂g

ds
+ g

d̂f

ds
+ iλ ∂μf ∂μg. (171)
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Let us define a tool [83] to solve this problem, equivalent but more simple than that of

Ref. [74], since it has the advantage to depend only on one function. We define a complex

velocity operator:

V̂μ = Vμ + i
λ

2
∂μ, (172)

so that the covariant derivative can now be written in terms of an operator product that

keeps the standard, first order form:

d̂

ds
= V̂μ ∂μ . (173)

More generally, one defines the operator

̂̂
dg

ds
=

d̂g

ds
+ i

λ

2
∂μg ∂μ . (174)

The covariant derivative of a product now reads

d̂(fg)

ds
=

̂̂
df

ds
g +

̂̂
dg

ds
f, (175)

i.e., one recovers the form of the first order Leibniz rule. Since f̂ g �= ĝf , one is led to

define a symmetrized product [74]. One defines ḟ = d̂f/ds, then

ḟ ⊗ ġ = ̂̇fġ + ̂̇gḟ − ḟ ġ. (176)

This product is now commutative, ḟ ⊗ ġ = ġ ⊗ ḟ , and in its terms the standard strongly

covariant form for the square of the velocity is recovered, namely,

Vμ ⊗ Vμ = 1. (177)

The introduction of such a tool, that may appear formal in the case of free motion,

becomes particularly useful in the presence of an electromagnetic field. This point will

be further developed in Sect. 7.. We shall show that the introduction of a new level

of complexity in the description of a relativistic fractal space-time, namely, the account

of resolutions that become functions of coordinates, leads to a new geometric theory of

gauge fields, in the Abelian [25] and non-Abelian case [49]. We find that the complex

velocity is given in the electromagnetic U(1) case by the expression

Vμ = iλDμ ln ψ = iλ ∂μ ln ψ − e

mc2
Aμ, (178)

where Aμ is defined as a ‘field’ of dilations of internal resolutions that can be identified

with an electromagnetic field four-potential.

Inserting this expression in Eq. (170) yields the standard Klein-Gordon equation with

electromagnetic field, [i�∂μ − (e/c)Aμ][i�∂μ − (e/c)Aμ]ψ = m2c2ψ [74].
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6.2 Dirac Equation

6.2.1 Reflection symmetry breaking of spatial differential element

One of the main result of the scale-relativity theory is its ability to provide a physical

origin for the complex nature of the wave function in quantum mechanics. Indeed, we have

seen that in its framework, it is a direct consequence of the nondifferentiable geometry

of space-time, which involves a symmetry breaking of the reflection invariance dt ↔ −dt,

and therefore a two-valuedness of the classical velocity vector.

Going to motion-relativistic quantum mechanics amounts to introduce not only a

fractal space, but a fractal space-time. The invariant parameter becomes in this case

the proper time s instead of the time t. As a consequence the complex nature of the

four-dimensional wave function in the Klein-Gordon equation comes from the discrete

symmetry breaking ds ↔ −ds.

However, this is not the last word of the new structures implied by the nondifferen-

tiability. The total derivative of a physical quantity also involves partial derivatives with

respect to the space variables, ∂/∂xμ. Once again, from the very definition of derivatives,

the discrete symmetry under the reflection dxμ ↔ −dxμ should also broken at a more

profound level of description. Therefore, we expect the possible appearance of a new

two-valuedness of the generalized velocity field [24].

At this level one should also account for parity violation. Finally, we have suggested

that the three discrete symmetry breakings

ds ↔ −ds dxμ ↔ −dxμ xμ ↔ −xμ

can be accounted for by the introduction of a bi-quaternionic velocity. It has been sub-

sequently shown by Célérier [67, 24] that one can derive in this way the Dirac equation,

namely as an integral of a geodesics equation. This demonstration is summarized in what

follows. In other words, this means that this new two-valuedness is at the origin of the

bi-spinor nature of the electron wave function.

6.2.2 Spinors as bi-quaternionic wave-function

Since Vμ is now bi-quaternionic, the Lagrange function is also bi-quaternionic and, there-

fore, the same is true of the action. Moreover, it has been shown [67] that, for s-stationary

processes, the bi-quaternionic generalisation of the quantum-covariant derivative keeps

the same form as in the complex number case, namely,

d̂

ds
= Vν∂ν + i

λ

2
∂ν∂ν . (179)

A generalized equivalence principle, as well as a strong covariance principle, allows

us to write the equation of motion under a free-motion form, i.e., under the form of a

differential geodesics equation,

d̂Vμ

ds
= 0, (180)

where Vμ is the bi-quaternionic four-velocity, e.g., the covariant counterpart of Vμ.
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The elementary variation of the action, considered as a functional of the coordinates,

keeps its usual form,

δS = −mc Vμ δxμ. (181)

We thus obtain the bi-quaternionic four-momentum, as

Pμ = mcVμ = −∂μS. (182)

We are now able to introduce the wave function. We define it as a re-expression of

the bi-quaternionic action by

ψ−1∂μψ =
i

cS0

∂μS, (183)

using, in the left-hand side, the quaternionic product. The bi-quaternionic four-velocity

is derived from Eq. (182), as

Vμ = i
S0

m
ψ−1∂μψ. (184)

Finally, the isomorphism which can be established between the quaternionic and spinorial

algebrae through the multiplication rules applying to the Pauli spin matrices allows us

to identify the wave function ψ to a Dirac bispinor. Indeed, spinors and quaternions

are both a representation of the SL(2,C) group. This identification is reinforced by the

result [67, 24] that follows, according to which the geodesics equation written in terms of

bi-quaternions is naturally integrated under the form of the Dirac equation.

6.2.3 Free-particle bi-quaternionic Klein-Gordon equation

The equation of motion, Eq. (180), writes(
Vν∂ν + i

λ

2
∂ν∂ν

)
Vμ = 0. (185)

We replace Vμ, (respectively Vν), by their expressions given in Eq. (184) and we obtain

i
S0

m

(
i
S0

m
ψ−1∂νψ∂ν + i

λ

2
∂ν∂ν

) (
ψ−1∂μψ

)
= 0. (186)

The choice S0 = mλ allows us to simplify this equation and we get

ψ−1∂νψ ∂ν(ψ
−1∂μψ) +

1

2
∂ν∂ν(ψ

−1∂μψ) = 0. (187)

The definition of the inverse of a quaternion

ψψ−1 = ψ−1ψ = 1, (188)

implies that ψ and ψ−1 commute. But this is not necessarily the case for ψ and ∂μψ
−1

nor for ψ−1 and ∂μψ and their contravariant counterparts. However, when we derive

Eq. (188) with respect to the coordinates, we obtain

ψ ∂μψ
−1 = −(∂μψ)ψ−1,

ψ−1∂μψ = −(∂μψ
−1)ψ, (189)
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and identical formulae for the contravariant analogues.

Developing Eq. (187), using Eq. (189) and the property ∂ν∂ν∂μ = ∂μ∂
ν∂ν , we obtain,

after some calculations,

∂μ[(∂ν∂νψ)ψ−1] = 0, (190)

which can be integrated as

∂ν∂νψ + Cψ = 0. (191)

We therefore recognize the Klein-Gordon equation for a free particle with a mass m,

after the identification C = m2c2/�
2 = 1/λ2. But in this equation ψ is now a biquaternion,

i.e. a Dirac bispinor.

6.2.4 Dirac and Pauli equations

We now use a long-known property of the quaternionic formalism, which allows to obtain

the Dirac equation for a free particle as a mere square root of the Klein-Gordon operator

(see [67, 24] and references therein).

The Klein-Gordon equation can be developed as

1

c2

∂2ψ

∂t2
=

∂2ψ

∂x2
+

∂2ψ

∂y2
+

∂2ψ

∂z2
− m2c2

�2
ψ. (192)

After some calculations [24], it can be spontaneously factorized as the square of a non-

covariant Dirac equation for a free fermion, which reads in terms of the Dirac α and β

matrices (see e.g. [86])
1

c

∂ψ

∂t
= −αk ∂ψ

∂xk
− i

mc

�
βψ. (193)

The covariant form, in the Dirac representation, can be easily recovered from this

expression [67, 24]. Finally it is easy to derive the Pauli equation, since it is known that it

can be obtained as a non-relativistic approximation of the Dirac equation [86]. Two of the

components of the Dirac bi-spinor become negligible when v << c, so that they become

Pauli spinors (i.e., in our representation the bi-quaternions are reduced to quaternions)

and the Dirac equation is transformed in a Schödinger equation for these spinors with a

magnetic dipole additional term. Such an equation is but the Pauli equation. Therefore

the Pauli equation is understood in the scale-relativity framework as a manifestation of

the fractality of space (but not time), while the symmetry breaking of space differential

elements is nevertheless at work [92].

7. Gauge Theories and Scale Relativity

7.1 Introduction

Let us now review another important field of application of the fractal space-time

/ scale relativity theory. In the previous sections, we have (i) developed the scale laws,

internal to a given space-time point, that can be constructed from first physical principles;

(ii) studied the consequences on motion of the simplest of these laws.
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In that description the resolution variables ln(λ/ε) can take all the values of the scale-

space, but, as a first step, they do not themselves vary in function of other variables. Then

we have considered the new situation of ‘scale dynamics’, in which ‘scale-accelerations’

are defined, so that the resolutions may vary with the djinn (variable fractal dimension).

We shall now consider the case when the ε variables become functions of the coordi-

nates, ε = ε(x, y, z, t). This means that the resolutions become themselves a field. Such

a case can be described as a coupling between motion and scales, but it also comes under

a future ‘general scale-relativitistic’ description in which scale and motion will be treated

on the same footing. As we shall now recall, this approach provides us with a new inter-

pretation of gauge transformations and therefore with a geometric interpretation of the

nature of gauge fields [25, 23, 84].

In the present standard physical theory, one still does not really understand the na-

ture of the electric charge and of the electromagnetic field. As recalled by Landau ([85],

Chap. 16), in the classical theory the very existence of the charge e and of the electro-

magnetic four-potential Aμ are ultimately derived from experimental data. Moreover,

the form of the action for a particle in an electromagnetic field cannot be chosen only

from general considerations, and it is therefore merely postulated. Said another way,

contrarily to general relativity in which the equation of trajectories (i.e., the fundamental

equation of dynamics) is self-imposed as a geodesics equation, in today’s theory of elec-

tromagnetism the Lorentz force must be added to Maxwell’s equations. Quantum field

theories have improved the situation thanks to the link between the nature of charges and

gauge invariance, but we still lack a fundamental understanding of the nature of gauge

transformations.

We shall now review the proposals of the scale-relativity approach made in order to

solve these problems, that involves a new interpretation of gauge transformations, then

we shall recall some of its possible consequences.

7.2 Nature of the electromagnetic field (classical theory)

7.2.1 Electromagnetic potential as resolution dilation field

The theory of scale relativity allows one to get new insights about the nature of the

electromagnetic field, of the electric charge, and about the physical meaning of gauge

invariance. Consider an electron (or any other charged particle). In scale relativity, we

identify the particle with a family of fractal trajectories, described as the geodesics of

a nondifferentiable space-time. These trajectories are characterized by internal (fractal)

structures.

Now consider anyone of these structures, lying at some (relative) resolution ε smaller

that the Compton length of the particle (i.e. such that ε < λc ) for a given relative

position of the particle. In a displacement of the particle, the relativity of scales implies

that the resolution at which this given structure appears in the new position will a priori

be different from the initial one. Indeed, if the whole internal fractal structure of the

electron was rigidly fixed, this would mean an absolute character of the scale-space,
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which would be in contradiction with the principle of the relativity of scales.

Therefore we expect the occurrence of dilatations of resolutions induced by transla-

tions, which read

q
δε

ε
= −Aμ δxμ. (194)

In this expression, the elementary dilation is written as δε/ε = δ ln(ε/λ). This is

justified by the Gell-Mann-Levy method, from which the dilation operator is found to

take the form D̃ = ε ∂/∂ε = ∂/∂ ln ε (see Sect. 4.1.1). Since the elementary displacement

in space-time δxμ is a four-vector and since δε/ε is a scalar, one must introduce a four-

vector Aμ in order to ensure covariance. The constant q measures the amplitude of the

scale-motion coupling; it will be subsequently identified with the active electric charge

that intervenes in the potential. This form ensures that the dimensionality of Aμ be

CL−1, where C is the electric charge unit (e.g., ϕ = q/r for a Coulomb potential) and L

the length unit.

This behaviour can be expressed in terms of the introduction of a scale-covariant

derivative. Namely, the total effect is now the sum of an inertial effect and of a geometric

effect described by Aμ,

q ∂μ ln(λ/ε) = q Dμ ln(λ/ε) + Aμ. (195)

This method is analogous to Einstein’s construction of generalized relativity of motion, in

which the Christoffel components Γμ
ν� can be introduced directly from the mere principle

of relativity of motion (see e.g. Ref. [85]).

7.2.2 Nature of gauge invariance

Let us go one with the dilation field of resolutions Aμ. If one wants such a field to be

physical, it must be defined whatever the initial scale from which we started. Therefore,

starting from another relative scale ε′ = � ε, where the scale ratio � may be any function

of coordinates � = �(x, y, z, t), we get (considering only Galilean scale-relativity for the

moment)

q
δε′

ε′
= −A′

μ δxμ, (196)

so that we obtain

A′
μ = Aμ + q ∂μ ln �(x, y, z, t). (197)

Therefore the four-vector Aμ depends on the relative “state of scale”, or “scale velocity”,

V = ln � = ln(ε/ε′).
We have suggested [25, 23] to identify Aμ with an electromagnetic four-potential and

Eq. (197) with the gauge invariance relation for the electromagnetic field, that writes in

the standard way

A′
μ = Aμ + q ∂μχ(x, y, z, t), (198)

where χ is usually considered as an arbitrary function of coordinates devoid of physical

meaning. This is no longer the case here, since it is now identified with a scale ratio

χ = ln �(x, y, z, t) between internal structures of the electron geodesics (at scales smaller
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than its Compton length). Our interpretation of the nature of the gauge function is

compatible with its inobservability. Indeed, such a scale ratio is impossible to measure

explicitly, since it would mean to make two measurements of two different relative scales

smaller than the electron Compton length. But the very first measurement with resolution

ε would change the state of the electron. Namely, just after the measurement, its de

Broglie length would become of order λdB ≈ ε (see e.g. [4]), so that the second scale ε′

would not be measured on the same electron state. Therefore the ratio � = ε′/ε is destined

to remain a virtual quantity. However, as we shall see in what follows, even whether it

cannot be directly measured, it has indirect consequences, so that the knowledge of

its nature finally plays an important role. Namely, it allows one to demonstrate the

quantization of the electron charge and to relate its value to that of its mass.

7.2.3 Electromagnetic field, electric charge and Lorentz force

Let us now show that the subsequent developments of the properties of this resolution

dilation field support its interpretation in terms of electromagnetic potentials.

If one considers a translation along two different coordinates (or, in an equivalent

way, displacement on a closed loop), one may write a commutator relation (once again,

in analogy with the definition of the Riemann tensor in Einstein’s general relativity),

q (∂μDν − ∂νDμ) ln(λ/ε) = −(∂μAν − ∂νAμ). (199)

This relation defines a tensor field

Fμν = ∂μAν − ∂νAμ (200)

which, contrarily to Aμ, is independent of the initial relative scale (i.e., of the gauge).

One recognizes in Fμν the expression for the electromagnetic field. The first group of

Maxwell equations directly derives from this expression, namely,

∂μFνρ + ∂νFρμ + ∂ρFμν = 0. (201)

In this interpretation, the property of gauge invariance recovers its initial status of

scale invariance, in accordance with Weyl’s initial ideas [93]. However, equation (197)

represents a progress compared with these early attempts and with the status of gauge

invariance in today’s physics. Indeed the gauge function, which has, up to now, been con-

sidered as arbitrary and devoid of physical meaning, is now identified with the logarithm

of internal resolutions. As we shall see, this interpretation has physical consequences

concerning the quantization of the electric charge and its value [25].

Let us now derive the equation of motion of a charge in an electromagnetic field.

Consider the action S for the electron. In the framework of a space-time theory based

on a relativity principle, as it is the case here, it should be given directly by the length

invariant s, i.e., dS = −mcds. This relation ensures that the stationary action principle

δ
∫

dS = 0 becomes identical with a geodesics (Fermat) principle δ
∫

ds = 0. Now the

fractality of the geodesical curves to which the electron is identified means that, while S
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is an invariant with respect to space-time changes of the coordinate system, it is however

a function of the scale variable, S = S(ln ρ), at scales smaller than λ.

Therefore its differential reads

dS =
∂S

∂ ln ρ
d ln ρ =

∂S

∂ ln ρ
(D ln ρ +

1

q
Aμdxμ), (202)

so that we obtain

∂μS = DμS +
∂S

q ∂ ln ρ
Aμ. (203)

This is an essential result of the scale relativity theory. Indeed, the first term of the

product actually provides us with a definition for the ‘passive’ charge

e

c
= − ∂S

q ∂ ln ρ
. (204)

In the standard theory, the charge is set from experiment, then it is shown to be related

to gauge transformations, while the gauge functions are considered to be arbitrary and

devoid of physical meaning. In the scale-relativity approach, the charges are built from

the symmetries of the scale space. One indeed recognizes in Eq. (204) the standard

expression that relates, though the derivative of the action, a conservative quantity to

the symmetry of a fundamental variable (here the internal relative resolution), following

Noether’s theorem.

Finally, the known form of the particle-field coupling term in the action is now demon-

strated, while it was merely postulated in the standard theory. Namely, we obtain

Spf =

∫
−e

c
Aμdxμ. (205)

We can now write the total action under the form (recall that the field term is self-

imposed to be the square of the electromagnetic tensor, see e.g. [85])

S = Sp + Spf + Sf = −
∫

mc ds −
∫

e

c
Aμdxμ − 1

16πc

∫
FμνF

μνdΩ. (206)

The variational principle applied on the two first terms of this action finally yields the

searched motion equation as a geodesics equation (since the action is now proportional

to the invariant proper time) and therefore the known expression for the Lorentz force

acting on a charge e,

mc
duμ

ds
=

e

c
Fμνu

ν . (207)

The variational principle applied on the two last terms of the action (after their general-

ization to the current of several charges) yields Maxwell’s equations,

∂μF
μν = −4π

c
jν . (208)

In conclusion of this section, the progress achieved here (respectively to the standard

classical electromagnetic theory) is that the Lorentz force and the Maxwell equations are

derived in the scale relativity theory as being both manifestations of the fractal geometry

of space-time (instead of being independently set). Moreover, a new physical meaning

can be given to the electric charge and to gauge transformations.

We shall now consider its consequences for the quantum theory of electrodynamics.
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7.3 Scale-relativistic quantum electrodynamics

7.3.1 Analysis of the problem

It is well-known that the quantum theory of electromagnetism and of the electron has

added a new and essential stone in our understanding of the nature of charge. Indeed,

in its framework, gauge invariance becomes deeply related to phase invariance of the

wave function [94]. The electric charge conservation is therefore directly related to the

gauge symmetry. However, despite the huge progress that such a success has been (in

particular, the extension of the approach to non-Abelian gauge theories has allowed to

incorporate the weak and strong field into the same scheme) the lack of a fundamental

understanding of the nature of phases, and therefore of gauge transformations has up to

now prevented from reaching the final goal of gauge theories: namely, to understand why

charge is quantized and, as a consequence, theoretically calculate its quantized value.

Let us indeed consider the wave function of an electron. It reads

ψ = ψ0 exp

{
i

�
(px − Et + σϕ + eχ)

}
. (209)

Its phase contains the usual products of fundamental quantities (space position, time,

angle) and of their conjugate quantities (momentum, energy, angular momentum). They

are related through Noether’s theorem. Namely, the conjugate variables are the conser-

vative quantities that originate from the space-time symmetries. This means that our

knowledge of what are the energy, the momentum and the angular momentum and of

their physical properties is founded on our knowledge of the nature of space, time and

its transformations (translations, rotations and Lorentz boosts).

This is true already in the classical theory, but there is something more in the quan-

tum theory. In its framework, the conservative quantities are quantized when the basic

variables are bounded. Concerning energy-momentum, this means that it is quantized

only in some specific circumstances (e.g., bound states in atoms for which r > 0 in spher-

ical coordinates). The case of the angular momentum is particularly instructive, since

its differences are quantized in an universal way in units of � because angles differences

cannot exceed 2π.

In comparison, the last term in the phase of Eq. (209) keeps a special status in

today’s standard theory. The gauge function χ remains arbitrary, while it is clear from

a comparison with the other terms that the meaning of charge e and the reason for its

universal quantization can be obtained only from understanding the physical meaning of

χ and why it is universally limited, since it is the quantity conjugate to the charge. As we

shall now see, the identification of χ with the resolution scale factor ln � [25, 23], that we

have recalled in the previous sections in the classical framework, can be transported to

the quantum theory and allows one to suggest solutions to these problems in the special

scale-relativity framework.
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7.3.2 QED covariant derivative

Let us first show how one can recover the standard QED covariant derivative in the

scale-relativity approach. Let us consider again the generalized action introduced in the

previous section, which depends on motion and on scale variables. In the scale-relativistic

quantum description, the 4-velocity is now complex (see Sec. 2.4), so that the action reads

S = S(xμ,Vμ, ln �). Recall that the complex action gives the fundamental meaning of

the wave function, namely, ψ is defined as

ψ = eiS/�. (210)

The decomposition performed in the framework of the classical theory still holds and

becomes, in terms of now complex quantities,

dS = −mcVμdxμ − e

c
Aμdxμ. (211)

This leads us to a QED-covariant expression for the velocity,

Vμ = iλDμ(ln ψ) = iλ ∂μ(ln ψ) − e

mc2
Aμ, (212)

where λ = �/mc is the Compton length of the electron.

We recognize in this derivative the standard QED-covariant derivative operator acting

on the wave function ψ,

−i� Dμ = −i� ∂μ +
e

c
Aμ, (213)

since we can write Eq. (212) as mcVμψ = [i� ∂μ − (e/c)Aμ] ψ.

We have therefore reached an understanding from first principles of the nature and ori-

gin of the QED covariant derivative, while it was merely set as a rule devoid of geometric

meaning in standard quantum field theory.

This covariant derivative exactly derives from the previous one introduced in the

classical framework. Indeed, the classical covariant derivative was written (for q = e),

Dμ = ∂μ−(1/e)Aμ acting on �, while ψ = ψ0 exp[(−i/�)(e2/c) ln �]. We therefore recover

the expression (213) acting on ψ.

7.3.3 Klein-Gordon equation in the presence of an electromagnetic field

We can now combine the two main effects of the fractality of space-time, namely, the

induced effects that lead to quantum laws and the effects of coordinate-dependent res-

olutions that lead to the appearance of an electromagnetic field. The account of both

covariant derivatives allows one to derive from a geodesics equation the relativistic wave

equation for a scalar particle in the presence of an electromagnetic field. Let us start

from the fully covariant form of the quadratic invariant, as established in Sec. 6.,

Vμ ⊗ Vμ = (Vμ + iλ ∂μ)Vμ = 1. (214)

By taking its gradient, we obtain, in terms of the operator V̂μ = Vμ+i(λ/2)∂μ introduced

in Sec. 6.1.2,

V̂μ ∂αVμ = 0. (215)
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This equation is no longer equivalent to V̂μ ∂μVα = 0 in the presence of an electromagnetic

field, since in this case

∂αVμ = ∂μVα +
e

mc2
Fμα. (216)

Therefore Eq. (215) becomes

V̂μ
(
∂μVα +

e

mc2
Fμα

)
= 0, (217)

and we finally recover the form of the Lorentz equation of electrodynamics,

mc
d̂

ds
Vα = V̂μ Fαμ. (218)

This equation is equivalent to that found by Pissondes [74], but now the electromagnetic

field itself is built from the fractal geometry, instead of being simply added by applying

the standard (up to now misunderstood) QED rules. The Klein-Gordon equation with

electromagnetic field is easily obtained by replacing in Eq. (214) the complex velocity by

its expression in function of ψ (Eq. 212),(
i� ∂μ − e

c
Aμ

)(
i� ∂μ − e

c
Aμ

)
ψ = m2c2ψ. (219)

7.3.4 Nature of the electric charge (quantum theory)

In a gauge transformation A′
μ = Aμ + e ∂μχ the wave function of an electron of charge e

becomes

ψ′ = ψ exp

{
− i

�
× e

c
× eχ

}
. (220)

We have reinterpreted in the previous sections the gauge transformation as a scale

transformation of resolution, ε → ε′, yielding an identification of the gauge function with

a scale ratio, χ = ln(ε/ε′) = ln �(x, y, z, t), which is a function of space-time coordinates.

In such an interpretation, the specific property that characterizes a charged particle is

the explicit scale-dependence on resolution of its action, then of its wave function. The

net result is that the electron wave function reads

ψ′ = ψ exp

{
−i

e2

�c
ln �

}
. (221)

Since, by definition (in the system of units where the permittivity of vacuum is 1),

e2 = 4πα �c, (222)

where α is the fine structure constant, equation (221) becomes [25, 23]

ψ′ = ψ e−i4πα ln �. (223)

This result supports the previous solution brought to the problem of the nature of the

electric charge in the classical theory. Indeed, considering now the wave function of the



258 Electronic Journal of Theoretical Physics 4, No. 16(II) (2007) 187–274

electron as an explicitly resolution-dependent function, we can write the scale differential

equation of which it is solution as

i�
∂ψ

∂
(

e
c
ln �

) = e ψ. (224)

We recognize in D̃ = i(�c/e)∂/∂ ln � a dilatation operator similar to that introduced

in Sec. 3. Equation (224) can then be read as an eigenvalue equation issued from an

extension of the correspondence principle (but here, demonstrated),

D̃ψ = e ψ. (225)

This is the quantum expression of the above classical suggestion, according to which the

electric charge is understood as the conservative quantity that comes from the new scale

symmetry, namely, from the uniformity of the scale space.

7.3.5 Charge quantization and mass-charge relations

While the results of the scale relativity theory described in the previous sections mainly

deal with a new interpretation of the nature of the electromagnetic field, of the electric

charge and of gauge invariance, we now arrive at one of the main consequences of this

approach. As we shall see, it allows one to establish the universality of the quantization

of charges and to theoretically predict the existence of fundamental relations between

mass scales and coupling constants.

In the previous section, we have recalled our suggestion [25, 23] to elucidate the nature

of the electric charge as being the eigenvalue of the dilation operator corresponding to

resolution transformations. We have written the wave function of a charged particle

under the form Eq. (224).

Let us now consider in more detail the nature of the scale factor ln � in this expression.

This factor describes the ratio of two relative resolution scales ε and ε′ that correspond to

structures of the fractal geodesical paths that we identify with the electron. However the

electron is not structured at all scales, but only at time-scales smaller than its Einstein

time, τE = �/mec
2, that corresponds in space to its Compton length λc = �/mec. These

structures of the fractal geodesics correspond, in terms of standard quantum field theories,

to the appearance of virtual particle-antiparticle pairs, and more generally to the set of

Feynman diagrams that participate in the self-energy and renormalized charge of the

electron [4]. We can therefore take this upper limit as reference scale for resolution ratios

and write

ψ′ = exp

{
−i 4πα ln

(
λc

ε

)}
ψ. (226)

In the case of Galilean scale relativity, in which the composition of two dilations is

given by their usual product, such a relation leads to no new result, since ε can go to

zero, so that ln(λc/ε) is unlimited. But in the framework of special scale-relativity, scale

laws take a log-Lorentzian form below the scale λc (see Section 2). The Planck length lP
becomes a minimal, unreachable scale, invariant under dilations, so that the scale ratios
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ln(λc/ε) becomes limited by the fundamental number C = ln(λc/lP). This implies a

quantization of the charge which amounts to the relation 4πα C = 2kπ, i.e.,

α C =
1

2
k, (227)

where k is integer. This equation yields a general form for relations between mass scales

and coupling constants. Indeed, since C = ln(λc/lP), this constant is given by

Ce = ln

(
mP

me

)
= 51.528 ± 0.001 (228)

for the electron, where mP is the Planck mass and me is the electron mass).

Now, in order to explicitly apply such a relation to the electron, we must account for

the fact that we expect the electric charge to be only a residual of a more general, high

energy electroweak coupling in the framework of Grand Unified theories. From the U(1)

and SU(2) couplings, one can define an effective electromagnetic coupling as [4]

α−1
0 =

3

8
α−1

2 +
5

8
α−1

1 . (229)

It is such that α0 = α1 = α2 at unification scale and it is related to the fine structure

constant at Z scale by the relation α = 3α0/8. This means that, because the weak gauge

bosons acquire mass through the Higgs mechanism, the interaction becomes transported

at low energy only by the residual null mass photon. As a consequence the amplitude of

the electromagnetic force abruptly falls at the WZ scale. Therefore, we have suggested

that it is the coupling α0 instead of α which must be used in Eq. (227) for relating the

electron mass to its charge.

Finally, disregarding as a first step threshold effects (that occur at the Compton scale

of the electron), we get a mass-charge relation for the electron [25, 23]:

ln
mP

me

=
3

8
α−1. (230)

The existence of such a relation between the mass and the charge of the electron is

supported by the experimental data. Since the coupling constant α is actually running

with mass scale, one can consider this relation as an equation to be solved for this

running mass scale me and the value of the charge at this scale, α(me) (see Fig. 18).

Using the known experimental values, the two members of this equation agree to 0.2 %

at the actual electron mass scale. Namely, one finds Ce = ln(mP /me) = 51.528(1) while

(3/8)α−1 = 51.388. The agreement is made even better if one accounts from the fact

that the measured fine structure constant (at Bohr scale) differs from the limit of its

asymptotic behavior (that includes radiative corrections). One finds that the asymptotic

inverse running coupling at the scale where the asymptotic running mass reaches the

observed mass me is α−1
0 {r(m = me)} = 51.521, which lies within 10−4 of the value of

Ce (see Fig. 18).
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Fig. 18 Observed convergence at the electron mass-scale (i.e. at the Compton length of the
electron) of the asymptotic running electromagnetic inverse coupling α−1(r) and of the running
scale-relativity constant 8 C(r)/3 = (8/3) ln[mP/m(r)]. Such a convergence is theoretically ex-
pected in the framework of the scale-relativistic interpretation of gauge transformations, that
yields a mass-charge relation for the electron, that reads (8/3)αe ln(mP/me) = 1. The final low
energy fine structure constant differs from its asymptotic value by a small theshhold effect (see
e.g. [86], [4] Sec. 6.2)

7.4 Generalization to non-Abelian gauge theories

The scale relativistic construction of gauge fields and gauge charges from a fractal and

nondiffferentiable geometry of space-time has been recently generalized to the non-Abelian

case [49]. Let us summarize these results.

7.4.1 General scale transformations and gauge fields

This generalization is based on a general description of the internal fractal structures

of geodesics in terms of scale variables ηαβ(x, y, z, t) = ραβεαεβ whose true nature is

tensorial, in analogy with uncertainties in physics which are fully described by a covari-

ance error matrix, involving possible correlations ραβ, and may now be function of the

coordinates. This resolution tensor generalizes the single resolution variable ε.

We assume for simplicity of the writing that the two tensorial indices can be gathered

under one common index. We therefore write the scale variables under the simplified

form ηα1α2 = ηα, with α = 0 to n(n + 1)/2, where n is the number of dimensions that

intervene in the definition of resolutions (n = 3 for fractal space, 4 for fractal space-time

and 5 in the special scale relativity case which includes a ‘scale-time’ or ‘djinn’ [16]).

Let us consider infinitesimal scale transformations. The transformation law on the ηα

can be written in a linear way as

η′
α = ηα + δηα = (δαβ + δθαβ) ηβ, (231)

where δαβ is the Kronecker symbol. The scale covariant derivative of the Abelian case is
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therefore generalized as

dηα = Dηα − ηβδθαβ = Dηα − ηβ W μ
αβ dxμ. (232)

Gauge field potentials W μ
αβ are naturally introduced in this expression. They are linked

to the scale transformations as follows:

δθαβ = W μ
αβ dxμ. (233)

One should keep in mind, when using this expression, that these potentials find their

origin in a covariant derivative process and are therefore not gradients.

7.5 Generalized charges

After having written the transformation law of the basic variables (the ηα tensors), we

now need to describe how various physical quantities transform under these ηα transfor-

mations. These new transformation laws are expected to depend on the nature of the

objects to transform (e.g., vectors, tensors, spinors, etc.), which implies to jump to group

representations.

We anticipate the existence of charges by generalizing to multiplets the relation

(Eq. 184) between the velocity field and the wave function. In this case the multivalued

velocity becomes a biquaternionic matrix,

Vμ
jk = iλ ψ−1

j ∂μψk. (234)

The biquaternionic (therefore noncommutative) nature of the wave function, which is

equivalent to Dirac bispinors, plays here an essential role. Indeed, the general structure of

Yang-Mills theories and the correct construction of non-Abelian charges can be obtained

thanks to this result [49].

The action also becomes a tensorial biquaternionic quantity,

dSjk = dSjk(x
μ,Vμ

jk, ηα), (235)

and, in the absence of field, it is linked to the generalized velocity (and therefore to the

spinor multiplet) by the relation

∂μSjk = −mc Vμ
jk = −i� ψ−1

j ∂μψk. (236)

Now, in the presence of a field, i.e., when the second-order effects of the fractal geom-

etry appearing in the right hand side of Eq. (232) are included), by using the complete

expression for ∂μηα = Dμηα − W μ
αβ ηβ, we obtain a non-Abelian relation

∂μSjk = DμSjk − ηβ ∂Sjk

∂ηα

W μ
αβ. (237)

We are finally led to define a general group of scale transformations whose generators

are

Tαβ = ηβ∂α (238)
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(where we use the compact notation ∂α = ∂/∂ηα), yielding the generalized charges,

g̃

c
tαβ
jk = ηβ ∂Sjk

∂ηα

. (239)

This unified group is submitted to a unitarity condition, since, when it is applied to the

wave functions, ψψ† must be conserved. Knowing that the α, β represent two indices

each, this is a large group that contains the standard model U(1) × SU(2) × SU(3) as

a subset [49]. Its more precise nature and its properties will be studied in forthcoming

works.

As we have shown in more detail in Ref. [49], the various ingredients of Yang-Mills

theories (gauge covariant derivative, gauge invariance, charges, potentials, fields, etc...)

may subsequently be recovered in such a framework, and they now have a first principle

and geometric scale-relativistic foundation.

8. Scale Quantization: Quantum Mechanics in Scale-space

8.1 Motivation

Let us now consider a new tentative development of the scale relativity theory. Recall

that this theory is founded on the giving up of the hypothesis of differentiability of

space-time coordinates. We reached the conclusion that the problem of dealing with

non-derivable coordinates could be circumvented by replacing them by fractal functions

of the resolutions. These functions are defined in a space of resolutions, or ‘scale-space’.

The advantage of this approach is that it sends the problem of non-differentiability to

infinity in the scale space (ln(λ/ε) → ∞). But, in such a framework, standard physics

should be completed by scale laws allowing to determine the physically relevant functions

of resolution. We have suggested that these fundamental scale laws be written in terms

of differential equations (which amounts to generalize the discrete generators of fractal

objects defined by iterated functions to differential generators). Then the effects induced

by these internal scale laws on the dynamics can be studied: we have found that the

simplest possible scale laws that are consistent (i) with the principle of scale relativity

and (ii) with the standard laws of motion and displacements, lead to a quantum-like

mechanics in space-time.

However, the choice to write the transformation laws of the scale space in terms of

standard differential equations (involving ∂/∂ ln ε, ∂2/(∂ ln ε)2 as a first step, then ∂/∂ δ,

etc... as a second step), even though it allows nondifferentiability in standard space-

time, implicitly assumes differentiability in the scale space. This is once again a mere

hypothesis that can be again given up.

We may therefore use the method that has been built for dealing with nondifferentia-

bility in space-time and explore a new level of structures that may be the manifestation of

this more profound nondifferentiability. As we shall now see, this results in the obtention

of scale laws that take a quantum-like form instead of a classical one. Now, these new
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proposals should be considered as tentative in view of their novelty. Their self-consistency

and their ability to describe real systems remain to be established.

Moreover, the complementary problem of constructing the motion laws that are in-

duced by such quantum scale laws is left open to future studies, knowing that one obtains

quantum laws of motion in position space from classical laws in the scale space. The con-

struction of ‘super-quantum’ laws of motion based on internal scale quantum laws involves

two levels of probabilistic description embedded one in the other, and may therefore reveal

to be extraordinary difficult.

8.2 Schrödinger equation in scale-space

Recall that, for the construction of classical scale differential equations, we have mainly

considered two representations: (i) the logarithms of resolution are fundamental variables;

(ii) the main new variable is the djinn and the resolutions are deduced as derivatives.

These two possibilities are also to be considered for the new present attempt to con-

struct quantum scale-laws. The first one, that we shall only briefly study here, consists of

introducing a scale-wave function ψ[ln ε(x, t), x, t]. In the simplified case where it depends

only on the time variable, one may write a Schrödinger equation acting in scale-space:

D2
ε

∂2ψ

(∂ ln ε)2
+ iDε

∂ψ

∂t
− 1

2
φψ = 0. (240)

This is the quantum equivalent of the classical stationary wave equation giving rise to a

log-periodic behavior (Sec. 4.3.1). It is also related to the scale-relativity re-interpretation

of gauge invariance (Sec. 7.), in which the resolutions become ‘fields’ depending on space

and time variables, so that the wave function becomes a function of ln ε. However only

the phase was affected, while now the modulus of the scale-wave function depends on the

resolution scale. This means that the solutions of such an equation give the probability

of presence of a structure in the scale-space, and that time-dependent solutions describe

the propagation of quantum waves in the scale space.

8.3 Schrödinger equation in terms of the djinn

Let us now consider the second representation in which the ‘djinn’ (variable fractal di-

mension) has become the primary variable. Start with the general Euler-Lagrange form

given to scale laws in Sec. 4.3.2 after introduction of the djinn δ,

d

dδ

∂L̃

∂V
=

∂L̃

∂ lnL . (241)

where we recall that L is a fractal coordinate, δ is the djinn that generalizes to a variable

fifth dimension the fractal dimension (minus the topological dimension), L̃ is the scale

Lagrange function and V = ln(λ/ε) = d lnL/dδ is the ‘scale-velocity’.
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It becomes in the Newtonian case [i.e., when L̃ = V
2/2 − ΦS(lnL, δ)]

d2 lnL
dδ2

= − ∂ΦS

∂ lnL . (242)

Since the scale-space is now assumed to be itself nondifferentiable and fractal, the

various elements of the new description can be used in this case, namely:

(i) Infinity of trajectories, leading to introduce a scale-velocity field V = V[lnL(δ), δ];

(ii) Decomposition of the derivative of the fractal coordinate in terms of a ‘classical

part’ and a ‘fractal part’, and introduction of its two-valuedness because of the symmetry

breaking of the reflection invariance under the exchange (dδ ↔ −dδ);

(iv) Introduction of a complex scale-velocity Ṽ based on this two-valuedness;

(v) Construction of a new total covariant derivative with respect to the djinn, that

reads
d̂

dδ
=

∂

∂δ
+ Ṽ ∂

∂ lnL − iDs
∂2

(∂ lnL)2
. (243)

(vi) Introduction of a wave function as a re-expression of the action (which is now

complex), Ψs(lnL) = exp(iSs/2Ds);

(vii) Transformation and integration of the above Newtonian scale-dynamics equation

under the form of a Schrödinger equation now acting on scale variables:

D2
s

∂2Ψs

(∂ lnL)2
+ iDs

∂Ψs

∂δ
− 1

2
ΦsΨs = 0. (244)

8.4 Complexergy

In order to understand the meaning of this new Schrödinger equation, let us review the

various levels of evolution of the concept of physical fractals adapted to a geometric

description of a nondifferentiable space-time.

The first level in the definition of fractals is Mandelbrot’s concept of ‘fractal objects’

[2].

The second step has consisted to jump from the concept of fractal objects to scale-

relativistic fractals. Namely, the scales at which the fractal structures appear are no

longer defined in an absolute way. Only scale ratios do have a physical meaning, not

absolute scales.

The third step, that is achieved in the new interpretation of gauge transformations

recalled hereabove, considers fractal structures (still defined in a relative way) that are

no longer static. Namely, the scale ratios between structures become a field that may

vary from place to place and with time.

The final level (in the present state of the theory) is given by the solutions of the

above scale-Schrödinger equation. The Fourier transform of these solutions will provide

probability amplitudes for the possible values of the logarithms of scale ratios, Ψs(ln �).

Then |Ψs|2(ln �) gives the probability density of these values. Depending on the scale-

field and on the boundary conditions (in the scale-space), peaks of probability density
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will be obtained, this meaning that some specific scale ratios become more probable than

others. Therefore, such solutions now describe quantum probabilistic fractal structures.

The statement about these fractals is no longer that they own given structures at some

(relative) scales, but that there is a given probability for two structures to be related by

a given scale ratio.

Concerning the direct solutions of the scale-Schrödinger equation, they provide prob-

ability densities for the position on the fractal coordinate (or fractal length) lnL. This

means that, instead of having a unique and determined L(ln ε) dependence (e.g., the

length of the Britain coast), an infinite family of possible behaviors is defined, which

self-organize in such a way that some values of lnL become more probable than others.

A more complete understanding of the meaning of this new description can be reached

by considering the case of a scale-harmonic oscillator potential well. This is the quantum

equivalent of the scale force considered previously, but now in the attractive case. The

stationary Schrödinger equation reads in this case

2D2
s

∂2Ψs

(∂ lnL)2
+

[
IE − 1

2
ω2(lnL)2

]
Ψs = 0. (245)

The ‘stationarity’ of this equation means that it does no longer depend on the djinn δ.

(Recall that the djinn is to scale laws what time is to motion laws, i.e., it can be identified

with a ‘scale-time’, while the resolutions are ‘scale-velocities’).

A new important quantity, denoted here IE, appears in this equation. It is the conser-

vative quantity which, according to Noether’s theorem, must emerge from the uniformity

of the new djinn variable (or fifth dimension). It is defined, in terms of the scale-Lagrange

function L̃ and of the resolution V = ln(λ/ε), as:

IE = V
∂L̃

∂V
− L̃. (246)

This new fundamental prime integral had already been introduced in Refs. [16, 4], but

its physical meaning remained unclear.

As we shall now see, the behavior of the above equation suggests an interpretation for

this conservative quantity and allows one to link it to the complexity of the system under

consideration. For this reason, and because it is linked to the djinn in the same way as

energy is linked to the time, we have suggested to call this new fundamental quantity

‘complexergy’ [83].

Indeed, let us consider the momentum solutions a[ln(λ/ε)] of the above scale-Schrödinger

equation. Recall that the main variable is now lnL and that the scale-momentum is the

resolution, ln ρ = ln(λ/ε) = d lnL/dδ (since we take here a scale-mass μ = 1). The

squared modulus of the wave function yields the probability density of the possible val-

ues of resolution ratios, namely,

|an (ln ρ) |2 =
1

2nn!
√

2πDsω
e−(ln ρ)2/2Dsω H2

n

(
ln ρ√
2Dsω

)
, (247)

where the Hn’s are the Hermite polynomials (see Fig. 19).
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The complexergy is quantized, in terms of the quantum number n, according to the

well-known relation for the harmonic oscillator:

IEn = 2Ds ω

(
n +

1

2

)
. (248)

As can be seen in Fig. 19, the solution of minimal complexergy shows a unique peak

in the probability distribution of the ln(λ/ε) values. This can be interpreted as describing

a system characterized by a single, more probable scale (relatively to a reference scale).

Now, when the complexergy increases, the number of probability peaks (n+1) increases.

Since these peaks are nearly regularly distributed in terms of ln ε (i.e., probabilistic log-

periodicity), it can be interpreted as describing a system characterized by a hierarchy

of imbricated levels of organization. Such a hierarchy of organization levels is one of

the criterions that define complexity. Therefore increasing complexergy corresponds to

increasing complexity, which justifies the chosen name for the new conservative quantity.

More generally, one can remark that the djinn is universally limited from below (δ >

0), which implies that the complexergy is universally quantized in the framework of such a

quantum theory of scales. The same is true for the energy of systems which are described

by the above scale-Schrödinger equation. In the case when ln(L/L0) = ln(T /T0) is mainly

a time variable (as for example in motion-relativistic high energy physics), the associated

conservative quantity is E = ln(E/E0) (see [4], p. 242). Because of the fractal-nonfractal

transition, ln(T /T0) > 0 is also limited from below, so that we expect the energy to be

generally quantized, but now in exponential form. In other words, it describes a power

law hierarchy of energies.

8.5 Applications

8.5.1 Elementary particle physics

A natural domain of possible application of these new concepts is the physics of ele-

mentary particles. Indeed, there is an experimentally observed hierarchy of elementary

particles, that are organized in terms of three known families, with mass increasing with

the family quantum number. For example, there is a (e, μ, τ) universality among leptons,

namely these three particles have exactly the same properties except for their mass and

family number. However, there is, in the present standard model, no understanding of

the nature of the families and no prediction of the values of the masses.

Hence, the experimental masses of charged leptons and of the ‘current’ quark masses

are ([99]:

• me = 0.510998902(21) MeV; mμ = 105.658357(5) MeV; mτ = 1776.99(28) MeV;

• mu = 0.003 GeV; mc = 1.25 GeV; mt = 174 GeV;

• md = 0.006 GeV; ms = 0.125 GeV; mb = 4.2 GeV.

Basing ourselves on the above definition of complexergy and on this mass hierarchy,

we suggest that the existence of particle families are a manifestation of increasing com-

plexergy, i.e., that the family quantum number is nothing but a complexergy quantum



Electronic Journal of Theoretical Physics 4, No. 16(II) (2007) 187–274 267

number. This would explain why the electron, muon and tau numbers are conserved in

particle collisions, since such a fondamental conservative quantity (like energy) can be

neither created nor destroyed.

We have shown in Sec. 7. that the scale-relativistic re-interpretation of gauge transfor-

mations allowed one to suggest a relation between the mass of the electron and its electric

charge (in terms of the fine structure constant). This result is compatible with the mass

of the electron mainly being of electromagnetic origin. More generally, the observed mass

hierarchy between (neutrinos, charged leptons, quarks) also goes in this direction, sug-

gesting that their masses are respectively of (weak, electroweak and electroweak+strong)

origin.

Although a full treatment of the problem must await a more advanced level of devel-

opment of the theory, that would mix the scale quantization description with the gauge

field one, some remarkable structures of the particle mass hierarchy already support such

a view:

(i) The above values of quark and lepton masses are clearly organized in a hierarchical

way. This suggests that their understanding is indeed to be searched in terms of structures

of the scale-space, for example as manifestation of internal structures of iterated fractals

[4].

(ii) With regards to the e, μ, τ leptons, we had already remarked in [4], in the frame-

work of a fractal sef-similar model, that their mass ratios followed a power-law-type

sequence. Namely, the μ and τ mass are given, in function of 3 me (which is the effective

mass-energy of an electron which creates a virtual electron-positron pair, interpreted in

the scale relativity approach as a part of the geodesic that runs backward in time [4]) by

the empirical relations mμ ≈ 3 me × 4.13 = 105.656 MeV and mτ ≈ 3 me × 4.15 = 1776.1

MeV. While the mass derived for the τ from this formula was in disagreement with its

known value at that time (1784 MeV), more recent experimental determinations have

given a mass of 1777 MeV [99], very close to the ‘predicted’ value. But it is clearly only

provided such relations could be expected from theoretical arguments (and therefore al-

low one to possibly predict other lepton families) that they could be considered as having

physical meaning.

(iii) We have suggested [100] that QCD is linked with a 3D harmonic oscillator scale-

potential (since its symmetry group is SU(3)). In such a framework, the energy ratios

are expected to be quantized as ln E ∝ (3 + 2n). It may therefore be significant in this

regard that the s/d mass ratio, which is far more precisely known that the individual

masses since it can be directly determined from the pion and kaon masses, is found to be

ms/md = 20.1 [99], to be compared with e3 = 20.086, which is the fundamental (n = 0)

level predicted by the above formula.

8.5.2 Biology: nature of first evolutionary leaps

Another tentative application of the complexergy concept concerns biology, in particular

the question of species evolution. In the fractal model of the tree of life that leads to

predict a log-periodic behavior for evolutionary lineages [42, 43, 44], we have voluntarily
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limited ourselves to an analysis of only the chronology of events (see Fig. 4), independently

of the nature of the considered evolutionary leaps. We have now at our disposal a tool

that allows us to reconsider the question.

We indeed suggest that life evolution proceeds in terms of increasing quantized com-

plexergy. This would account for the existence of punctuated evolution [101], and for

the log-periodic behavior of the leap dates, which can now be interpreted in terms of

probability density of the events (more precisely, of the scale intervals), P = ψψ† ∝
sin2[ω ln(T − Tc)]. Moreover, one may contemplate the possibility of a first rough under-

standing of the nature of the events.

Indeed, in the new framework of scale quantization, it is now possible to derive the

most probable scales at which structures are expected to emerge, in function of the

limiting conditions in scale space. Let us consider the free Schrödinger equation in scale-

space. Its solutions are determined by the minimal and maximal possible scales for the

system under consideration (which play a role analogous to the walls for a free quantum

particle in a box. At the fundamental level (lowest complexergy) the solution of this

equation is characterized by one length-scale (Fig. 19). Moreover, the most probable value

for this scale of formation is predicted to be the ‘middle’ of the scale-space (in the free case,

it is determined by the boundary conditions). Now the universal boundary conditions are

the Planck-length lP in the microscopic domain and the cosmic scale L = Λ−1/2 given by

the cosmological constant Λ in the macroscopic domain [4, 23, 35]. From the predicted

and now observed value of the cosmological constant, one finds L/lP = 5.3×1060, so that

the mid scale is at 2.3 × 1030 lP = 40 μm. A quite similar result is obtained from the

scale boundaries of living systems (0.5 Angströms - 30 m). This scale of 40 μm is indeed

a typical scale of living cells. Moreover, the first ‘prokaryot’ cells appeared about three

Gyrs ago had only one hierarchy level (no nucleus).
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Fig. 19 Solutions of increasing complexergy of the scale-Schrödinger equation for an harmonic
oscillator scale-potential (the same kind of patterns would be obtained in other situations such
as the free Schrödinger equation in a scale-box). These solutions can be interpreted as describing
systems characterized by an increasing number of hierarchical levels, as illustrated in the right
hand side of the figure. For example, living systems such as procaryots, eucaryots and simple
multicellular organisms have respectively one (cell size), two (nucleus and cell) and three (nucleus,
cell and organism) characteristic scales.

In this framework, a further increase of complexergy can occur only in a quantized
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way. This is supported by the punctuated character of the major evolutionary leaps [101].

The second level describes a system with two levels of organization, in agreement with the

second step of evolution leading to eukaryots about 1.7 Gyrs ago (see upper Fig. 4). One

expects (in this very simplified model), that the scale of nuclei be smaller than the scale

of prokaryots, itself smaller than the scale of eucaryots: this is indeed what is observed.

The following expected major evolutionary leap is a three organization level system,

in agreement with the apparition of multicellular forms (animals, plants and fungi) about

1 Gyr ago (third event in upper Fig. 4). It is also predicted that the multicellular stage

can be built only from eukaryots, in agreement with what is observed. Namely, the cells

of multicellulars do have nuclei; more generally, evolved organisms keep in their internal

structure the organization levels of the preceeding stages.

The following major leaps correspond to more complicated structures, then to new

functions (supporting structures such as exoskeletons, tetrapody, homeothermy, vivipar-

ity), but they are still characterized by fundamental changes in the number of organization

levels. The above model (based on spherical symmetry) is clearly too simple to account

for these events, but it can be easily generalized to several scale variables and to more

complicated symmetries, so that it is not excluded that some of them could be accounted

for in the same framework. The theoretical biology approach outlined here [83, 102] is still

in the infancy: future attempts of description using the scale-relativity methods will have

the possibility to take into account more complicated symmetries, boundary conditions

and constraints, so that the field seems to be wide open to investigation.

Conclusion and Prospect

We have attempted, in the present review paper, to give an extended discussion of

the various developments of the theory of scale-relativity, including some new proposals

concerning in particular the quantization in the scale-space and tentative applications to

the sciences of life.

The aim of this theory is to describe space-time as a continuous manifold which

can be nondifferentiable and is constrained by the principle of relativity (of motion and

of scale). Such an attempt is a natural extension of general relativity, since the two-

times differentiable continuous manifolds of Einstein’s theory, that are constrained by

the principle of relativity of motion, are particular sub-cases of the new geometry.

Now, giving up the differentiability hypothesis involves an extremely large number of

new possible structures to be investigated and described. In view of the immensity of

the task, we have chosen to proceed by adding self-imposed structures in a progressive

way, using presently known physics as a guide. Such an approach is rendered possible by

the result according to which small-scale structures issued from nondifferentiability are

smoothed out beyond some transitions at large scale. Moreover, these transitions have

profound physical meaning, since they are themselves linked to fundamental mass scales.

This means that the program that consists of developing a full scale-relativistic

physics, despite all its achievements, is still in its infancy. Much work remains to be
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done, in order (i) to describe the effect on motion laws of the various levels of scale

laws that have been considered, and of their generalizations still to come (general scale-

relativity); (ii) to take into account the various new symmetries, as well continuous as

discrete, of the new variables that must be introduced for the full description of a fractal

space-time, and of the conservative quantities constructed from them (including their

quantum counterparts which are expected to provide us with an explanation of various

still misunderstood quantum numbers in elementary particle physics).

Let us conclude by a final remark: one of the main interest of the new approach is

that, being based on the universality of fractal geometry already unveiled by Mandelbrot,

it allows one to go beyond the frontiers between sciences. In particular, it opens the hope

of a future refoundation on first principles of sciences of life and of some human sciences.
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