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Our goal

Mathematical description of dark matter (DM)

dark matter usually described as a perfect fluid with zero pressure

baryonic matter is assumed to follow the velocity distribution of DM

DM as perfect fluid: no generation of rotational velocity (i.e. vorticity)

From the observational side ...

vorticity is produced in our universe (galaxies rotate etc)

recently it has been measured to be correlated on scales 20h−1Mpc

Taylor et Jagannathan [1603.02418]

How to solve this mismatch? How to go beyond the perfect fluid description?
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Outline

(1) Dark matter

what is CDM and WDM

standard description CDM:(((
((((

(
generation vorticity

(2) How to go beyond perfect fluid description: possibilities...

(3) What we do: analytic method followed

(4) Results for vorticity power spectrum
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What is dark matter
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ΛCDM

Standard paradigm to describe evolution observed universe

ΛCDM
Ω0DE ' 0.7

Ω0DM ' 0.25

Ω0b ' 0.05

CDM: thermal relics mainly cold

Relics: particle species which are decoupled from primordial plasma

Thermal: in thermal equilibrium before decoupling

Cold: non-relativistic at decoupling

( vs Hot/warm: relativistic at decoupling)
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Time line dark matter

early times: primordial plasma with particle species in thermal equilibrium

particle specie decouples when Γ∗ � H∗ (rate interaction lower rate
expansion universe)

particle specie with mass m non relativistic when T < m (sloppily)

e.g. neutrinos: decouple when weak interactions decouple (∼ 1 MeV), non relativistic

much later (mass is 10−(1−3) eV)

Giulia Cusin Analytic description of dark matter clustering: beyond perfect fluid approximation 6 / 52



Time line dark matter

HDM

WDM

CDM

Temperature

decoupling today

UR

UR

NR

NR

NR
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Depending on prevalence CDM or WDM : 6= scenarios structure formation

Standard interpretation: baryonic matter clusters in the DM potential wells

DM mainly warm: particles with big kinetic energy, they tend to escape
from potential wells and make distribution uniform.
Cosmic structure created with a top-down scenario

DM mainly cold: particles with smaller kinetic energy. They stay in the
potential wells: small structures formed → bigger ones
Bottom-up scenario

This second scenario seems to be the preferred one by current observations:
dominant component of DM is cold
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Standard description CDM

CDM perfect fluid, pressureless: density and velocity (divergence) fields

continuity equation ∂ηδ +∇x ((1 + δ) v) = 0

Euler equation (∂η + vi∂i)vj +Hvj + ∂iΦ = 0

δ ≡ overdensity, v ≡ peculiar velocity, Φ ≡ gravitational potential

Taking the curl of the second equation w ≡ ∇x ∧ v

∂w

∂η
+Hw −∇x ∧ [v ∧w] = 0 → homogeneous!

If initial vorticity is vanishing, in this description there is no way to generate it.
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How to go beyond the standard description

of DM as perfect fluid
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How to go beyond the perfect fluid approximation

Vlasov equation: exact description!

Linearize Vlasov? Not possible way...

Truncation Boltzmann hierarchy!
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Beyond perfect fluid: Vlasov equation

DM description in terms of one-particle phase-space distribution function

f(η,x,p) distribution function

(x,p) comoving coord, conjugate momenta

f(η,x,p)d3p d3x prob. having particle with momentum p and coord. x

If interactions are absent: distribution function is conserved in phase space

df

dη
=

(
∂f

∂η

)
x

+
dx

dη
· ∇xf +

dp

dη
· ∂f
∂p

= 0 Vlasov equation

Vlasov equation exactly describes the evolution of DM particles when
interactions are negligible: no other assumption introduced
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Example: background distribution function

Background distribution f(η, p) in an homogeneous and isotropic universe

P i =
1

a
pi physical momentum P i, comoving pi

f(η, P ) =

(
exp

√
P 2 +m2

T (a)
± 1

)−1

=

exp

√( p
a

)2
+m2

T (a)
± 1


−1

± depending on the spin of particles

After decoupling at T∗, df/dη = 0→ f written in terms of comoving momenta does
not depend on a

f(p) =

(
exp

√
p2 +m2∗
T∗a∗

± 1

)−1

m∗ ≡ a∗m
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Hot dark matter example: linearized Vlasov

Let us try to repeat what is usually done for HDM (e.g. neutrinos)

v v

f(η,x,p) =f̄(η, p) + δf(η,x,p)

 linear Vlasov for δf

Ψ(η,k,n, p) ∝ δf =
∑
`

(−)`Ψ`(η, k, p)P`(µ)

 Boltzmann hierarchy for Ψ`

` = 1 perfect fluid approximation

` = 2 velocity dispersion included
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Hot dark matter example: linearized Vlasov

Let us try to repeat what is usually done for HDM (e.g. neutrinos)

v v

f(η,x,p) =f̄(η, p) + δf(η,x,p)

 linear Vlasov for δf

Ψ(η,k,n, p) ∝ δf =
∑
`

(−)`Ψ`P`(µ)

 Boltzmann hierarchy for Ψ`

` = 1 perfect fluid approximation

` = 2 velocity dispersion included

Can we do the same for CDM?
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Hot dark matter example: linearized Vlasov

Let us try to repeat what is usually done for HDM (e.g. neutrinos)

v v

f(η,x,p) =f̄(η, p) + δf(η,x,p)

 linear Vlasov for δf

Ψ(η,k,n, p) ∝ δf =
∑
`

(−)`Ψ`P`(µ)

 Boltzmann hierarchy for Ψ`

` = 1 perfect fluid approximation

` = 2 velocity dispersion included

v v

f̄ ∼ Dirac delta!

δf can not be treated as small quantity

We can not perturb Vlasov equation!
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(Non)-relativistic kinetic theory

Solving directly Vlasov equation (perturbed) seems not to work for CDM

Beyond: which other route can be followed?

We take one step backward and we consider how the Euler and continuity

equations describing DM as a perfect fluid are derived

 (non)-relativistic kinetic theory
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(Non)-relativistic kinetic theory: single particle dynamics

Starting point (newtonian framework)

Newtonian dynamics of a test particle in an expanding background

H2 =
8πG

3
ρ̄(η) evolution background

∆xΦ = 4πGa2δρ(η,x) Poisson

dp

dη
= −ma∇xΦ evolution particle momentum

(η,x) comoving coordinates, Φ newtonian potential, p ≡ madx/dη comoving
momentum, ρ(η,x) = ρ̄(η) + δρ(η,x)
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(Non)-relativistic kinetic theory: from single-particle to continuous
description

Single-particle description → continuous one in terms of Eulerian fields

ncom(η,x) ≡
ˆ
d3pf(η,x,p) comoving number density

ρcom(η,x) =

ˆ
d3p

√
m2 +

( p
a

)2
f(η,x,p) ' m

ˆ
d3pf(η,x,p) ρ = a−3ρcom

vi(η,x) ≡
1

ncom(η,x)

ˆ
d3p

dxi

dη
f(η,x,p) peculiar velocity

vivj + σij ≡
1

ncom

ˆ
d3p

dxi

dη

dxj

dη
f(η,x,p) velocity dispersion tensor

. . .

we can define other macroscopic quantities using higher order momenta
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(Non)-relativistic kinetic theory: Boltzmann hierarchy

For an observable A(x,p) in phase space we define an average over momenta

〈A(x)〉p ≡
´
d3pA(x,p)f(η,x,p)´

d3pf(η,x,p)

It follows

vi ≡
〈
dxi

dη

〉
p

σij ≡
〈
dxi

dη

dxj

dη

〉
p

−
〈
dxj

dη

〉
p

〈
dxj

dη

〉
p

Vlasov equation: continuity equation in phase space(
∂f

∂η

)
x

+
p

ma
· ∇f −ma∇xΦ · ∂f

∂p
= 0

We can integrate this equation over momenta ...
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Boltzmann hierarchy

(
∂δ

∂η

)
x

+∇x · [(1 + δ) v] = 0(
∂v

∂η
+ vj∂

j

)
vi +Hvi = −∂iΦ− 1

ρ
∂j (ρ σij)

∂ησ
ij(η,x) + 2Hσij + vk∂kσ

ij + σik∂kv
j + σjk∂kv

i =���
���1

ρ
∂k
(
ρσijk

)
. . .

We truncate the Boltzmann hierarchy setting σijk ≡ 〈uiujuk〉p = 0

vanishing background value

it contains additional p/m for non-relativistic particles

vs perfect fluid approximation: only first two momenta are considered
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What is this the velocity dispersion tensor σij

Definition

σij ≡
〈
dxi

dη

dxj

dη

〉
p

−
〈
dxj

dη

〉
p

〈
dxj

dη

〉
p

”Physical” parametrization

σij = Pδij + Σij =

 P Σ12 Σ13

Σ12 P Σ23

Σ13 Σ23 P


pressure of DM fluid

anisotropic stress of DM fluid
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Set of equations describing CDM with velocity dispersion

(
∂δ

∂η

)
x

+∇x · [(1 + δ) v] = 0(
∂v

∂η
+ vj∂

j

)
vi +Hvi = −∂iΦ−

1

ρ
∂j (ρ σij)

∂ησ
ij(η,x) + 2Hσij + vk∂kσ

ij + σik∂kv
j + σjk∂kv

i = 0

Vorticity equation (curl of Euler equation), w ≡ ∇x ∧ v

∂w

∂η
+Hw −∇x ∧ [v ∧w] = −∇x ∧

(
1

ρ
∇x (ρσ)

)
where (∇xσ)i ≡ ∂jσji

limit perfect fluid σ = 0→ ω = 0

equation for σij homegeneous: we need initial velocity dispersion!

NON-perturbative results

Giulia Cusin Analytic description of dark matter clustering: beyond perfect fluid approximation 23 / 52



Equation for vorticity

Vorticity equation (curl of Euler equation)

∂w

∂η
+Hw −∇x ∧ [v ∧w] = −∇x ∧

(
1

ρ
∇x (ρσ)

)
where (∇xσ)i ≡ ∂jσji

Source is non-vanishing in two cases. Recalling σij = Pδij + Σij

1 Σij = 0, non barotropic fluid P 6= P (ρ) → ∇P ∧∇ρ 6= 0

2 Σij 6= 0 non vanishing anisotropic stress
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Summary until now

We achieved our goal to go beyond the perfect fluid description for CDM

DM described in terms δ, v, pressure P and anisotropic stress Σij

new source in Euler equation proportional to σij = Pδij + Σij

equation for the evolution of σij

σij acts as a source for vorticity

This formalism allows vorticity to be generated!
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How we solve our system of equations
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System of equations that we need to solve

Euler equation and evolution equation for the velocity dispersion tensor

(
∂δ

∂η

)
x

+∇x · [(1 + δ) v] = 0(
∂v

∂η
+ vj∂

j

)
vi +Hvi = −∂iΦ− 1

ρ
∂j (ρ σij)

∂ησ
ij(η,x) + 2Hσij + vk∂kσ

ij + σik∂kv
j + σjk∂kv

i = 0

How to solve it? Eulerian picture? Lagrangian picture?
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Lagrangian picture and Eulerian picture

We need to solve equations in a perturbation scheme: Eulerian? Lagrangian?

Lagrangian picture: observer follows an individual fluid element as it
moves in space

q→ S(η,q) pathline of the volume

I sit in a boat drifting down a river

Eulerian picture: observer focuses on specific locations in space through
which the fluid flows as time passes

x = q + S(η,q)

I sit on the bank of a river and I watch the water passing a fixed location
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Lagrangian picture vs Eulerian picture

We use Lagrangian picture and Lagrangian perturbation theory (LPT)

Two main advantages of Lagrangian picture:

1 δ is not a dynamical field: dimensional reduction of the system

2 we do not need to linearize over δ: we can describe mildly non-linear
regime δ ∼ 1 (where SPT breaks down)

Important! No analytic access to shell-crossing region
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Lagrangian picture with velocity dispersion

We define a Lagrangian map S(η,q,u)

x = q + S(η,q,u)

Peculiar velocity of a fluid element is given by the implicit equation

u(η,x) ≡ dx

dη
=
dS
dη

(η,q,u)

velocity dispersion induces stochasticity in the velocity of a particle in given x

f(p)

p

Picture at 
fixed time 
and space
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VDT stochasticity vs shell crossing

Shell crossing

real crossing of pathlines!

δ � 1

fluid approximation breaks down

(η,x): crossing 2 volume elements

Velocity dispersion

stochastic process

δ 6= 1

(η,x) associated probability having
volume element with given velocity
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Lagrangian picture with velocity dispersion

x = q + S(η,q,u)

Lagrangian map has a standard part Ψ and a stochastic part Γ

S(η,q,u) ≡ Ψ + Γ

Standard langrangian displacement field: average of S over momenta

v ≡
〈
∂x

∂η
(η,q)

〉
p

=

〈
∂S
∂η

(η,q)

〉
p

≡ ∂Ψ

∂η
(η,q)

We can relate the stochastic part to the velocity dispersion tensor via

σij =

〈
dxi

dη

dxj

dη

〉
p

−
〈
dxi

dη

〉
p

〈
dxj

dη

〉
p

= 〈Γ̇iΓ̇j〉p · ≡ ∂η |q
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Some technicalities

q→ x = q + S(η,q,u) invertible for a given u

jacobian transformation

Jij ≡ ∂xi

∂qj
= δij +

∂Si

∂qj
= δij +

∂Ψi

∂qj
+
∂Γi

∂qj

J̄ij ≡ δij +
∂Ψi

∂qj
stochastic part jacobian

transformation spatial derivatives

∂

∂x
=
∂q

∂x

∂

∂q
= J−1 ∂

∂q

we neglect stochastic contributions (consistency check a posteriori...)
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Equations in Lagrangian coordinates

Euler equation (curl+divergence) and evolution equation for σij(
T̂ − 4πGa2ρ̄

)
∇ ·Ψ + εijkεipqΨj,p

(
T̂ − 2πGa2ρ̄

)
Ψk,q+

+εijkεpqrΨi,pΨj,q

(
T̂ −

4πGa2

3
ρ̄

)
Ψk,r = Sdiv

T̂ (∇∧Ψ)j −
(
∇Ψk ∧ T̂ ∇Ψk

)
j

= (Scurl)j

σ̇ij + 2Hσij = (Sσ)ij

where T̂ = ∂2η +H∂η ; all time derivatives are at q = constant. The sources are

Sdiv = fdiv(Ψ, σ) +[s.t] ,

(Scurl)j = fcurl(Ψ, σ) +[s.t]

(Sσ)ij = fσ(Ψ, σ) +[s.t]

where [s.t.] indicates stochastic contributions
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Equations for vorticity in Lagrangian picture

From the Euler equation: evolution equation for vorticity in Lagrangian picture

∂ηω` +Hω` =
(
SAω
)
`

+
(
SBω
)
`

where

(
SAω
)
`
≡ f(Ψ, ω) homogeneous!

(
SBω
)
`
≡ g(Ψ, σ) SOURCE!
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Lagrangian perturbation theory

Perturbative expansion for displacement field, σij and vorticity

Ψ =

∞∑

n=1

Ψ(n) , σij =

∞∑

n=0

σ
(n)
ij ω =

∞∑

n=1

ω(n)

EdS universe (pure matter dominated universe)

’time’ variable τ = log a
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Background configurations

Only σ has a non-vanishing background contribution (by symmetry)

H
[
∂

∂τ
+ 2

]
σ

(0)
ij = 0

 σ
(0)
ij = σ(0)δij =

σ0

3
a−2δij trace!

σij = Pδij + Σij  P (0) = a−2σ0/3

non-relativistic particles: Maxwell-Boltzmann distribution σ(0) ∝ T/m

a0 = 1  σ0 ≡ T0/m
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Final results for vorticity
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Final results for vorticity

We can solve the evolution equation for vorticity

∂ηω
(n) +Hω(n) ' ω(n−1)a+ an−2

 ω(n) ∝ an−3/2 growing modes from second order!

Vorticity is a gaussian field characterized by its power spectrum...
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Final results for vorticity: power spectrum

〈ω(2)
i (k, η)ω

(2) ∗
j (k′, η)〉 = (2π)3

(
δij − k̂ik̂j

)
δ(k− k′)Pω(k, η)

vorticity is divergence free, ω · k = 0

Pω(k, η) =
1

9

σ2
0 a(η)

H2
0Ωm

ˆ
d3w

(2π)3
(kernel) Pδ(w)Pδ(|k−w|)

For the rotational component of peculiar velocity vR(k) = ik−2k ∧ ω(k)

〈vRi (k, η)vR∗j (k′, η)〉 = (2π)3
(
δij − k̂ik̂j

)
δ(k− k′)PvR(k, η)

PvR(k, η) =
1

k2
Pω(k, η)
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Final results for vorticity: some numbers

Amplitude of power spectra Pω and PvR depends quadratically on σ0 = T0/m

CDM: non-relativistic species at the moment of decoupling, t∗

σ0 ∝ T0 = T∗/(1 + z∗)
2 ' 10−14

Piattella et al. 1507.00882

WDM: typical decoupling velocities are still relativistic

σ0 ∝ T0 = T∗/(1 + z∗)
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FIG. 2: We plot the matter power spectrum P�(k) at z=0 (solid) and the vorticity power spectrum P!(k) for di↵erent
values of �0 [in units of (h�1Mpc)3 and (h�1Mpc)5 respectively] (left). We also plot the power spectrum of PvR(k)
(dashed), i.e. the rotational component of the peculiar velocity, which is given by k�2P!(k) and compare it with the
gradient velocity power spectrum (solid), Pv(k) = ⌦1.14

m (H/k)2P�(k) (right).

III. RESULTS

Using the results for �(1) and �(2), we can infer the time evolution for the fastest growing contribution to the

vorticity source term, S
A (n)
! / !(n�1)D+ and S

B (n)
! / Dn�2

+ such that

@⌘! + H! ' !(n�1)D+ + Dn�2
+ , (66)

which gives !(n) / D
n�3/2
+ . Already at second order we obtain a growing mode: !(2) /

p
D+. At first order

we have S
A (1)
! = 0 and inserting (61) we obtain in Fourier space

⇣
SB (1)
!

⌘
`
/ ✏`prkpkr �0(k) = 0 , (67)

hence !(1) = 0. This implies that also at second order S
A (2)
! / !(1) = 0. But the source term S

B (2)
! is

non-vanishing at second order, we find

⇣
SB (2)
!

⌘
`
= ��0

3
✏`ijkjkb Ibi(k) = �0

Z
d3w

(2⇡)3
w · (k � w)

w2|k � w|2 k · w (w ^ k)` �0(w)�0(k � w) , (68)

so that

!(2)(k, ⌘) =
2

3

�0

H0

p
⌦m

p
D+

Z
d3w

(2⇡)3
w · (k � w)

w2|k � w|2 (k · w) (w ^ k) �0(w)�0(k � w) . (69)

Eq (69) is our main result. In the following we compute and discuss its power spectrum.
The power spectrum of !(2) is defined by

h!(2)
i (k, ⌘)!

(2) ⇤
j (k0, ⌘)i = (2⇡)3

⇣
�ij � k̂ik̂j

⌘
�(k � k0)P!(k, ⌘) . (70)

Here k̂ = k/k, where k = |k| and the pre factor is a consequence of the fact that the vorticity is divergence free,
! · k = 0. This can also be checked directly from the form (69) of !. Inserting the result (69) in the above
definition we find

P!(k) =
1

9

�2
0D+(⌘)

H2
0⌦m

Z
d3w

(2⇡)3

✓
w · (k � w)

w2|k � w|2
◆2

|w ^ k|2
⇥
2k · w � k2

⇤2
P�(w)P�(|k � w|) , (71)

where we have introduced the linear density power spectrum, h�0(k)�⇤0(k0)i = (2⇡)3P�(k)�(k � k0).
We plot P! together with P� in Fig. 2 for di↵erent values of �0. Since !(k) = ik ^ v(k) we can trivially

compute the rotational component of the peculiar velocity given by vR(k) = ik�2k^!(k). Its spectrum can be
written in the form

hvR
i (k, ⌘)vR⇤

j (k0, ⌘)i = (2⇡)3
⇣
�ij � k̂ik̂j

⌘
�(k � k0)PvR

(k, ⌘) . (72)
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Summary

Velocity dispersion (i.e. pressure and anisotropic stress) included in DM
description

Boltzmann hierarchy truncated at the third momentum

equation for vorticity is sourced → power spectrum of generated vorticity

result depends on σ0 ∝ T0, present dark matter temperature

for warm dark matter at small scales vR ∼ vG!
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Open routes

Vorticity is measured in N-body Plueblas et Scoccimarro [0809.4606], Paduroiu et al. [1506.03789]

is it due to shell crossing/large scale effect induced by small scale?

is velocity dispersion generated in the evolution?

how is vorticity evolving with time?

Comparison with N-body simulation with our initial conditions implemented

Our description breaks down when shell crossing occurs:

N-body domain!

Analytic methods to access non-linear regime?
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Thank you

Giulia Cusin Analytic description of dark matter clustering: beyond perfect fluid approximation 45 / 52



Method used to solve perturbation equations
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Equations in Lagrangian coordinates

Euler equation (curl+divergence) and evolution equation for σij(
T̂ − 4πGa2ρ̄

)
∇ ·Ψ + εijkεipqΨj,p

(
T̂ − 2πGa2ρ̄

)
Ψk,q+

+εijkεpqrΨi,pΨj,q

(
T̂ −

4πGa2

3
ρ̄

)
Ψk,r = Sdiv

T̂ (∇∧Ψ)j −
(
∇Ψk ∧ T̂ ∇Ψk

)
j

= (Scurl)j

σ̇ij + 2Hσij = (Sσ)ij

where T̂ = ∂2η +H∂η ; all time derivatives are at q = constant. The sources are

Sdiv = fdiv(Ψ, σ) +[s.t] ,

(Scurl)j = fcurl(Ψ, σ) +[s.t]

(Sσ)ij = fσ(Ψ, σ) +[s.t]

where [s.t.] indicates stochastic contributions
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Standard LPT result (σij = 0)

Growing leading modes

Ψ̃(1)(k) = i
k

k2
δ0(k)a(τ)

and

Ψ̃(2)(k) = i
3

14

k

k2
α00(k)a(τ)2

where

α00(k) ≡
ˆ

d3w

(2π)3
(w ∧ k)2

w2|k−w|2 δ0(w)δ0(k−w)
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Method used to solve LPT system

In the presence of velocity dispersion we can write the displacement field as

Ψ = Ψst + δΨσ

Idea:

solve eq. for σij with standard LPT result in the source

plug σij found in the source of eq for Ψ δΨσ

eq. for σij with corrected Ψ = Ψst + δΨσ in the source

reiterate the procedure ...

However:

correction δΨσ induced by coupling to VDT is subleading wrt Ψst

VDT solution introduces small σ0 which further suppresses this correction

E.g. first order

Ψ
(1)
st ∝ D+ , δΨ

(1)
σ ∝ σ0D−2

+

 we can just use in the source for σij the standard LPT result for Ψ
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Contributions stochastic terms

Time dependence of the stochastic term Γi ≡ Si −Ψi can be determined as

σ
(n)
ij ∝ 〈Γ̇iΓ̇j〉(n)p ∝ σ0D

n−2
+

 Γ
(n)
i ∝ √σ0D

n− 1
2

+ vs Ψ(n) ∝ D(n)
+

Every time we have neglected in the sources a terms in Γk,j we have considered
an identical term in Ψk,j :

which grows faster

and it is not suppressed by a factor
√
σ0

 for sufficiently small σ0 it is justified to neglect the stochastic contribution!
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Continuity equation automatically implemented in Lagrangian picture

The continuity equation can be rewritten as

d3x ρ(η,x) = d3q ρ(q) or ρ(η,x) = ρ(q)/J(η,q)

Neglecting stochastic contributions, it follows ← d (detA) /dt = detA tr
(
A−1dA/dt

)

dJ

dη
= J Tr

(
J−1 dJ

dη

)
= J ∇ · v

Using ρ(q) = ρ(η,x)J(η,q), we get

0 =
∂

∂η
(ρ J) = J

(
∂ρ

∂η
+ ρ∇ · v

)

in the Lagrangian picture the continuity equation is automatically implemented,
independently on the specific form of the map between Lagrangian and
Eulerian coordinates
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Evolution CDM overdensity

Mode is entering horizon in radiation domination

January 4, 2011 10:13 9.75in x 6.5in Introduction to the Theory of the Early Universe: Cosmological Perturbations. . . b1054-ch06

84 Scalar Perturbations before Recombination

The evolution of perturbations in the relativistic component at radiation dom-

ination proceeds as described in Section 4.2. The gravitational potential for mode

of conformal momentum k is given by (4.12) where the initial value is (see (5.20))

Φ(i) = −2

3
ζ = −2

3
R . (6.5)

In what follows, we express the results in terms of the initial value Φ(i) of the

gravitational potential in the conformal Newtonian gauge, with understanding that

it is related to gauge-invariant initial data by Eq. (6.5).

The new phenomenon is that this potential induces dark matter perturbation

after the horizon entry, which grows logarithmically at radiation domination. This

effect is crucial for formation of galaxies and other gravitationally bound systems

in our Universe: as we have seen in Chapter 4, perturbations in relativistic matter

do not grow at radiation domination, and with ∆R = 5 · 10−5, the growth of

perturbations at matter domination is by itself insufficient for producing δM ∼ 1.

The results for modes under study are illustrated in Fig. 6.1.

λ

Fig. 6.1 Schematic plot of the evolution of adiabatic scalar perturbation of a given conformal
momentum k that enters the sound horizon at radiation domination. Oscillations are not shown.

t× is the time of the sound horizon entry. The behavior near the times (t×, teq , tr , tΛ) is shown
qualitatively. The scales of the axes are arbitrary. I. Radiation domination. Perturbation of rel-

ativistic component dominates; it behaves as described in Section 4.2; Ia: before the horizon
entry, perturbation does not evolve, its properties are given by Eq. (5.22); Ib: near the horizon
entry, perturbation in relativistic component induces logarithmically growing dark matter pertur-
bation, Eq. (6.11). II. Matter domination. CDM perturbation dominates and evolves according

to Section 4.3. Initial data for this evolution is given by (6.11); IIa: perturbation in baryon-
photon component before recombination — sound wave — oscillates according to (6.36); CDM
perturbation induces additional perturbation in the baryon-photon component, formula (6.35);
IIb: baryons are decoupled, their perturbation catch up with CDM perturbation, formulas (7.19),

(7.18). III. Λ-domination; growth of perturbations terminates, Section 4.4.

from Rubakov’s book
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